Header logo is


2020


no image
Fabrication and temperature-dependent magnetic properties of large-area L10-FePt/Co exchange-spring magnet nanopatterns

Son, K., Schütz, G.

{Physica E: Low-Dimensional Systems And Nanostructures}, 115, North-Holland, Amsterdam, 2020 (article)

mms

DOI [BibTex]

2020


DOI [BibTex]

2019


Thumb xl lv
Taking a Deeper Look at the Inverse Compositional Algorithm

Lv, Z., Dellaert, F., Rehg, J. M., Geiger, A.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2019, June 2019 (inproceedings)

Abstract
In this paper, we provide a modern synthesis of the classic inverse compositional algorithm for dense image alignment. We first discuss the assumptions made by this well-established technique, and subsequently propose to relax these assumptions by incorporating data-driven priors into this model. More specifically, we unroll a robust version of the inverse compositional algorithm and replace multiple components of this algorithm using more expressive models whose parameters we train in an end-to-end fashion from data. Our experiments on several challenging 3D rigid motion estimation tasks demonstrate the advantages of combining optimization with learning-based techniques, outperforming the classic inverse compositional algorithm as well as data-driven image-to-pose regression approaches.

avg

pdf suppmat Video Project Page Poster [BibTex]

2019


pdf suppmat Video Project Page Poster [BibTex]


Thumb xl mots
MOTS: Multi-Object Tracking and Segmentation

Voigtlaender, P., Krause, M., Osep, A., Luiten, J., Sekar, B. B. G., Geiger, A., Leibe, B.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2019, June 2019 (inproceedings)

Abstract
This paper extends the popular task of multi-object tracking to multi-object tracking and segmentation (MOTS). Towards this goal, we create dense pixel-level annotations for two existing tracking datasets using a semi-automatic annotation procedure. Our new annotations comprise 65,213 pixel masks for 977 distinct objects (cars and pedestrians) in 10,870 video frames. For evaluation, we extend existing multi-object tracking metrics to this new task. Moreover, we propose a new baseline method which jointly addresses detection, tracking, and segmentation with a single convolutional network. We demonstrate the value of our datasets by achieving improvements in performance when training on MOTS annotations. We believe that our datasets, metrics and baseline will become a valuable resource towards developing multi-object tracking approaches that go beyond 2D bounding boxes.

avg

pdf suppmat Project Page Poster Video Project Page [BibTex]

pdf suppmat Project Page Poster Video Project Page [BibTex]


Thumb xl behl
PointFlowNet: Learning Representations for Rigid Motion Estimation from Point Clouds

Behl, A., Paschalidou, D., Donne, S., Geiger, A.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2019, June 2019 (inproceedings)

Abstract
Despite significant progress in image-based 3D scene flow estimation, the performance of such approaches has not yet reached the fidelity required by many applications. Simultaneously, these applications are often not restricted to image-based estimation: laser scanners provide a popular alternative to traditional cameras, for example in the context of self-driving cars, as they directly yield a 3D point cloud. In this paper, we propose to estimate 3D motion from such unstructured point clouds using a deep neural network. In a single forward pass, our model jointly predicts 3D scene flow as well as the 3D bounding box and rigid body motion of objects in the scene. While the prospect of estimating 3D scene flow from unstructured point clouds is promising, it is also a challenging task. We show that the traditional global representation of rigid body motion prohibits inference by CNNs, and propose a translation equivariant representation to circumvent this problem. For training our deep network, a large dataset is required. Because of this, we augment real scans from KITTI with virtual objects, realistically modeling occlusions and simulating sensor noise. A thorough comparison with classic and learning-based techniques highlights the robustness of the proposed approach.

avg

pdf suppmat Project Page Poster Video [BibTex]

pdf suppmat Project Page Poster Video [BibTex]


Thumb xl donne
Learning Non-volumetric Depth Fusion using Successive Reprojections

Donne, S., Geiger, A.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2019, June 2019 (inproceedings)

Abstract
Given a set of input views, multi-view stereopsis techniques estimate depth maps to represent the 3D reconstruction of the scene; these are fused into a single, consistent, reconstruction -- most often a point cloud. In this work we propose to learn an auto-regressive depth refinement directly from data. While deep learning has improved the accuracy and speed of depth estimation significantly, learned MVS techniques remain limited to the planesweeping paradigm. We refine a set of input depth maps by successively reprojecting information from neighbouring views to leverage multi-view constraints. Compared to learning-based volumetric fusion techniques, an image-based representation allows significantly more detailed reconstructions; compared to traditional point-based techniques, our method learns noise suppression and surface completion in a data-driven fashion. Due to the limited availability of high-quality reconstruction datasets with ground truth, we introduce two novel synthetic datasets to (pre-)train our network. Our approach is able to improve both the output depth maps and the reconstructed point cloud, for both learned and traditional depth estimation front-ends, on both synthetic and real data.

avg

pdf suppmat Project Page Video Poster [BibTex]

pdf suppmat Project Page Video Poster [BibTex]


Thumb xl liao
Connecting the Dots: Learning Representations for Active Monocular Depth Estimation

Riegler, G., Liao, Y., Donne, S., Koltun, V., Geiger, A.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2019, June 2019 (inproceedings)

Abstract
We propose a technique for depth estimation with a monocular structured-light camera, \ie, a calibrated stereo set-up with one camera and one laser projector. Instead of formulating the depth estimation via a correspondence search problem, we show that a simple convolutional architecture is sufficient for high-quality disparity estimates in this setting. As accurate ground-truth is hard to obtain, we train our model in a self-supervised fashion with a combination of photometric and geometric losses. Further, we demonstrate that the projected pattern of the structured light sensor can be reliably separated from the ambient information. This can then be used to improve depth boundaries in a weakly supervised fashion by modeling the joint statistics of image and depth edges. The model trained in this fashion compares favorably to the state-of-the-art on challenging synthetic and real-world datasets. In addition, we contribute a novel simulator, which allows to benchmark active depth prediction algorithms in controlled conditions.

avg

pdf suppmat Poster Project Page [BibTex]

pdf suppmat Poster Project Page [BibTex]


Thumb xl superquadrics parsing
Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids

Paschalidou, D., Ulusoy, A. O., Geiger, A.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2019, June 2019 (inproceedings)

Abstract
Abstracting complex 3D shapes with parsimonious part-based representations has been a long standing goal in computer vision. This paper presents a learning-based solution to this problem which goes beyond the traditional 3D cuboid representation by exploiting superquadrics as atomic elements. We demonstrate that superquadrics lead to more expressive 3D scene parses while being easier to learn than 3D cuboid representations. Moreover, we provide an analytical solution to the Chamfer loss which avoids the need for computational expensive reinforcement learning or iterative prediction. Our model learns to parse 3D objects into consistent superquadric representations without supervision. Results on various ShapeNet categories as well as the SURREAL human body dataset demonstrate the flexibility of our model in capturing fine details and complex poses that could not have been modelled using cuboids.

avg

Project Page Poster suppmat pdf Video handout [BibTex]

Project Page Poster suppmat pdf Video handout [BibTex]


no image
Microrobotics and Microorganisms: Biohybrid Autonomous Cellular Robots

Alapan, Y., Yasa, O., Yigit, B., Yasa, I. C., Erkoc, P., Sitti, M.

Annual Review of Control, Robotics, and Autonomous Systems, 2019 (article)

pi

[BibTex]

[BibTex]


no image
X-ray Optics Fabrication Using Unorthodox Approaches

Sanli, U., Baluktsian, M., Ceylan, H., Sitti, M., Weigand, M., Schütz, G., Keskinbora, K.

Bulletin of the American Physical Society, APS, 2019 (article)

mms pi

[BibTex]

[BibTex]


no image
Nanoscale detection of spin wave deflection angles in permalloy

Gross, F., Träger, N., Förster, J., Weigand, M., Schütz, G., Gräfe, J.

{Applied Physics Letters}, 114(1), American Institute of Physics, Melville, NY, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Extracting the dynamic magnetic contrast in time-resolved X-ray transmission microscopy

Schaffers, T., Feggeler, T., Pile, S., Meckenstock, R., Buchner, M., Spoddig, D., Ney, V., Farle, M., Wende, H., Wintz, S., Weigand, M., Ohldag, H., Ollefs, K, Ney, A.

{Nanomaterials}, 9(7), MDPI, Basel, Schweiz, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Generation of switchable singular beams with dynamic metasurfaces

Yu, P., Li, J., Li, X., Schütz, G., Hirscher, M., Zhang, S., Liu, N.

{ACS Nano}, 13(6):7100-7106, American Chemical Society, Washington, DC, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
The near and far of a pair of magnetic capillary disks

Koens, L., Wang, W., Sitti, M., Lauga, E.

Soft Matter, 2019 (article)

pi

[BibTex]

[BibTex]


no image
Coherent excitation of heterosymmetric spin waves with ultrashort wavelengths

Dieterle, G., Förster, J., Stoll, H., Semisalova, A. S., Finizio, S., Gangwar, A., Weigand, M., Noske, M., Fähnle, M., Bykova, I., Gräfe, J., Bozhko, D. A., Musiienko-Shmarova, H. Y., Tiberkevich, V., Slavin, A. N., Back, C. H., Raabe, J., Schütz, G., Wintz, S.

{Physical Review Letters}, 122(11), American Physical Society, Woodbury, N.Y., 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
A special issue on hydrogen-based Energy storage
{International Journal of Hydrogen Energy}, 44, pages: 7737, Elsevier, Amsterdam, 2019 (misc)

mms

DOI [BibTex]

DOI [BibTex]


no image
Reprogrammability and Scalability of Magnonic Fibonacci Quasicrystals

Lisiecki, F., Rychły, J., Kuświk, P., Głowiński, H., Kłos, J. W., Groß, F., Bykova, I., Weigand, M., Zelent, M., Goering, E. J., Schütz, G., Gubbiotti, G., Krawczyk, M., Stobiecki, F., Dubowik, J., Gräfe, J.

Physical Review Applied, 11, pages: 054003, 2019 (article)

Abstract
Magnonic crystals are systems that can be used to design and tune the dynamic properties of magnetization. Here, we focus on one-dimensional Fibonacci magnonic quasicrystals. We confirm the existence of collective spin waves propagating through the structure as well as dispersionless modes; the reprogammability of the resonance frequencies, dependent on the magnetization order; and dynamic spin-wave interactions. With the fundamental understanding of these properties, we lay a foundation for the scalable and advanced design of spin-wave band structures for spintronic, microwave, and magnonic applications.

mms

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Coordinated molecule-modulated magnetic phase with metamagnetism in metal-organic frameworks

Son, K., Kim, J. Y., Schütz, G., Kang, S. G., Moon, H. R., Oh, H.

{Inorganic Chemistry}, 58(14):8895-8899, American Chemical Society, Washington, DC, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Review of emerging concepts in nanotoxicology: opportunities and challenges for safer nanomaterial design

Singh, A. V., Laux, P., Luch, A., Sudrik, C., Wiehr, S., Wild, A., Santamauro, G., Bill, J., Sitti, M.

Toxicology Mechanisms and Methods, 2019 (article)

pi

[BibTex]

[BibTex]


no image
Graphene oxide synergistically enhances antibiotic efficacy in Vancomycin resistance Staphylococcus aureus

Singh, V., Kumar, V., Kashyap, S., Singh, A. V., Kishore, V., Sitti, M., Saxena, P. S., Srivastava, A.

ACS Applied Bio Materials, ACS Publications, 2019 (article)

pi

[BibTex]

[BibTex]


no image
Nanoscale X-ray imaging of spin dynamics in Yttrium iron garnet

Förster, J., Wintz, S., Bailey, J., Finizio, S., Josten, E., Meertens, D., Dubs, C., Bozhko, D. A., Stoll, H., Dieterle, G., Traeger, N., Raabe, J., Slavin, A. N., Weigand, M., Gräfe, J., Schütz, G.

2019 (misc)

mms

link (url) [BibTex]

link (url) [BibTex]


no image
Magnons in a Quasicrystal: Propagation, Extinction, and Localization of Spin Waves in Fibonacci Structures

Lisiecki, F., Rychły, J., Kuświk, P., Głowiński, H., Kłos, J. W., Groß, F., Träger, N., Bykova, I., Weigand, M., Zelent, M., Goering, E. J., Schütz, G., Krawczyk, M., Stobiecki, F., Dubowik, J., Gräfe, J.

Physical Review Applied, 11, pages: 054061, 2019 (article)

Abstract
Magnonic quasicrystals exceed the possibilities of spin-wave (SW) manipulation offered by regular magnonic crystals, because of their more complex SW spectra with fractal characteristics. Here, we report the direct x-ray microscopic observation of propagating SWs in a magnonic quasicrystal, consisting of dipolar coupled permalloy nanowires arranged in a one-dimensional Fibonacci sequence. SWs from the first and second band as well as evanescent waves from the band gap between them are imaged. Moreover, additional mini band gaps in the spectrum are demonstrated, directly indicating an influence of the quasiperiodicity of the system. Finally, the localization of SW modes within the Fibonacci crystal is shown. The experimental results are interpreted using numerical calculations and we deduce a simple model to estimate the frequency position of the magnonic gaps in quasiperiodic structures. The demonstrated features of SW spectra in one-dimensional magnonic quasicrystals allow utilizing this class of metamaterials for magnonics and make them an ideal basis for future applications.

mms

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Reconfigurable nanoscale spin wave majority gate with frequency-division multiplexing

Talmelli, G., Devolder, T., Träger, N., Förster, J., Wintz, S., Weigand, M., Stoll, H., Heyns, M., Schütz, G., Radu, I., Gräfe, J., Ciubotaru, F., Adelmann, C.

2019 (misc)

Abstract
Spin waves are excitations in ferromagnetic media that have been proposed as information carriers in spintronic devices with potentially much lower operation power than conventional charge-based electronics. The wave nature of spin waves can be exploited to design majority gates by coding information in their phase and using interference for computation. However, a scalable spin wave majority gate design that can be co-integrated alongside conventional Si-based electronics is still lacking. Here, we demonstrate a reconfigurable nanoscale inline spin wave majority gate with ultrasmall footprint, frequency-division multiplexing, and fan-out. Time-resolved imaging of the magnetisation dynamics by scanning transmission x-ray microscopy reveals the operation mode of the device and validates the full logic majority truth table. All-electrical spin wave spectroscopy further demonstrates spin wave majority gates with sub-micron dimensions, sub-micron spin wave wavelengths, and reconfigurable input and output ports. We also show that interference-based computation allows for frequency-division multiplexing as well as the computation of different logic functions in the same device. Such devices can thus form the foundation of a future spin-wave-based superscalar vector computing platform.

mms

link (url) [BibTex]

link (url) [BibTex]


no image
Prototyping Micro- and Nano-Optics with Focused Ion Beam Lithography

Keskinbora, K.

SL48, pages: 46, SPIE.Spotlight, SPIE Press, Bellingham, WA, 2019 (book)

mms

DOI [BibTex]

DOI [BibTex]


no image
Microfluidics Integrated Lithography‐Free Nanophotonic Biosensor for the Detection of Small Molecules

Sreekanth, K. V., Sreejith, S., Alapan, Y., Sitti, M., Lim, C. T., Singh, R.

Advanced Optical Materials, 2019 (article)

pi

[BibTex]

[BibTex]


no image
Mobile microrobots for active therapeutic delivery

Erkoc, P., Yasa, I. C., Ceylan, H., Yasa, O., Alapan, Y., Sitti, M.

Advanced Therapeutics, Wiley Online Library, 2019 (article)

pi

[BibTex]

[BibTex]


no image
Interpreting first-order reversal curves beyond the Preisach model: An experimental permalloy microarray investigation

Groß, F., Ilse, S. E., Schütz, G., Gräfe, J., Goering, E.

{Physical Review B}, 99(6), American Physical Society, Woodbury, NY, 2019 (article)

mms

DOI [BibTex]


no image
Bistability of magnetic states in Fe-Pd nanocap arrays

Aravind, P. B., Heigl, M., Fix, M., Groß, F., Gräfe, J., Mary, A., Rajgowrav, C. R., Krupiński, M., Marszałek, M., Thomas, S., Anantharaman, M. R., Albrecht, M.

Nanotechnology, 30, pages: 405705, 2019 (article)

Abstract
Magnetic bistability between vortex and single domain states in nanostructures are of great interest from both fundamental and technological perspectives. In soft magnetic nanostructures, the transition from a uniform collinear magnetic state to a vortex state (or vice versa) induced by a magnetic field involves an energy barrier. If the thermal energy is large enough for overcoming this energy barrier, magnetic bistability with a hysteresis-free switching occurs between the two magnetic states. In this work, we tune this energy barrier by tailoring the composition of FePd alloys, which were deposited onto self-assembled particle arrays forming magnetic vortex structures on top of the particles. The bifurcation temperature, where a hysteresis-free transition occurs, was extracted from the temperature dependence of the annihilation and nucleation field which increases almost linearly with Fe content of the magnetic alloy. This study provides insights into the magnetization reversal process associated with magnetic bistability, which allows adjusting the bifurcation temperature range by the material properties of the nanosystem.

mms

link (url) [BibTex]

link (url) [BibTex]


no image
An international laboratory comparison study of volumetric and gravimetric hydrogen adsorption measurements

Hurst, K. E., Gennett, T., Adams, J., Allendorf, M. D., Balderas-Xicohténcatl, R., Bielewski, M., Edwards, B., Espinal, L., Fultz, B., Hirscher, M., Hudson, M. S. L., Hulvey, Z., Latroche, M., Liu, D., Kapelewski, M., Napolitano, E., Perry, Z. T., Purewal, J., Stavila, V., Veenstra, M., White, J. L., Yuan, Y., Zhou, H., Zlotea, C., Parilla, P.

{ChemPhysChem}, 20(15):1997-2009, Wiley-VCH, Weinheim, Germany, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Hydrogen Energy

Hirscher, M., Autrey, T., Orimo, S.

{ChemPhysChem}, 20, pages: 1153-1411, Wiley-VCH, Weinheim, Germany, 2019 (misc)

mms

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Electromechanical actuation of dielectric liquid crystal elastomers for soft robotics

Davidson, Z., Shahsavan, H., Guo, Y., Hines, L., Xia, Y., Yang, S., Sitti, M.

Bulletin of the American Physical Society, APS, 2019 (article)

pi

[BibTex]

[BibTex]


Thumb xl teaser website
Occupancy Networks: Learning 3D Reconstruction in Function Space

Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2019, 2019 (inproceedings)

Abstract
With the advent of deep neural networks, learning-based approaches for 3D reconstruction have gained popularity. However, unlike for images, in 3D there is no canonical representation which is both computationally and memory efficient yet allows for representing high-resolution geometry of arbitrary topology. Many of the state-of-the-art learning-based 3D reconstruction approaches can hence only represent very coarse 3D geometry or are limited to a restricted domain. In this paper, we propose Occupancy Networks, a new representation for learning-based 3D reconstruction methods. Occupancy networks implicitly represent the 3D surface as the continuous decision boundary of a deep neural network classifier. In contrast to existing approaches, our representation encodes a description of the 3D output at infinite resolution without excessive memory footprint. We validate that our representation can efficiently encode 3D structure and can be inferred from various kinds of input. Our experiments demonstrate competitive results, both qualitatively and quantitatively, for the challenging tasks of 3D reconstruction from single images, noisy point clouds and coarse discrete voxel grids. We believe that occupancy networks will become a useful tool in a wide variety of learning-based 3D tasks.

avg

Code Video pdf suppmat Project Page [BibTex]

Code Video pdf suppmat Project Page [BibTex]


no image
The route to supercurrent transparent ferromagnetic barriers in superconducting matrix

Ivanov, Y. P., Soltan, S., Albrecht, J., Goering, E., Schütz, G., Zhang, Z., Chuvilin, A.

{ACS Nano}, 13(5):5655-5661, American Chemical Society, Washington, DC, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Systematic experimental study on quantum sieving of hydrogen isotopes in metal-amide-imidazolate frameworks with narrow 1-D channels

Mondal, S. S., Kreuzer, A., Behrens, K., Schütz, G., Holdt, H., Hirscher, M.

{ChemPhysChem}, 20(10):1311-1315, Wiley-VCH, Weinheim, Germany, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Artifacts from manganese reduction in rock samples prepared by focused ion beam (FIB) slicing for X-ray microspectroscopy

Macholdt, D. S., Förster, J., Müller, M., Weber, B., Kappl, M., Kilcoyne, A. L. D., Weigand, M., Leitner, J., Jochum, K. P., Pöhlker, C., Andreae, M. O.

{Geoscientific instrumentation, methods and data systems}, 8(1):97-111, Copernicus Publ., Göttingen, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Mixed-state magnetotransport properties of MgB2 thin film prepared by pulsed laser deposition on an Al2O3 substrate

Alzayed, N. S., Shahabuddin, M., Ramey, S. M., Soltan, S.

{Journal of Materials Science: Materials in Electronics}, 30(2):1547-1552, Springer, Norwell, MA, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Comparison of theories of fast and ultrafast magnetization dynamics

Fähnle, M.

{Journal of Magnetism and Magnetic Materials}, 469, pages: 28-29, NH, Elsevier, Amsterdam, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Concepts for improving hydrogen storage in nanoporous materials

Broom, D. P., Webb, C. J., Fanourgakis, G. S., Froudakis, G. E., Trikalitis, P. N., Hirscher, M.

{International Journal of Hydrogen Energy}, 44(15):7768-7779, Elsevier, Amsterdam, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Controlling dislocation nucleation-mediatd plasticity in nanostructures via surface modification

Shin, J., Chen, L. Y., Sanli, U. T., Richter, G., Labat, S., Richard, M., Cornelius, T., Thomas, O., Gianola, D. S.

{Acta Materialia}, 166, pages: 572-586, Elsevier Science, Kidlington, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Reprogrammability and scalability of magnonic Fibonacci quasicrystals

Lisiecki, F., Rychly, J., Kuswik, P., Glowinski, H., Klos, J. W., Groß, F., Bykova, I., Weigand, M., Zelent, M., Goering, E. J., Schütz, G., Gubbiotti, G., Krawczyk, M., Stobiecki, F., Dubowik, J., Gräfe, J.

{Physical Review Applied}, 11(5), American Physical Society, College Park, Md. [u.a.], 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]

2018


Thumb xl screenshot 2018 5 9 swimming back and forth using planar flagellar propulsion at low reynolds numbers   khalil   2018   adv ...
Swimming Back and Forth Using Planar Flagellar Propulsion at Low Reynolds Numbers

Khalil, I. S. M., Tabak, A. F., Hamed, Y., Mitwally, M. E., Tawakol, M., Klingner, A., Sitti, M.

Advanced Science, 5(2):1700461, 2018 (article)

Abstract
Abstract Peritrichously flagellated Escherichia coli swim back and forth by wrapping their flagella together in a helical bundle. However, other monotrichous bacteria cannot swim back and forth with a single flagellum and planar wave propagation. Quantifying this observation, a magnetically driven soft two‐tailed microrobot capable of reversing its swimming direction without making a U‐turn trajectory or actively modifying the direction of wave propagation is designed and developed. The microrobot contains magnetic microparticles within the polymer matrix of its head and consists of two collinear, unequal, and opposite ultrathin tails. It is driven and steered using a uniform magnetic field along the direction of motion with a sinusoidally varying orthogonal component. Distinct reversal frequencies that enable selective and independent excitation of the first or the second tail of the microrobot based on their tail length ratio are found. While the first tail provides a propulsive force below one of the reversal frequencies, the second is almost passive, and the net propulsive force achieves flagellated motion along one direction. On the other hand, the second tail achieves flagellated propulsion along the opposite direction above the reversal frequency.

pi

link (url) DOI [BibTex]

2018


link (url) DOI [BibTex]


Thumb xl universal custom complex magnetic spring design methodology
Universal Custom Complex Magnetic Spring Design Methodology

Woodward, M. A., Sitti, M.

IEEE Transactions on Magnetics, 54(1):1-13, October 2018 (article)

Abstract
A design methodology is presented for creating custom complex magnetic springs through the design of force-displacement curves. This methodology results in a magnet configuration, which will produce a desired force-displacement relationship. Initially, the problem is formulated and solved as a system of linear equations. Then, given the limited likelihood of a single solution being feasibly manufactured, key parameters of the solution are extracted and varied to create a family of solutions. Finally, these solutions are refined using numerical optimization. Given the properties of magnets, this methodology can create any well-defined function of force versus displacement and is model-independent. To demonstrate this flexibility, a number of example magnetic springs are designed; one of which, designed for use in a jumping-gliding robot's shape memory alloy actuated clutch, is manufactured and experimentally characterized. Due to the scaling of magnetic forces, the displacement region which these magnetic springs are most applicable is that of millimeters and below. However, this region is well situated for miniature robots and smart material actuators, where a tailored magnetic spring, designed to compliment a component, can enhance its performance while adding new functionality. The methodology is also expendable to variable interactions and multi-dimensional magnetic field design.

pi

DOI [BibTex]

DOI [BibTex]


Thumb xl sevillagcpr
On the Integration of Optical Flow and Action Recognition

Sevilla-Lara, L., Liao, Y., Güney, F., Jampani, V., Geiger, A., Black, M. J.

In German Conference on Pattern Recognition (GCPR), LNCS 11269, pages: 281-297, Springer, Cham, October 2018 (inproceedings)

Abstract
Most of the top performing action recognition methods use optical flow as a "black box" input. Here we take a deeper look at the combination of flow and action recognition, and investigate why optical flow is helpful, what makes a flow method good for action recognition, and how we can make it better. In particular, we investigate the impact of different flow algorithms and input transformations to better understand how these affect a state-of-the-art action recognition method. Furthermore, we fine tune two neural-network flow methods end-to-end on the most widely used action recognition dataset (UCF101). Based on these experiments, we make the following five observations: 1) optical flow is useful for action recognition because it is invariant to appearance, 2) optical flow methods are optimized to minimize end-point-error (EPE), but the EPE of current methods is not well correlated with action recognition performance, 3) for the flow methods tested, accuracy at boundaries and at small displacements is most correlated with action recognition performance, 4) training optical flow to minimize classification error instead of minimizing EPE improves recognition performance, and 5) optical flow learned for the task of action recognition differs from traditional optical flow especially inside the human body and at the boundary of the body. These observations may encourage optical flow researchers to look beyond EPE as a goal and guide action recognition researchers to seek better motion cues, leading to a tighter integration of the optical flow and action recognition communities.

avg ps

arXiv DOI [BibTex]

arXiv DOI [BibTex]


Thumb xl iros18
Towards Robust Visual Odometry with a Multi-Camera System

Liu, P., Geppert, M., Heng, L., Sattler, T., Geiger, A., Pollefeys, M.

In International Conference on Intelligent Robots and Systems (IROS) 2018, International Conference on Intelligent Robots and Systems, October 2018 (inproceedings)

Abstract
We present a visual odometry (VO) algorithm for a multi-camera system and robust operation in challenging environments. Our algorithm consists of a pose tracker and a local mapper. The tracker estimates the current pose by minimizing photometric errors between the most recent keyframe and the current frame. The mapper initializes the depths of all sampled feature points using plane-sweeping stereo. To reduce pose drift, a sliding window optimizer is used to refine poses and structure jointly. Our formulation is flexible enough to support an arbitrary number of stereo cameras. We evaluate our algorithm thoroughly on five datasets. The datasets were captured in different conditions: daytime, night-time with near-infrared (NIR) illumination and night-time without NIR illumination. Experimental results show that a multi-camera setup makes the VO more robust to challenging environments, especially night-time conditions, in which a single stereo configuration fails easily due to the lack of features.

avg

pdf Project Page [BibTex]

pdf Project Page [BibTex]


Thumb xl ianeccv18
Learning Priors for Semantic 3D Reconstruction

Cherabier, I., Schönberger, J., Oswald, M., Pollefeys, M., Geiger, A.

In Computer Vision – ECCV 2018, Springer International Publishing, Cham, September 2018 (inproceedings)

Abstract
We present a novel semantic 3D reconstruction framework which embeds variational regularization into a neural network. Our network performs a fixed number of unrolled multi-scale optimization iterations with shared interaction weights. In contrast to existing variational methods for semantic 3D reconstruction, our model is end-to-end trainable and captures more complex dependencies between the semantic labels and the 3D geometry. Compared to previous learning-based approaches to 3D reconstruction, we integrate powerful long-range dependencies using variational coarse-to-fine optimization. As a result, our network architecture requires only a moderate number of parameters while keeping a high level of expressiveness which enables learning from very little data. Experiments on real and synthetic datasets demonstrate that our network achieves higher accuracy compared to a purely variational approach while at the same time requiring two orders of magnitude less iterations to converge. Moreover, our approach handles ten times more semantic class labels using the same computational resources.

avg

pdf suppmat Project Page Video DOI Project Page [BibTex]

pdf suppmat Project Page Video DOI Project Page [BibTex]


Thumb xl joeleccv18
Unsupervised Learning of Multi-Frame Optical Flow with Occlusions

Janai, J., Güney, F., Ranjan, A., Black, M. J., Geiger, A.

In European Conference on Computer Vision (ECCV), Lecture Notes in Computer Science, vol 11220, pages: 713-731, Springer, Cham, September 2018 (inproceedings)

avg ps

pdf suppmat Video Project Page DOI Project Page [BibTex]

pdf suppmat Video Project Page DOI Project Page [BibTex]