Header logo is


2017


no image
Causal Discovery from Nonstationary/Heterogeneous Data: Skeleton Estimation and Orientation Determination

Zhang, K., Huang, B., Zhang, J., Glymour, C., Schölkopf, B.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI), pages: 1347-1353, (Editors: Carles Sierra), August 2017 (conference)

ei

PDF DOI [BibTex]

2017


PDF DOI [BibTex]


Slow Flow: Exploiting High-Speed Cameras for Accurate and Diverse Optical Flow Reference Data
Slow Flow: Exploiting High-Speed Cameras for Accurate and Diverse Optical Flow Reference Data

Janai, J., Güney, F., Wulff, J., Black, M., Geiger, A.

In Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, pages: 1406-1416, IEEE, Piscataway, NJ, USA, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017 (inproceedings)

Abstract
Existing optical flow datasets are limited in size and variability due to the difficulty of capturing dense ground truth. In this paper, we tackle this problem by tracking pixels through densely sampled space-time volumes recorded with a high-speed video camera. Our model exploits the linearity of small motions and reasons about occlusions from multiple frames. Using our technique, we are able to establish accurate reference flow fields outside the laboratory in natural environments. Besides, we show how our predictions can be used to augment the input images with realistic motion blur. We demonstrate the quality of the produced flow fields on synthetic and real-world datasets. Finally, we collect a novel challenging optical flow dataset by applying our technique on data from a high-speed camera and analyze the performance of the state-of-the-art in optical flow under various levels of motion blur.

avg ps

pdf suppmat Project page Video DOI Project Page [BibTex]

pdf suppmat Project page Video DOI Project Page [BibTex]


OctNet: Learning Deep 3D Representations at High Resolutions
OctNet: Learning Deep 3D Representations at High Resolutions

Riegler, G., Ulusoy, O., Geiger, A.

In Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, IEEE, Piscataway, NJ, USA, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017 (inproceedings)

Abstract
We present OctNet, a representation for deep learning with sparse 3D data. In contrast to existing models, our representation enables 3D convolutional networks which are both deep and high resolution. Towards this goal, we exploit the sparsity in the input data to hierarchically partition the space using a set of unbalanced octrees where each leaf node stores a pooled feature representation. This allows to focus memory allocation and computation to the relevant dense regions and enables deeper networks without compromising resolution. We demonstrate the utility of our OctNet representation by analyzing the impact of resolution on several 3D tasks including 3D object classification, orientation estimation and point cloud labeling.

avg ps

pdf suppmat Project Page Video Project Page [BibTex]

pdf suppmat Project Page Video Project Page [BibTex]


no image
Flexible Spatio-Temporal Networks for Video Prediction

Lu, C., Hirsch, M., Schölkopf, B.

Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, pages: 2137-2145, IEEE, Piscataway, NJ, USA, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017 (conference)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


A Multi-View Stereo Benchmark with High-Resolution Images and Multi-Camera Videos
A Multi-View Stereo Benchmark with High-Resolution Images and Multi-Camera Videos

Schöps, T., Schönberger, J. L., Galliani, S., Sattler, T., Schindler, K., Pollefeys, M., Geiger, A.

In Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, IEEE, Piscataway, NJ, USA, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017 (inproceedings)

Abstract
Motivated by the limitations of existing multi-view stereo benchmarks, we present a novel dataset for this task. Towards this goal, we recorded a variety of indoor and outdoor scenes using a high-precision laser scanner and captured both high-resolution DSLR imagery as well as synchronized low-resolution stereo videos with varying fields-of-view. To align the images with the laser scans, we propose a robust technique which minimizes photometric errors conditioned on the geometry. In contrast to previous datasets, our benchmark provides novel challenges and covers a diverse set of viewpoints and scene types, ranging from natural scenes to man-made indoor and outdoor environments. Furthermore, we provide data at significantly higher temporal and spatial resolution. Our benchmark is the first to cover the important use case of hand-held mobile devices while also providing high-resolution DSLR camera images. We make our datasets and an online evaluation server available at http://www.eth3d.net.

avg

pdf suppmat Project Page Project Page [BibTex]

pdf suppmat Project Page Project Page [BibTex]


no image
Discovering Causal Signals in Images

Lopez-Paz, D., Nishihara, R., Chintala, S., Schölkopf, B., Bottou, L.

Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, pages: 58-66, IEEE, Piscataway, NJ, USA, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017 (conference)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Toroidal Constraints for Two Point Localization Under High Outlier Ratios
Toroidal Constraints for Two Point Localization Under High Outlier Ratios

Camposeco, F., Sattler, T., Cohen, A., Geiger, A., Pollefeys, M.

In Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, IEEE, Piscataway, NJ, USA, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017 (inproceedings)

Abstract
Localizing a query image against a 3D model at large scale is a hard problem, since 2D-3D matches become more and more ambiguous as the model size increases. This creates a need for pose estimation strategies that can handle very low inlier ratios. In this paper, we draw new insights on the geometric information available from the 2D-3D matching process. As modern descriptors are not invariant against large variations in viewpoint, we are able to find the rays in space used to triangulate a given point that are closest to a query descriptor. It is well known that two correspondences constrain the camera to lie on the surface of a torus. Adding the knowledge of direction of triangulation, we are able to approximate the position of the camera from \emphtwo matches alone. We derive a geometric solver that can compute this position in under 1 microsecond. Using this solver, we propose a simple yet powerful outlier filter which scales quadratically in the number of matches. We validate the accuracy of our solver and demonstrate the usefulness of our method in real world settings.

avg

pdf suppmat Project Page Project Page [BibTex]

pdf suppmat Project Page pdf Project Page [BibTex]


no image
Dynamic Time-of-Flight

Schober, M., Adam, A., Yair, O., Mazor, S., Nowozin, S.

Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, pages: 170-179, IEEE, Piscataway, NJ, USA, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017 (conference)

ei pn

DOI [BibTex]

DOI [BibTex]


Semantic Multi-view Stereo: Jointly Estimating Objects and Voxels
Semantic Multi-view Stereo: Jointly Estimating Objects and Voxels

Ulusoy, A. O., Black, M. J., Geiger, A.

In Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, IEEE, Piscataway, NJ, USA, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017 (inproceedings)

Abstract
Dense 3D reconstruction from RGB images is a highly ill-posed problem due to occlusions, textureless or reflective surfaces, as well as other challenges. We propose object-level shape priors to address these ambiguities. Towards this goal, we formulate a probabilistic model that integrates multi-view image evidence with 3D shape information from multiple objects. Inference in this model yields a dense 3D reconstruction of the scene as well as the existence and precise 3D pose of the objects in it. Our approach is able to recover fine details not captured in the input shapes while defaulting to the input models in occluded regions where image evidence is weak. Due to its probabilistic nature, the approach is able to cope with the approximate geometry of the 3D models as well as input shapes that are not present in the scene. We evaluate the approach quantitatively on several challenging indoor and outdoor datasets.

avg ps

YouTube pdf suppmat Project Page [BibTex]

YouTube pdf suppmat Project Page [BibTex]


no image
Strategic exploration in human adaptive control

Schulz, E., Klenske, E., Bramley, N., Speekenbrink, M.

Proceedings of the 39th Annual Conference of the Cognitive Science Society (CogSci), (Editors: Glenn Gunzelmann, Andrew Howes, Thora Tenbrink and Eddy J. Davelaar), cognitivesciencesociety.org, July 2017 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
State-Regularized Policy Search for Linearized Dynamical Systems

Abdulsamad, H., Arenz, O., Peters, J., Neumann, G.

Proceedings of the Twenty-Seventh International Conference on Automated Planning and Scheduling, (ICAPS), pages: 419-424, (Editors: Laura Barbulescu, Jeremy Frank, Mausam and Stephen F. Smith), AAAI Press, June 2017 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Deep Reinforcement Learning for Robotic Manipulation with Asynchronous Off-Policy Updates

Gu*, S., Holly*, E., Lillicrap, T., Levine, S.

Proceedings 2017 IEEE International Conference on Robotics and Automation (ICRA), IEEE, Piscataway, NJ, USA, IEEE International Conference on Robotics and Automation (ICRA), May 2017, *equal contribution (conference)

ei

Arxiv Project Page [BibTex]

Arxiv Project Page [BibTex]


no image
Context-Driven Movement Primitive Adaptation

Wilbers, D., Lioutikov, R., Peters, J.

IEEE International Conference on Robotics and Automation (ICRA), pages: 3469-3475, IEEE, May 2017 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
A Learning-based Shared Control Architecture for Interactive Task Execution

Farraj, F. B., Osa, T., Pedemonte, N., Peters, J., Neumann, G., Giordano, P.

IEEE International Conference on Robotics and Automation (ICRA), pages: 329-335, IEEE, May 2017 (conference)

ei

DOI Project Page Project Page [BibTex]

DOI Project Page Project Page [BibTex]


no image
Frequency Peak Features for Low-Channel Classification in Motor Imagery Paradigms

Jayaram, V., Schölkopf, B., Grosse-Wentrup, M.

Proceedings of the 8th International IEEE/EMBS Conference on Neural Engineering (NER), pages: 321-324, May 2017 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
Empowered skills

Gabriel, A., Akrour, R., Peters, J., Neumann, G.

IEEE International Conference on Robotics and Automation (ICRA), pages: 6435-6441, IEEE, May 2017 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Layered direct policy search for learning hierarchical skills

End, F., Akrour, R., Peters, J., Neumann, G.

IEEE International Conference on Robotics and Automation (ICRA), pages: 6442-6448, IEEE, May 2017 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Q-Prop: Sample-Efficient Policy Gradient with An Off-Policy Critic

Gu, S., Lillicrap, T., Ghahramani, Z., Turner, R. E., Levine, S.

Proceedings International Conference on Learning Representations (ICLR), OpenReviews.net, International Conference on Learning Representations, April 2017 (conference)

ei

PDF link (url) Project Page [BibTex]

PDF link (url) Project Page [BibTex]


no image
Categorical Reparametrization with Gumbel-Softmax

Jang, E., Gu, S., Poole, B.

Proceedings International Conference on Learning Representations 2017, OpenReviews.net, International Conference on Learning Representations, April 2017 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
DeepCoder: Learning to Write Programs

Balog, M., Gaunt, A. L., Brockschmidt, M., Nowozin, S., Tarlow, D.

Proceedings International Conference on Learning Representations 2017, OpenReviews.net, International Conference on Learning Representations, April 2017 (conference)

ei

Arxiv link (url) Project Page [BibTex]

Arxiv link (url) Project Page [BibTex]


Distilling Information Reliability and Source Trustworthiness from Digital Traces
Distilling Information Reliability and Source Trustworthiness from Digital Traces

Tabibian, B., Valera, I., Farajtabar, M., Song, L., Schölkopf, B., Gomez Rodriguez, M.

Proceedings of the 26th International Conference on World Wide Web (WWW), pages: 847-855, (Editors: Barrett, R., Cummings, R., Agichtein, E. and Gabrilovich, E. ), ACM, April 2017 (conference)

ei

Project DOI Project Page Project Page [BibTex]

Project DOI Project Page Project Page [BibTex]


no image
Local Group Invariant Representations via Orbit Embeddings

Raj, A., Kumar, A., Mroueh, Y., Fletcher, T., Schölkopf, B.

Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS), 54, pages: 1225-1235, Proceedings of Machine Learning Research, (Editors: Aarti Singh and Jerry Zhu), April 2017 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Pre-Movement Contralateral EEG Low Beta Power Is Modulated with Motor Adaptation Learning

Ozdenizci, O., Yalcin, M., Erdogan, A., Patoglu, V., Grosse-Wentrup, M., Cetin, M.

International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages: 934-938, March 2017 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
Automatic detection of motion artifacts in MR images using CNNs

Meding, K., Loktyushin, A., Hirsch, M.

42nd IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages: 811-815, March 2017 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
Catching heuristics are optimal control policies

Belousov, B., Neumann, G., Rothkopf, C., Peters, J.

Proceedings of the Thirteenth Karniel Computational Motor Control Workshop, March 2017 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
DiSMEC – Distributed Sparse Machines for Extreme Multi-label Classification

Babbar, R., Schölkopf, B.

Proceedings of the Tenth ACM International Conference on Web Search and Data Mining (WSDM), pages: 721-729, Febuary 2017 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Policy Search with High-Dimensional Context Variables

Tangkaratt, V., van Hoof, H., Parisi, S., Neumann, G., Peters, J., Sugiyama, M.

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI), pages: 2632-2638, (Editors: Satinder P. Singh and Shaul Markovitch), AAAI Press, Febuary 2017 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Iterative Feedback-basierte Korrekturstrategien beim Bewegungslernen von Mensch-Roboter-Dyaden

Ewerton, M., Kollegger, G., Maeda, G., Wiemeyer, J., Peters, J.

In DVS Sportmotorik 2017, 2017 (inproceedings)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
BIMROB - Bidirectional Interaction between human and robot for the learning of movements - Robot trains human - Human trains robot

Kollegger, G., Wiemeyer, J., Ewerton, M., Peters, J.

In Inovation & Technologie im Sport - 23. Sportwissenschaftlicher Hochschultag der deutschen Vereinigung für Sportwissenschaft, pages: 179, (Editors: A. Schwirtz, F. Mess, Y. Demetriou & V. Senner ), Czwalina-Feldhaus, 2017 (inproceedings)

ei

[BibTex]

[BibTex]


no image
BIMROB – Bidirektionale Interaktion von Mensch und Roboter beim Bewegungslernen

Wiemeyer, J., Peters, J., Kollegger, G., Ewerton, M.

DVS Sportmotorik 2017, 2017 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]

2014


Omnidirectional 3D Reconstruction in Augmented Manhattan Worlds
Omnidirectional 3D Reconstruction in Augmented Manhattan Worlds

Schoenbein, M., Geiger, A.

International Conference on Intelligent Robots and Systems, pages: 716 - 723, IEEE, Chicago, IL, USA, IEEE/RSJ International Conference on Intelligent Robots and System, October 2014 (conference)

Abstract
This paper proposes a method for high-quality omnidirectional 3D reconstruction of augmented Manhattan worlds from catadioptric stereo video sequences. In contrast to existing works we do not rely on constructing virtual perspective views, but instead propose to optimize depth jointly in a unified omnidirectional space. Furthermore, we show that plane-based prior models can be applied even though planes in 3D do not project to planes in the omnidirectional domain. Towards this goal, we propose an omnidirectional slanted-plane Markov random field model which relies on plane hypotheses extracted using a novel voting scheme for 3D planes in omnidirectional space. To quantitatively evaluate our method we introduce a dataset which we have captured using our autonomous driving platform AnnieWAY which we equipped with two horizontally aligned catadioptric cameras and a Velodyne HDL-64E laser scanner for precise ground truth depth measurements. As evidenced by our experiments, the proposed method clearly benefits from the unified view and significantly outperforms existing stereo matching techniques both quantitatively and qualitatively. Furthermore, our method is able to reduce noise and the obtained depth maps can be represented very compactly by a small number of image segments and plane parameters.

avg ps

pdf DOI [BibTex]

2014


pdf DOI [BibTex]


Human Pose Estimation with Fields of Parts
Human Pose Estimation with Fields of Parts

Kiefel, M., Gehler, P.

In Computer Vision – ECCV 2014, LNCS 8693, pages: 331-346, Lecture Notes in Computer Science, (Editors: Fleet, David and Pajdla, Tomas and Schiele, Bernt and Tuytelaars, Tinne), Springer, 13th European Conference on Computer Vision, September 2014 (inproceedings)

Abstract
This paper proposes a new formulation of the human pose estimation problem. We present the Fields of Parts model, a binary Conditional Random Field model designed to detect human body parts of articulated people in single images. The Fields of Parts model is inspired by the idea of Pictorial Structures, it models local appearance and joint spatial configuration of the human body. However the underlying graph structure is entirely different. The idea is simple: we model the presence and absence of a body part at every possible position, orientation, and scale in an image with a binary random variable. This results into a vast number of random variables, however, we show that approximate inference in this model is efficient. Moreover we can encode the very same appearance and spatial structure as in Pictorial Structures models. This approach allows us to combine ideas from segmentation and pose estimation into a single model. The Fields of Parts model can use evidence from the background, include local color information, and it is connected more densely than a kinematic chain structure. On the challenging Leeds Sports Poses dataset we improve over the Pictorial Structures counterpart by 5.5% in terms of Average Precision of Keypoints (APK).

ei ps

website pdf DOI Project Page [BibTex]

website pdf DOI Project Page [BibTex]


Probabilistic Progress Bars
Probabilistic Progress Bars

Kiefel, M., Schuler, C., Hennig, P.

In Conference on Pattern Recognition (GCPR), 8753, pages: 331-341, Lecture Notes in Computer Science, (Editors: Jiang, X., Hornegger, J., and Koch, R.), Springer, GCPR, September 2014 (inproceedings)

Abstract
Predicting the time at which the integral over a stochastic process reaches a target level is a value of interest in many applications. Often, such computations have to be made at low cost, in real time. As an intuitive example that captures many features of this problem class, we choose progress bars, a ubiquitous element of computer user interfaces. These predictors are usually based on simple point estimators, with no error modelling. This leads to fluctuating behaviour confusing to the user. It also does not provide a distribution prediction (risk values), which are crucial for many other application areas. We construct and empirically evaluate a fast, constant cost algorithm using a Gauss-Markov process model which provides more information to the user.

ei ps pn

website+code pdf DOI [BibTex]

website+code pdf DOI [BibTex]


no image
Seeing the Arrow of Time

Pickup, L., Zheng, P., Donglai, W., YiChang, S., Changshui, Z., Zisserman, A., Schölkopf, B., Freeman, W.

Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on, pages: 2043-2050, IEEE, CVPR, June 2014 (conference)

ei

DOI [BibTex]

DOI [BibTex]


Simultaneous Underwater Visibility Assessment, Enhancement and Improved Stereo
Simultaneous Underwater Visibility Assessment, Enhancement and Improved Stereo

Roser, M., Dunbabin, M., Geiger, A.

IEEE International Conference on Robotics and Automation, pages: 3840 - 3847 , Hong Kong, China, IEEE International Conference on Robotics and Automation, June 2014 (conference)

Abstract
Vision-based underwater navigation and obstacle avoidance demands robust computer vision algorithms, particularly for operation in turbid water with reduced visibility. This paper describes a novel method for the simultaneous underwater image quality assessment, visibility enhancement and disparity computation to increase stereo range resolution under dynamic, natural lighting and turbid conditions. The technique estimates the visibility properties from a sparse 3D map of the original degraded image using a physical underwater light attenuation model. Firstly, an iterated distance-adaptive image contrast enhancement enables a dense disparity computation and visibility estimation. Secondly, using a light attenuation model for ocean water, a color corrected stereo underwater image is obtained along with a visibility distance estimate. Experimental results in shallow, naturally lit, high-turbidity coastal environments show the proposed technique improves range estimation over the original images as well as image quality and color for habitat classification. Furthermore, the recursiveness and robustness of the technique allows real-time implementation onboard an Autonomous Underwater Vehicles for improved navigation and obstacle avoidance performance.

avg ps

pdf DOI [BibTex]

pdf DOI [BibTex]


Calibrating and Centering Quasi-Central Catadioptric Cameras
Calibrating and Centering Quasi-Central Catadioptric Cameras

Schoenbein, M., Strauss, T., Geiger, A.

IEEE International Conference on Robotics and Automation, pages: 4443 - 4450, Hong Kong, China, IEEE International Conference on Robotics and Automation, June 2014 (conference)

Abstract
Non-central catadioptric models are able to cope with irregular camera setups and inaccuracies in the manufacturing process but are computationally demanding and thus not suitable for robotic applications. On the other hand, calibrating a quasi-central (almost central) system with a central model introduces errors due to a wrong relationship between the viewing ray orientations and the pixels on the image sensor. In this paper, we propose a central approximation to quasi-central catadioptric camera systems that is both accurate and efficient. We observe that the distance to points in 3D is typically large compared to deviations from the single viewpoint. Thus, we first calibrate the system using a state-of-the-art non-central camera model. Next, we show that by remapping the observations we are able to match the orientation of the viewing rays of a much simpler single viewpoint model with the true ray orientations. While our approximation is general and applicable to all quasi-central camera systems, we focus on one of the most common cases in practice: hypercatadioptric cameras. We compare our model to a variety of baselines in synthetic and real localization and motion estimation experiments. We show that by using the proposed model we are able to achieve near non-central accuracy while obtaining speed-ups of more than three orders of magnitude compared to state-of-the-art non-central models.

avg ps

pdf DOI [BibTex]

pdf DOI [BibTex]


Probabilistic Solutions to Differential Equations and their Application to Riemannian Statistics
Probabilistic Solutions to Differential Equations and their Application to Riemannian Statistics

Hennig, P., Hauberg, S.

In Proceedings of the 17th International Conference on Artificial Intelligence and Statistics, 33, pages: 347-355, JMLR: Workshop and Conference Proceedings, (Editors: S Kaski and J Corander), Microtome Publishing, Brookline, MA, AISTATS, April 2014 (inproceedings)

Abstract
We study a probabilistic numerical method for the solution of both boundary and initial value problems that returns a joint Gaussian process posterior over the solution. Such methods have concrete value in the statistics on Riemannian manifolds, where non-analytic ordinary differential equations are involved in virtually all computations. The probabilistic formulation permits marginalising the uncertainty of the numerical solution such that statistics are less sensitive to inaccuracies. This leads to new Riemannian algorithms for mean value computations and principal geodesic analysis. Marginalisation also means results can be less precise than point estimates, enabling a noticeable speed-up over the state of the art. Our approach is an argument for a wider point that uncertainty caused by numerical calculations should be tracked throughout the pipeline of machine learning algorithms.

ei ps pn

pdf Youtube Supplements Project page link (url) [BibTex]

pdf Youtube Supplements Project page link (url) [BibTex]


no image
A Visual Analytics Approach to Study Anatomic Covariation

Hermann, M., Schunke, A., Schultz, T., Klein, R.

In Proceedings of IEEE Pacific Visualization 2014, pages: 161-168, March 2014 (inproceedings)

Abstract
Gaining insight into anatomic covariation helps the understanding of organismic shape variability in general and is of particular interest for delimiting morphological modules. Generation of hypotheses on structural covariation is undoubtedly a highly creative process, and as such, requires an exploratory approach. In this work we propose a new local anatomic covariance tensor which enables interactive visualizations to explore covariation at different levels of detail, stimulating rapid formation and (qualitative) evaluation of hypotheses. The effectiveness of the presented approach is demonstrated on a muCT dataset of mouse mandibles for which results from the literature are successfully reproduced, while providing a more detailed representation of covariation compared to state-of-the-art methods.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Multi-Task Feature Selection on Multiple Networks via Maximum Flows

Sugiyama, M., Azencott, C., Grimm, D., Kawahara, Y., Borgwardt, K.

In Proceedings of the 2014 SIAM International Conference on Data Mining , pages: 199-207, SIAM, 2014 (inproceedings)

ei

Web PDF DOI [BibTex]

Web PDF DOI [BibTex]


no image
Quantifying Information Overload in Social Media and its Impact on Social Contagions

Gomez Rodriguez, M., Gummadi, K., Schölkopf, B.

In Proceedings of the Eighth International Conference on Weblogs and Social Media, pages: 170-179, (Editors: E. Adar, P. Resnick, M. De Choudhury, B. Hogan, and A. Oh), AAAI Press, ICWSM, 2014 (inproceedings)

ei

Web [BibTex]

Web [BibTex]


no image
Estimating Diffusion Network Structures: Recovery Conditions, Sample Complexity & Soft-thresholding Algorithm

Daneshmand, H., Gomez Rodriguez, M., Song, L., Schölkopf, B.

In Proceedings of the 31st International Conference on Machine Learning, W&CP 32 (1), pages: 793-801, (Editors: Eric P. Xing and Tony Jebara), JMLR, ICML, 2014 (inproceedings)

ei

PDF [BibTex]

PDF [BibTex]


no image
Interaction Primitives for Human-Robot Cooperation Tasks

Ben Amor, H., Neumann, G., Kamthe, S., Kroemer, O., Peters, J.

In Proceedings of 2014 IEEE International Conference on Robotics and Automation, pages: 2831-2837, IEEE, ICRA, 2014 (inproceedings)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Learning to Predict Phases of Manipulation Tasks as Hidden States

Kroemer, O., van Hoof, H., Neumann, G., Peters, J.

In Proceedings of 2014 IEEE International Conference on Robotics and Automation, pages: 4009-4014, IEEE, ICRA, 2014 (inproceedings)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Visualizing Uncertainty in HARDI Tractography Using Superquadric Streamtubes

Wiens, V., Schlaffke, L., Schmidt-Wilcke, T., Schultz, T.

In Eurographics Conference on Visualization, Short Papers, (Editors: Elmqvist, N. and Hlawitschka, M. and Kennedy, J.), EuroVis, 2014 (inproceedings)

Abstract
Standard streamtubes for the visualization of diffusion MRI data are rendered either with a circular or with an elliptic cross section whose aspect ratio indicates the relative magnitudes of the medium and minor eigenvalues. Inspired by superquadric tensor glyphs, we propose to render streamtubes with a superquadric cross section, which develops sharp edges to more clearly convey the orientation of the second and third eigenvectors where they are uniquely defined, while maintaining a circular shape when the smaller two eigenvalues are equal. As a second contribution, we apply our novel superquadric streamtubes to visualize uncertainty in the tracking direction of HARDI tractography, which we represent using a novel propagation uncertainty tensor.

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
A Permutation-Based Kernel Conditional Independence Test

Doran, G., Muandet, K., Zhang, K., Schölkopf, B.

In Proceedings of the 30th Conference on Uncertainty in Artificial Intelligence (UAI2014), pages: 132-141, (Editors: Nevin L. Zhang and Jin Tian), AUAI Press Corvallis, Oregon, UAI2014, 2014 (inproceedings)

ei

PDF [BibTex]

PDF [BibTex]


no image
A unifying view of representer theorems

Argyriou, A., Dinuzzo, F.

In Proceedings of the 31th International Conference on Machine Learning, 32, pages: 748-756, (Editors: Xing, E. P. and Jebera, T.), ICML, 2014 (inproceedings)

ei

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Riemannian Sparse Coding for Positive Definite Matrices

Cherian, A., Sra, S.

In 13th European Conference on Computer Vision, LNCS 8691, pages: 299-314, (Editors: Fleet, D., Pajdla, T., Schiele, B., and Tuytelaars, T.), Springer, ECCV, 2014 (inproceedings)

ei

DOI [BibTex]

DOI [BibTex]


no image
Probabilistic ODE Solvers with Runge-Kutta Means

Schober, M., Duvenaud, D., Hennig, P.

In Advances in Neural Information Processing Systems 27, pages: 739-747, (Editors: Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence and K.Q. Weinberger), Curran Associates, Inc., 28th Annual Conference on Neural Information Processing Systems (NIPS), 2014 (inproceedings)

ei pn

Web link (url) [BibTex]

Web link (url) [BibTex]