Header logo is


2015


Thumb xl silvia phd
Shape Models of the Human Body for Distributed Inference

Zuffi, S.

Brown University, May 2015 (phdthesis)

Abstract
In this thesis we address the problem of building shape models of the human body, in 2D and 3D, which are realistic and efficient to use. We focus our efforts on the human body, which is highly articulated and has interesting shape variations, but the approaches we present here can be applied to generic deformable and articulated objects. To address efficiency, we constrain our models to be part-based and have a tree-structured representation with pairwise relationships between connected parts. This allows the application of methods for distributed inference based on message passing. To address realism, we exploit recent advances in computer graphics that represent the human body with statistical shape models learned from 3D scans. We introduce two articulated body models, a 2D model, named Deformable Structures (DS), which is a contour-based model parameterized for 2D pose and projected shape, and a 3D model, named Stitchable Puppet (SP), which is a mesh-based model parameterized for 3D pose, pose-dependent deformations and intrinsic body shape. We have successfully applied the models to interesting and challenging problems in computer vision and computer graphics, namely pose estimation from static images, pose estimation from video sequences, pose and shape estimation from 3D scan data. This advances the state of the art in human pose and shape estimation and suggests that carefully de ned realistic models can be important for computer vision. More work at the intersection of vision and graphics is thus encouraged.

ps

PDF [BibTex]


Thumb xl screen shot 2015 10 14 at 08.57.57
Multi-view and 3D Deformable Part Models

Pepik, B., Stark, M., Gehler, P., Schiele, B.

Pattern Analysis and Machine Intelligence, 37(11):14, IEEE, March 2015 (article)

Abstract
As objects are inherently 3-dimensional, they have been modeled in 3D in the early days of computer vision. Due to the ambiguities arising from mapping 2D features to 3D models, 3D object representations have been neglected and 2D feature-based models are the predominant paradigm in object detection nowadays. While such models have achieved outstanding bounding box detection performance, they come with limited expressiveness, as they are clearly limited in their capability of reasoning about 3D shape or viewpoints. In this work, we bring the worlds of 3D and 2D object representations closer, by building an object detector which leverages the expressive power of 3D object representations while at the same time can be robustly matched to image evidence. To that end, we gradually extend the successful deformable part model [1] to include viewpoint information and part-level 3D geometry information, resulting in several different models with different level of expressiveness. We end up with a 3D object model, consisting of multiple object parts represented in 3D and a continuous appearance model. We experimentally verify that our models, while providing richer object hypotheses than the 2D object models, provide consistently better joint object localization and viewpoint estimation than the state-of-the-art multi-view and 3D object detectors on various benchmarks (KITTI [2], 3D object classes [3], Pascal3D+ [4], Pascal VOC 2007 [5], EPFL multi-view cars [6]).

ps

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl th teaser
From Scans to Models: Registration of 3D Human Shapes Exploiting Texture Information

Bogo, F.

University of Padova, March 2015 (phdthesis)

Abstract
New scanning technologies are increasing the importance of 3D mesh data, and of algorithms that can reliably register meshes obtained from multiple scans. Surface registration is important e.g. for building full 3D models from partial scans, identifying and tracking objects in a 3D scene, creating statistical shape models. Human body registration is particularly important for many applications, ranging from biomedicine and robotics to the production of movies and video games; but obtaining accurate and reliable registrations is challenging, given the articulated, non-rigidly deformable structure of the human body. In this thesis, we tackle the problem of 3D human body registration. We start by analyzing the current state of the art, and find that: a) most registration techniques rely only on geometric information, which is ambiguous on flat surface areas; b) there is a lack of adequate datasets and benchmarks in the field. We address both issues. Our contribution is threefold. First, we present a model-based registration technique for human meshes that combines geometry and surface texture information to provide highly accurate mesh-to-mesh correspondences. Our approach estimates scene lighting and surface albedo, and uses the albedo to construct a high-resolution textured 3D body model that is brought into registration with multi-camera image data using a robust matching term. Second, by leveraging our technique, we present FAUST (Fine Alignment Using Scan Texture), a novel dataset collecting 300 high-resolution scans of 10 people in a wide range of poses. FAUST is the first dataset providing both real scans and automatically computed, reliable "ground-truth" correspondences between them. Third, we explore possible uses of our approach in dermatology. By combining our registration technique with a melanocytic lesion segmentation algorithm, we propose a system that automatically detects new or evolving lesions over almost the entire body surface, thus helping dermatologists identify potential melanomas. We conclude this thesis investigating the benefits of using texture information to establish frame-to-frame correspondences in dynamic monocular sequences captured with consumer depth cameras. We outline a novel approach to reconstruct realistic body shape and appearance models from dynamic human performances, and show preliminary results on challenging sequences captured with a Kinect.

ps

[BibTex]


Thumb xl thesis teaser
Long Range Motion Estimation and Applications

Sevilla-Lara, L.

Long Range Motion Estimation and Applications, University of Massachusetts Amherst, University of Massachusetts Amherst, Febuary 2015 (phdthesis)

Abstract
Finding correspondences between images underlies many computer vision problems, such as optical flow, tracking, stereovision and alignment. Finding these correspondences involves formulating a matching function and optimizing it. This optimization process is often gradient descent, which avoids exhaustive search, but relies on the assumption of being in the basin of attraction of the right local minimum. This is often the case when the displacement is small, and current methods obtain very accurate results for small motions. However, when the motion is large and the matching function is bumpy this assumption is less likely to be true. One traditional way of avoiding this abruptness is to smooth the matching function spatially by blurring the images. As the displacement becomes larger, the amount of blur required to smooth the matching function becomes also larger. This averaging of pixels leads to a loss of detail in the image. Therefore, there is a trade-off between the size of the objects that can be tracked and the displacement that can be captured. In this thesis we address the basic problem of increasing the size of the basin of attraction in a matching function. We use an image descriptor called distribution fields (DFs). By blurring the images in DF space instead of in pixel space, we in- crease the size of the basin attraction with respect to traditional methods. We show competitive results using DFs both in object tracking and optical flow. Finally we demonstrate an application of capturing large motions for temporal video stitching.

ps

[BibTex]

[BibTex]


Thumb xl ssimssmall
Spike train SIMilarity Space (SSIMS): A framework for single neuron and ensemble data analysis

Vargas-Irwin, C. E., Brandman, D. M., Zimmermann, J. B., Donoghue, J. P., Black, M. J.

Neural Computation, 27(1):1-31, MIT Press, January 2015 (article)

Abstract
We present a method to evaluate the relative similarity of neural spiking patterns by combining spike train distance metrics with dimensionality reduction. Spike train distance metrics provide an estimate of similarity between activity patterns at multiple temporal resolutions. Vectors of pair-wise distances are used to represent the intrinsic relationships between multiple activity patterns at the level of single units or neuronal ensembles. Dimensionality reduction is then used to project the data into concise representations suitable for clustering analysis as well as exploratory visualization. Algorithm performance and robustness are evaluated using multielectrode ensemble activity data recorded in behaving primates. We demonstrate how Spike train SIMilarity Space (SSIMS) analysis captures the relationship between goal directions for an 8-directional reaching task and successfully segregates grasp types in a 3D grasping task in the absence of kinematic information. The algorithm enables exploration of virtually any type of neural spiking (time series) data, providing similarity-based clustering of neural activity states with minimal assumptions about potential information encoding models.

ps

pdf: publisher site pdf: author's proof DOI Project Page [BibTex]

pdf: publisher site pdf: author's proof DOI Project Page [BibTex]


Thumb xl untitled
Efficient Facade Segmentation using Auto-Context

Jampani, V., Gadde, R., Gehler, P. V.

In Applications of Computer Vision (WACV), 2015 IEEE Winter Conference on, pages: 1038-1045, IEEE, WACV,, January 2015 (inproceedings)

Abstract
In this paper we propose a system for the problem of facade segmentation. Building facades are highly structured images and consequently most methods that have been proposed for this problem, aim to make use of this strong prior information. We are describing a system that is almost domain independent and consists of standard segmentation methods. A sequence of boosted decision trees is stacked using auto-context features and learned using the stacked generalization technique. We find that this, albeit standard, technique performs better, or equals, all previous published empirical results on all available facade benchmark datasets. The proposed method is simple to implement, easy to extend, and very efficient at test time inference.

ps

website pdf supplementary IEEE page link (url) DOI Project Page [BibTex]

website pdf supplementary IEEE page link (url) DOI Project Page [BibTex]


no image
Inference of Cause and Effect with Unsupervised Inverse Regression

Sgouritsa, E., Janzing, D., Hennig, P., Schölkopf, B.

In Proceedings of the 18th International Conference on Artificial Intelligence and Statistics, 38, pages: 847-855, JMLR Workshop and Conference Proceedings, (Editors: Lebanon, G. and Vishwanathan, S.V.N.), JMLR.org, AISTATS, 2015 (inproceedings)

ei pn

Web PDF [BibTex]

Web PDF [BibTex]


no image
Probabilistic Interpretation of Linear Solvers

Hennig, P.

SIAM Journal on Optimization, 25(1):234-260, 2015 (article)

ei pn

Web PDF link (url) DOI [BibTex]

Web PDF link (url) DOI [BibTex]


Thumb xl flowcap im
FlowCap: 2D Human Pose from Optical Flow

Romero, J., Loper, M., Black, M. J.

In Pattern Recognition, Proc. 37th German Conference on Pattern Recognition (GCPR), LNCS 9358, pages: 412-423, Springer, GCPR, 2015 (inproceedings)

Abstract
We estimate 2D human pose from video using only optical flow. The key insight is that dense optical flow can provide information about 2D body pose. Like range data, flow is largely invariant to appearance but unlike depth it can be directly computed from monocular video. We demonstrate that body parts can be detected from dense flow using the same random forest approach used by the Microsoft Kinect. Unlike range data, however, when people stop moving, there is no optical flow and they effectively disappear. To address this, our FlowCap method uses a Kalman filter to propagate body part positions and ve- locities over time and a regression method to predict 2D body pose from part centers. No range sensor is required and FlowCap estimates 2D human pose from monocular video sources containing human motion. Such sources include hand-held phone cameras and archival television video. We demonstrate 2D body pose estimation in a range of scenarios and show that the method works with real-time optical flow. The results suggest that optical flow shares invariances with range data that, when complemented with tracking, make it valuable for pose estimation.

ps

video pdf preprint Project Page Project Page [BibTex]

video pdf preprint Project Page Project Page [BibTex]


Thumb xl thumb teaser mrg
Metric Regression Forests for Correspondence Estimation

Pons-Moll, G., Taylor, J., Shotton, J., Hertzmann, A., Fitzgibbon, A.

International Journal of Computer Vision, pages: 1-13, 2015 (article)

ps

springer PDF Project Page [BibTex]

springer PDF Project Page [BibTex]


Thumb xl geiger
Joint 3D Object and Layout Inference from a single RGB-D Image

(Best Paper Award)

Geiger, A., Wang, C.

In German Conference on Pattern Recognition (GCPR), 9358, pages: 183-195, Lecture Notes in Computer Science, Springer International Publishing, 2015 (inproceedings)

Abstract
Inferring 3D objects and the layout of indoor scenes from a single RGB-D image captured with a Kinect camera is a challenging task. Towards this goal, we propose a high-order graphical model and jointly reason about the layout, objects and superpixels in the image. In contrast to existing holistic approaches, our model leverages detailed 3D geometry using inverse graphics and explicitly enforces occlusion and visibility constraints for respecting scene properties and projective geometry. We cast the task as MAP inference in a factor graph and solve it efficiently using message passing. We evaluate our method with respect to several baselines on the challenging NYUv2 indoor dataset using 21 object categories. Our experiments demonstrate that the proposed method is able to infer scenes with a large degree of clutter and occlusions.

avg ps

pdf suppmat video project DOI [BibTex]

pdf suppmat video project DOI [BibTex]


Thumb xl maren ls
Probabilistic Line Searches for Stochastic Optimization

Mahsereci, M., Hennig, P.

In Advances in Neural Information Processing Systems 28, pages: 181-189, (Editors: C. Cortes, N.D. Lawrence, D.D. Lee, M. Sugiyama and R. Garnett), Curran Associates, Inc., 29th Annual Conference on Neural Information Processing Systems (NIPS), 2015 (inproceedings)

Abstract
In deterministic optimization, line searches are a standard tool ensuring stability and efficiency. Where only stochastic gradients are available, no direct equivalent has so far been formulated, because uncertain gradients do not allow for a strict sequence of decisions collapsing the search space. We construct a probabilistic line search by combining the structure of existing deterministic methods with notions from Bayesian optimization. Our method retains a Gaussian process surrogate of the univariate optimization objective, and uses a probabilistic belief over the Wolfe conditions to monitor the descent. The algorithm has very low computational cost, and no user-controlled parameters. Experiments show that it effectively removes the need to define a learning rate for stochastic gradient descent. [You can find the matlab research code under `attachments' below. The zip-file contains a minimal working example. The docstring in probLineSearch.m contains additional information. A more polished implementation in C++ will be published here at a later point. For comments and questions about the code please write to mmahsereci@tue.mpg.de.]

ei pn

Matlab research code link (url) [BibTex]

Matlab research code link (url) [BibTex]


Thumb xl screen shot 2015 05 07 at 11.56.54
3D Object Class Detection in the Wild

Pepik, B., Stark, M., Gehler, P., Ritschel, T., Schiele, B.

In Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), IEEE, Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2015 (inproceedings)

ps

Project Page [BibTex]

Project Page [BibTex]


Thumb xl menze
Discrete Optimization for Optical Flow

Menze, M., Heipke, C., Geiger, A.

In German Conference on Pattern Recognition (GCPR), 9358, pages: 16-28, Springer International Publishing, 2015 (inproceedings)

Abstract
We propose to look at large-displacement optical flow from a discrete point of view. Motivated by the observation that sub-pixel accuracy is easily obtained given pixel-accurate optical flow, we conjecture that computing the integral part is the hardest piece of the problem. Consequently, we formulate optical flow estimation as a discrete inference problem in a conditional random field, followed by sub-pixel refinement. Naive discretization of the 2D flow space, however, is intractable due to the resulting size of the label set. In this paper, we therefore investigate three different strategies, each able to reduce computation and memory demands by several orders of magnitude. Their combination allows us to estimate large-displacement optical flow both accurately and efficiently and demonstrates the potential of discrete optimization for optical flow. We obtain state-of-the-art performance on MPI Sintel and KITTI.

avg ps

pdf suppmat project DOI [BibTex]

pdf suppmat project DOI [BibTex]


no image
A Random Riemannian Metric for Probabilistic Shortest-Path Tractography

Hauberg, S., Schober, M., Liptrot, M., Hennig, P., Feragen, A.

In 18th International Conference on Medical Image Computing and Computer Assisted Intervention, 9349, pages: 597-604, Lecture Notes in Computer Science, MICCAI, 2015 (inproceedings)

ei pn

PDF DOI [BibTex]

PDF DOI [BibTex]


Thumb xl isa
Joint 3D Estimation of Vehicles and Scene Flow

Menze, M., Heipke, C., Geiger, A.

In Proc. of the ISPRS Workshop on Image Sequence Analysis (ISA), 2015 (inproceedings)

Abstract
Three-dimensional reconstruction of dynamic scenes is an important prerequisite for applications like mobile robotics or autonomous driving. While much progress has been made in recent years, imaging conditions in natural outdoor environments are still very challenging for current reconstruction and recognition methods. In this paper, we propose a novel unified approach which reasons jointly about 3D scene flow as well as the pose, shape and motion of vehicles in the scene. Towards this goal, we incorporate a deformable CAD model into a slanted-plane conditional random field for scene flow estimation and enforce shape consistency between the rendered 3D models and the parameters of all superpixels in the image. The association of superpixels to objects is established by an index variable which implicitly enables model selection. We evaluate our approach on the challenging KITTI scene flow dataset in terms of object and scene flow estimation. Our results provide a prove of concept and demonstrate the usefulness of our method.

avg ps

PDF [BibTex]

PDF [BibTex]


Thumb xl subimage
Smooth Loops from Unconstrained Video

Sevilla-Lara, L., Wulff, J., Sunkavalli, K., Shechtman, E.

In Computer Graphics Forum (Proceedings of EGSR), 34(4):99-107, Eurographics Symposium on Rendering, 2015 (inproceedings)

Abstract
Converting unconstrained video sequences into videos that loop seamlessly is an extremely challenging problem. In this work, we take the first steps towards automating this process by focusing on an important subclass of videos containing a single dominant foreground object. Our technique makes two novel contributions over previous work: first, we propose a correspondence-based similarity metric to automatically identify a good transition point in the video where the appearance and dynamics of the foreground are most consistent. Second, we develop a technique that aligns both the foreground and background about this transition point using a combination of global camera path planning and patch-based video morphing. We demonstrate that this allows us to create natural, compelling, loopy videos from a wide range of videos collected from the internet.

ps

pdf link (url) DOI Project Page [BibTex]

pdf link (url) DOI Project Page [BibTex]


no image
Probabilistic numerics and uncertainty in computations

Hennig, P., Osborne, M. A., Girolami, M.

Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 471(2179), 2015 (article)

Abstract
We deliver a call to arms for probabilistic numerical methods: algorithms for numerical tasks, including linear algebra, integration, optimization and solving differential equations, that return uncertainties in their calculations. Such uncertainties, arising from the loss of precision induced by numerical calculation with limited time or hardware, are important for much contemporary science and industry. Within applications such as climate science and astrophysics, the need to make decisions on the basis of computations with large and complex data have led to a renewed focus on the management of numerical uncertainty. We describe how several seminal classic numerical methods can be interpreted naturally as probabilistic inference. We then show that the probabilistic view suggests new algorithms that can flexibly be adapted to suit application specifics, while delivering improved empirical performance. We provide concrete illustrations of the benefits of probabilistic numeric algorithms on real scientific problems from astrometry and astronomical imaging, while highlighting open problems with these new algorithms. Finally, we describe how probabilistic numerical methods provide a coherent framework for identifying the uncertainty in calculations performed with a combination of numerical algorithms (e.g. both numerical optimizers and differential equation solvers), potentially allowing the diagnosis (and control) of error sources in computations.

ei pn

PDF DOI [BibTex]

PDF DOI [BibTex]

2014


Thumb xl thumb 9780262028370
Advanced Structured Prediction

Nowozin, S., Gehler, P. V., Jancsary, J., Lampert, C. H.

Advanced Structured Prediction, pages: 432, Neural Information Processing Series, MIT Press, November 2014 (book)

Abstract
The goal of structured prediction is to build machine learning models that predict relational information that itself has structure, such as being composed of multiple interrelated parts. These models, which reflect prior knowledge, task-specific relations, and constraints, are used in fields including computer vision, speech recognition, natural language processing, and computational biology. They can carry out such tasks as predicting a natural language sentence, or segmenting an image into meaningful components. These models are expressive and powerful, but exact computation is often intractable. A broad research effort in recent years has aimed at designing structured prediction models and approximate inference and learning procedures that are computationally efficient. This volume offers an overview of this recent research in order to make the work accessible to a broader research community. The chapters, by leading researchers in the field, cover a range of topics, including research trends, the linear programming relaxation approach, innovations in probabilistic modeling, recent theoretical progress, and resource-aware learning.

ps

publisher link (url) [BibTex]

2014


publisher link (url) [BibTex]


Thumb xl mosh heroes icon
MoSh: Motion and Shape Capture from Sparse Markers

Loper, M. M., Mahmood, N., Black, M. J.

ACM Transactions on Graphics, (Proc. SIGGRAPH Asia), 33(6):220:1-220:13, ACM, New York, NY, USA, November 2014 (article)

Abstract
Marker-based motion capture (mocap) is widely criticized as producing lifeless animations. We argue that important information about body surface motion is present in standard marker sets but is lost in extracting a skeleton. We demonstrate a new approach called MoSh (Motion and Shape capture), that automatically extracts this detail from mocap data. MoSh estimates body shape and pose together using sparse marker data by exploiting a parametric model of the human body. In contrast to previous work, MoSh solves for the marker locations relative to the body and estimates accurate body shape directly from the markers without the use of 3D scans; this effectively turns a mocap system into an approximate body scanner. MoSh is able to capture soft tissue motions directly from markers by allowing body shape to vary over time. We evaluate the effect of different marker sets on pose and shape accuracy and propose a new sparse marker set for capturing soft-tissue motion. We illustrate MoSh by recovering body shape, pose, and soft-tissue motion from archival mocap data and using this to produce animations with subtlety and realism. We also show soft-tissue motion retargeting to new characters and show how to magnify the 3D deformations of soft tissue to create animations with appealing exaggerations.

ps

pdf video data pdf from publisher link (url) DOI Project Page Project Page Project Page [BibTex]

pdf video data pdf from publisher link (url) DOI Project Page Project Page Project Page [BibTex]


Thumb xl thumb grouped teaser
Hough-based Object Detection with Grouped Features

Srikantha, A., Gall, J.

International Conference on Image Processing, pages: 1653-1657, Paris, France, IEEE International Conference on Image Processing , October 2014 (conference)

Abstract
Hough-based voting approaches have been successfully applied to object detection. While these methods can be efficiently implemented by random forests, they estimate the probability for an object hypothesis for each feature independently. In this work, we address this problem by grouping features in a local neighborhood to obtain a better estimate of the probability. To this end, we propose oblique classification-regression forests that combine features of different trees. We further investigate the benefit of combining independent and grouped features and evaluate the approach on RGB and RGB-D datasets.

ps

pdf poster DOI Project Page [BibTex]

pdf poster DOI Project Page [BibTex]


Thumb xl thumb schoenbein2014iros
Omnidirectional 3D Reconstruction in Augmented Manhattan Worlds

Schoenbein, M., Geiger, A.

International Conference on Intelligent Robots and Systems, pages: 716 - 723, IEEE, Chicago, IL, USA, IEEE/RSJ International Conference on Intelligent Robots and System, October 2014 (conference)

Abstract
This paper proposes a method for high-quality omnidirectional 3D reconstruction of augmented Manhattan worlds from catadioptric stereo video sequences. In contrast to existing works we do not rely on constructing virtual perspective views, but instead propose to optimize depth jointly in a unified omnidirectional space. Furthermore, we show that plane-based prior models can be applied even though planes in 3D do not project to planes in the omnidirectional domain. Towards this goal, we propose an omnidirectional slanted-plane Markov random field model which relies on plane hypotheses extracted using a novel voting scheme for 3D planes in omnidirectional space. To quantitatively evaluate our method we introduce a dataset which we have captured using our autonomous driving platform AnnieWAY which we equipped with two horizontally aligned catadioptric cameras and a Velodyne HDL-64E laser scanner for precise ground truth depth measurements. As evidenced by our experiments, the proposed method clearly benefits from the unified view and significantly outperforms existing stereo matching techniques both quantitatively and qualitatively. Furthermore, our method is able to reduce noise and the obtained depth maps can be represented very compactly by a small number of image segments and plane parameters.

avg ps

pdf DOI [BibTex]

pdf DOI [BibTex]


Thumb xl sap copy
Can I recognize my body’s weight? The influence of shape and texture on the perception of self

Piryankova, I., Stefanucci, J., Romero, J., de la Rosa, S., Black, M., Mohler, B.

ACM Transactions on Applied Perception for the Symposium on Applied Perception, 11(3):13:1-13:18, September 2014 (article)

Abstract
The goal of this research was to investigate women’s sensitivity to changes in their perceived weight by altering the body mass index (BMI) of the participants’ personalized avatars displayed on a large-screen immersive display. We created the personalized avatars with a full-body 3D scanner that records both the participants’ body geometry and texture. We altered the weight of the personalized avatars to produce changes in BMI while keeping height, arm length and inseam fixed and exploited the correlation between body geometry and anthropometric measurements encapsulated in a statistical body shape model created from thousands of body scans. In a 2x2 psychophysical experiment, we investigated the relative importance of visual cues, namely shape (own shape vs. an average female body shape with equivalent height and BMI to the participant) and texture (own photo-realistic texture or checkerboard pattern texture) on the ability to accurately perceive own current body weight (by asking them ‘Is the avatar the same weight as you?’). Our results indicate that shape (where height and BMI are fixed) had little effect on the perception of body weight. Interestingly, the participants perceived their body weight veridically when they saw their own photo-realistic texture and significantly underestimated their body weight when the avatar had a checkerboard patterned texture. The range that the participants accepted as their own current weight was approximately a 0.83 to −6.05 BMI% change tolerance range around their perceived weight. Both the shape and the texture had an effect on the reported similarity of the body parts and the whole avatar to the participant’s body. This work has implications for new measures for patients with body image disorders, as well as researchers interested in creating personalized avatars for games, training applications or virtual reality.

ps

pdf DOI Project Page Project Page [BibTex]

pdf DOI Project Page Project Page [BibTex]


Thumb xl fop
Human Pose Estimation with Fields of Parts

Kiefel, M., Gehler, P.

In Computer Vision – ECCV 2014, LNCS 8693, pages: 331-346, Lecture Notes in Computer Science, (Editors: Fleet, David and Pajdla, Tomas and Schiele, Bernt and Tuytelaars, Tinne), Springer, 13th European Conference on Computer Vision, September 2014 (inproceedings)

Abstract
This paper proposes a new formulation of the human pose estimation problem. We present the Fields of Parts model, a binary Conditional Random Field model designed to detect human body parts of articulated people in single images. The Fields of Parts model is inspired by the idea of Pictorial Structures, it models local appearance and joint spatial configuration of the human body. However the underlying graph structure is entirely different. The idea is simple: we model the presence and absence of a body part at every possible position, orientation, and scale in an image with a binary random variable. This results into a vast number of random variables, however, we show that approximate inference in this model is efficient. Moreover we can encode the very same appearance and spatial structure as in Pictorial Structures models. This approach allows us to combine ideas from segmentation and pose estimation into a single model. The Fields of Parts model can use evidence from the background, include local color information, and it is connected more densely than a kinematic chain structure. On the challenging Leeds Sports Poses dataset we improve over the Pictorial Structures counterpart by 5.5% in terms of Average Precision of Keypoints (APK).

ei ps

website pdf DOI Project Page [BibTex]

website pdf DOI Project Page [BibTex]


Thumb xl thumb thumb2
Capturing Hand Motion with an RGB-D Sensor, Fusing a Generative Model with Salient Points

Tzionas, D., Srikantha, A., Aponte, P., Gall, J.

In German Conference on Pattern Recognition (GCPR), pages: 1-13, Lecture Notes in Computer Science, Springer, GCPR, September 2014 (inproceedings)

Abstract
Hand motion capture has been an active research topic in recent years, following the success of full-body pose tracking. Despite similarities, hand tracking proves to be more challenging, characterized by a higher dimensionality, severe occlusions and self-similarity between fingers. For this reason, most approaches rely on strong assumptions, like hands in isolation or expensive multi-camera systems, that limit the practical use. In this work, we propose a framework for hand tracking that can capture the motion of two interacting hands using only a single, inexpensive RGB-D camera. Our approach combines a generative model with collision detection and discriminatively learned salient points. We quantitatively evaluate our approach on 14 new sequences with challenging interactions.

ps

pdf Supplementary pdf Supplementary Material Project Page DOI Project Page [BibTex]

pdf Supplementary pdf Supplementary Material Project Page DOI Project Page [BibTex]


Thumb xl opendr
OpenDR: An Approximate Differentiable Renderer

Loper, M. M., Black, M. J.

In Computer Vision – ECCV 2014, 8695, pages: 154-169, Lecture Notes in Computer Science, (Editors: D. Fleet and T. Pajdla and B. Schiele and T. Tuytelaars ), Springer International Publishing, 13th European Conference on Computer Vision, September 2014 (inproceedings)

Abstract
Inverse graphics attempts to take sensor data and infer 3D geometry, illumination, materials, and motions such that a graphics renderer could realistically reproduce the observed scene. Renderers, however, are designed to solve the forward process of image synthesis. To go in the other direction, we propose an approximate di fferentiable renderer (DR) that explicitly models the relationship between changes in model parameters and image observations. We describe a publicly available OpenDR framework that makes it easy to express a forward graphics model and then automatically obtain derivatives with respect to the model parameters and to optimize over them. Built on a new autodiff erentiation package and OpenGL, OpenDR provides a local optimization method that can be incorporated into probabilistic programming frameworks. We demonstrate the power and simplicity of programming with OpenDR by using it to solve the problem of estimating human body shape from Kinect depth and RGB data.

ps

pdf Code Chumpy Supplementary video of talk DOI Project Page [BibTex]

pdf Code Chumpy Supplementary video of talk DOI Project Page [BibTex]


Thumb xl teaser 200 10
Discovering Object Classes from Activities

Srikantha, A., Gall, J.

In European Conference on Computer Vision, 8694, pages: 415-430, Lecture Notes in Computer Science, (Editors: D. Fleet and T. Pajdla and B. Schiele and T. Tuytelaars ), Springer International Publishing, 13th European Conference on Computer Vision, September 2014 (inproceedings)

Abstract
In order to avoid an expensive manual labeling process or to learn object classes autonomously without human intervention, object discovery techniques have been proposed that extract visual similar objects from weakly labelled videos. However, the problem of discovering small or medium sized objects is largely unexplored. We observe that videos with activities involving human-object interactions can serve as weakly labelled data for such cases. Since neither object appearance nor motion is distinct enough to discover objects in these videos, we propose a framework that samples from a space of algorithms and their parameters to extract sequences of object proposals. Furthermore, we model similarity of objects based on appearance and functionality, which is derived from human and object motion. We show that functionality is an important cue for discovering objects from activities and demonstrate the generality of the model on three challenging RGB-D and RGB datasets.

ps

pdf anno poster DOI Project Page [BibTex]

pdf anno poster DOI Project Page [BibTex]


Thumb xl ps page panel
Probabilistic Progress Bars

Kiefel, M., Schuler, C., Hennig, P.

In Conference on Pattern Recognition (GCPR), 8753, pages: 331-341, Lecture Notes in Computer Science, (Editors: Jiang, X., Hornegger, J., and Koch, R.), Springer, GCPR, September 2014 (inproceedings)

Abstract
Predicting the time at which the integral over a stochastic process reaches a target level is a value of interest in many applications. Often, such computations have to be made at low cost, in real time. As an intuitive example that captures many features of this problem class, we choose progress bars, a ubiquitous element of computer user interfaces. These predictors are usually based on simple point estimators, with no error modelling. This leads to fluctuating behaviour confusing to the user. It also does not provide a distribution prediction (risk values), which are crucial for many other application areas. We construct and empirically evaluate a fast, constant cost algorithm using a Gauss-Markov process model which provides more information to the user.

ei ps pn

website+code pdf DOI [BibTex]

website+code pdf DOI [BibTex]


Thumb xl new teaser aligned
Optical Flow Estimation with Channel Constancy

Sevilla-Lara, L., Sun, D., Learned-Miller, E. G., Black, M. J.

In Computer Vision – ECCV 2014, 8689, pages: 423-438, Lecture Notes in Computer Science, (Editors: D. Fleet and T. Pajdla and B. Schiele and T. Tuytelaars ), Springer International Publishing, 13th European Conference on Computer Vision, September 2014 (inproceedings)

Abstract
Large motions remain a challenge for current optical flow algorithms. Traditionally, large motions are addressed using multi-resolution representations like Gaussian pyramids. To deal with large displacements, many pyramid levels are needed and, if an object is small, it may be invisible at the highest levels. To address this we decompose images using a channel representation (CR) and replace the standard brightness constancy assumption with a descriptor constancy assumption. CRs can be seen as an over-segmentation of the scene into layers based on some image feature. If the appearance of a foreground object differs from the background then its descriptor will be different and they will be represented in different layers.We create a pyramid by smoothing these layers, without mixing foreground and background or losing small objects. Our method estimates more accurate flow than the baseline on the MPI-Sintel benchmark, especially for fast motions and near motion boundaries.

ps

pdf DOI [BibTex]

pdf DOI [BibTex]


Thumb xl blurreccv
Modeling Blurred Video with Layers

Wulff, J., Black, M. J.

In Computer Vision – ECCV 2014, 8694, pages: 236-252, Lecture Notes in Computer Science, (Editors: D. Fleet and T. Pajdla and B. Schiele and T. Tuytelaars ), Springer International Publishing, 13th European Conference on Computer Vision, September 2014 (inproceedings)

Abstract
Videos contain complex spatially-varying motion blur due to the combination of object motion, camera motion, and depth variation with fi nite shutter speeds. Existing methods to estimate optical flow, deblur the images, and segment the scene fail in such cases. In particular, boundaries between di fferently moving objects cause problems, because here the blurred images are a combination of the blurred appearances of multiple surfaces. We address this with a novel layered model of scenes in motion. From a motion-blurred video sequence, we jointly estimate the layer segmentation and each layer's appearance and motion. Since the blur is a function of the layer motion and segmentation, it is completely determined by our generative model. Given a video, we formulate the optimization problem as minimizing the pixel error between the blurred frames and images synthesized from the model, and solve it using gradient descent. We demonstrate our approach on synthetic and real sequences.

ps

pdf Supplemental Video Data DOI Project Page Project Page [BibTex]

pdf Supplemental Video Data DOI Project Page Project Page [BibTex]


Thumb xl teaser
Intrinsic Video

Kong, N., Gehler, P. V., Black, M. J.

In Computer Vision – ECCV 2014, 8690, pages: 360-375, Lecture Notes in Computer Science, (Editors: D. Fleet and T. Pajdla and B. Schiele and T. Tuytelaars ), Springer International Publishing, 13th European Conference on Computer Vision, September 2014 (inproceedings)

Abstract
Intrinsic images such as albedo and shading are valuable for later stages of visual processing. Previous methods for extracting albedo and shading use either single images or images together with depth data. Instead, we define intrinsic video estimation as the problem of extracting temporally coherent albedo and shading from video alone. Our approach exploits the assumption that albedo is constant over time while shading changes slowly. Optical flow aids in the accurate estimation of intrinsic video by providing temporal continuity as well as putative surface boundaries. Additionally, we find that the estimated albedo sequence can be used to improve optical flow accuracy in sequences with changing illumination. The approach makes only weak assumptions about the scene and we show that it substantially outperforms existing single-frame intrinsic image methods. We evaluate this quantitatively on synthetic sequences as well on challenging natural sequences with complex geometry, motion, and illumination.

ps

pdf Supplementary Video DOI Project Page Project Page [BibTex]

pdf Supplementary Video DOI Project Page Project Page [BibTex]


Thumb xl miccai
Automated Detection of New or Evolving Melanocytic Lesions Using a 3D Body Model

Bogo, F., Romero, J., Peserico, E., Black, M. J.

In Medical Image Computing and Computer-Assisted Intervention (MICCAI), 8673, pages: 593-600, Lecture Notes in Computer Science, (Editors: Golland, Polina and Hata, Nobuhiko and Barillot, Christian and Hornegger, Joachim and Howe, Robert), Spring International Publishing, Medical Image Computing and Computer-Assisted Intervention (MICCAI), September 2014 (inproceedings)

Abstract
Detection of new or rapidly evolving melanocytic lesions is crucial for early diagnosis and treatment of melanoma.We propose a fully automated pre-screening system for detecting new lesions or changes in existing ones, on the order of 2 - 3mm, over almost the entire body surface. Our solution is based on a multi-camera 3D stereo system. The system captures 3D textured scans of a subject at diff erent times and then brings these scans into correspondence by aligning them with a learned, parametric, non-rigid 3D body model. This means that captured skin textures are in accurate alignment across scans, facilitating the detection of new or changing lesions. The integration of lesion segmentation with a deformable 3D body model is a key contribution that makes our approach robust to changes in illumination and subject pose.

ps

pdf Poster DOI Project Page [BibTex]

pdf Poster DOI Project Page [BibTex]


Thumb xl hongwmpt eccv2014
Tracking using Multilevel Quantizations

Hong, Z., Wang, C., Mei, X., Prokhorov, D., Tao, D.

In Computer Vision – ECCV 2014, 8694, pages: 155-171, Lecture Notes in Computer Science, (Editors: D. Fleet and T. Pajdla and B. Schiele and T. Tuytelaars ), Springer International Publishing, 13th European Conference on Computer Vision, September 2014 (inproceedings)

Abstract
Most object tracking methods only exploit a single quantization of an image space: pixels, superpixels, or bounding boxes, each of which has advantages and disadvantages. It is highly unlikely that a common optimal quantization level, suitable for tracking all objects in all environments, exists. We therefore propose a hierarchical appearance representation model for tracking, based on a graphical model that exploits shared information across multiple quantization levels. The tracker aims to find the most possible position of the target by jointly classifying the pixels and superpixels and obtaining the best configuration across all levels. The motion of the bounding box is taken into consideration, while Online Random Forests are used to provide pixel- and superpixel-level quantizations and progressively updated on-the-fly. By appropriately considering the multilevel quantizations, our tracker exhibits not only excellent performance in non-rigid object deformation handling, but also its robustness to occlusions. A quantitative evaluation is conducted on two benchmark datasets: a non-rigid object tracking dataset (11 sequences) and the CVPR2013 tracking benchmark (50 sequences). Experimental results show that our tracker overcomes various tracking challenges and is superior to a number of other popular tracking methods.

ps

pdf DOI [BibTex]

pdf DOI [BibTex]


Thumb xl fancy rgb
Breathing Life into Shape: Capturing, Modeling and Animating 3D Human Breathing

Tsoli, A., Mahmood, N., Black, M. J.

ACM Transactions on Graphics, (Proc. SIGGRAPH), 33(4):52:1-52:11, ACM, New York, NY, July 2014 (article)

Abstract
Modeling how the human body deforms during breathing is important for the realistic animation of lifelike 3D avatars. We learn a model of body shape deformations due to breathing for different breathing types and provide simple animation controls to render lifelike breathing regardless of body shape. We capture and align high-resolution 3D scans of 58 human subjects. We compute deviations from each subject’s mean shape during breathing, and study the statistics of such shape changes for different genders, body shapes, and breathing types. We use the volume of the registered scans as a proxy for lung volume and learn a novel non-linear model relating volume and breathing type to 3D shape deformations and pose changes. We then augment a SCAPE body model so that body shape is determined by identity, pose, and the parameters of the breathing model. These parameters provide an intuitive interface with which animators can synthesize 3D human avatars with realistic breathing motions. We also develop a novel interface for animating breathing using a spirometer, which measures the changes in breathing volume of a “breath actor.”

ps

pdf video link (url) DOI Project Page Project Page Project Page [BibTex]


Thumb xl thumb thumb
Human Pose Estimation: New Benchmark and State of the Art Analysis

Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages: 3686 - 3693, IEEE, IEEE International Conference on Computer Vision and Pattern Recognition, June 2014 (inproceedings)

ps

pdf DOI Project Page Project Page Project Page [BibTex]

pdf DOI Project Page Project Page Project Page [BibTex]


Thumb xl faust
FAUST: Dataset and evaluation for 3D mesh registration

(Dataset Award, Eurographics Symposium on Geometry Processing (SGP), 2016)

Bogo, F., Romero, J., Loper, M., Black, M. J.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages: 3794 -3801, Columbus, Ohio, USA, IEEE International Conference on Computer Vision and Pattern Recognition, June 2014 (inproceedings)

Abstract
New scanning technologies are increasing the importance of 3D mesh data and the need for algorithms that can reliably align it. Surface registration is important for building full 3D models from partial scans, creating statistical shape models, shape retrieval, and tracking. The problem is particularly challenging for non-rigid and articulated objects like human bodies. While the challenges of real-world data registration are not present in existing synthetic datasets, establishing ground-truth correspondences for real 3D scans is difficult. We address this with a novel mesh registration technique that combines 3D shape and appearance information to produce high-quality alignments. We define a new dataset called FAUST that contains 300 scans of 10 people in a wide range of poses together with an evaluation methodology. To achieve accurate registration, we paint the subjects with high-frequency textures and use an extensive validation process to ensure accurate ground truth. We find that current shape registration methods have trouble with this real-world data. The dataset and evaluation website are available for research purposes at http://faust.is.tue.mpg.de.

ps

pdf Video Dataset Poster Talk DOI Project Page Project Page Project Page [BibTex]

pdf Video Dataset Poster Talk DOI Project Page Project Page Project Page [BibTex]


Thumb xl modeltransport
Model Transport: Towards Scalable Transfer Learning on Manifolds

Freifeld, O., Hauberg, S., Black, M. J.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages: 1378 -1385, Columbus, Ohio, USA, IEEE Intenational Conference on Computer Vision and Pattern Recognition, June 2014 (inproceedings)

Abstract
We consider the intersection of two research fields: transfer learning and statistics on manifolds. In particular, we consider, for manifold-valued data, transfer learning of tangent-space models such as Gaussians distributions, PCA, regression, or classifiers. Though one would hope to simply use ordinary Rn-transfer learning ideas, the manifold structure prevents it. We overcome this by basing our method on inner-product-preserving parallel transport, a well-known tool widely used in other problems of statistics on manifolds in computer vision. At first, this straightforward idea seems to suffer from an obvious shortcoming: Transporting large datasets is prohibitively expensive, hindering scalability. Fortunately, with our approach, we never transport data. Rather, we show how the statistical models themselves can be transported, and prove that for the tangent-space models above, the transport “commutes” with learning. Consequently, our compact framework, applicable to a large class of manifolds, is not restricted by the size of either the training or test sets. We demonstrate the approach by transferring PCA and logistic-regression models of real-world data involving 3D shapes and image descriptors.

ps

pdf SupMat Video poster DOI Project Page [BibTex]

pdf SupMat Video poster DOI Project Page [BibTex]


Thumb xl screen shot 2014 07 09 at 15.49.27
Robot Arm Pose Estimation through Pixel-Wise Part Classification

Bohg, J., Romero, J., Herzog, A., Schaal, S.

In IEEE International Conference on Robotics and Automation (ICRA) 2014, pages: 3143-3150, IEEE International Conference on Robotics and Automation (ICRA), June 2014 (inproceedings)

Abstract
We propose to frame the problem of marker-less robot arm pose estimation as a pixel-wise part classification problem. As input, we use a depth image in which each pixel is classified to be either from a particular robot part or the background. The classifier is a random decision forest trained on a large number of synthetically generated and labeled depth images. From all the training samples ending up at a leaf node, a set of offsets is learned that votes for relative joint positions. Pooling these votes over all foreground pixels and subsequent clustering gives us an estimate of the true joint positions. Due to the intrinsic parallelism of pixel-wise classification, this approach can run in super real-time and is more efficient than previous ICP-like methods. We quantitatively evaluate the accuracy of this approach on synthetic data. We also demonstrate that the method produces accurate joint estimates on real data despite being purely trained on synthetic data.

am ps

video code pdf DOI Project Page [BibTex]

video code pdf DOI Project Page [BibTex]


Thumb xl dfm
Efficient Non-linear Markov Models for Human Motion

Lehrmann, A. M., Gehler, P. V., Nowozin, S.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages: 1314-1321, IEEE, IEEE International Conference on Computer Vision and Pattern Recognition, June 2014 (inproceedings)

Abstract
Dynamic Bayesian networks such as Hidden Markov Models (HMMs) are successfully used as probabilistic models for human motion. The use of hidden variables makes them expressive models, but inference is only approximate and requires procedures such as particle filters or Markov chain Monte Carlo methods. In this work we propose to instead use simple Markov models that only model observed quantities. We retain a highly expressive dynamic model by using interactions that are nonlinear and non-parametric. A presentation of our approach in terms of latent variables shows logarithmic growth for the computation of exact loglikelihoods in the number of latent states. We validate our model on human motion capture data and demonstrate state-of-the-art performance on action recognition and motion completion tasks.

ps

Project page pdf DOI Project Page [BibTex]

Project page pdf DOI Project Page [BibTex]


Thumb xl grassmann
Grassmann Averages for Scalable Robust PCA

Hauberg, S., Feragen, A., Black, M. J.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages: 3810 -3817, Columbus, Ohio, USA, IEEE International Conference on Computer Vision and Pattern Recognition, June 2014 (inproceedings)

Abstract
As the collection of large datasets becomes increasingly automated, the occurrence of outliers will increase – "big data" implies "big outliers". While principal component analysis (PCA) is often used to reduce the size of data, and scalable solutions exist, it is well-known that outliers can arbitrarily corrupt the results. Unfortunately, state-of-the-art approaches for robust PCA do not scale beyond small-to-medium sized datasets. To address this, we introduce the Grassmann Average (GA), which expresses dimensionality reduction as an average of the subspaces spanned by the data. Because averages can be efficiently computed, we immediately gain scalability. GA is inherently more robust than PCA, but we show that they coincide for Gaussian data. We exploit that averages can be made robust to formulate the Robust Grassmann Average (RGA) as a form of robust PCA. Robustness can be with respect to vectors (subspaces) or elements of vectors; we focus on the latter and use a trimmed average. The resulting Trimmed Grassmann Average (TGA) is particularly appropriate for computer vision because it is robust to pixel outliers. The algorithm has low computational complexity and minimal memory requirements, making it scalable to "big noisy data." We demonstrate TGA for background modeling, video restoration, and shadow removal. We show scalability by performing robust PCA on the entire Star Wars IV movie.

ps

pdf code supplementary material tutorial video results video talk poster DOI Project Page [BibTex]

pdf code supplementary material tutorial video results video talk poster DOI Project Page [BibTex]


Thumb xl 3basic posebits
Posebits for Monocular Human Pose Estimation

Pons-Moll, G., Fleet, D. J., Rosenhahn, B.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages: 2345-2352, Columbus, Ohio, USA, IEEE International Conference on Computer Vision and Pattern Recognition, June 2014 (inproceedings)

Abstract
We advocate the inference of qualitative information about 3D human pose, called posebits, from images. Posebits represent boolean geometric relationships between body parts (e.g., left-leg in front of right-leg or hands close to each other). The advantages of posebits as a mid-level representation are 1) for many tasks of interest, such qualitative pose information may be sufficient (e.g. , semantic image retrieval), 2) it is relatively easy to annotate large image corpora with posebits, as it simply requires answers to yes/no questions; and 3) they help resolve challenging pose ambiguities and therefore facilitate the difficult talk of image-based 3D pose estimation. We introduce posebits, a posebit database, a method for selecting useful posebits for pose estimation and a structural SVM model for posebit inference. Experiments show the use of posebits for semantic image retrieval and for improving 3D pose estimation.

ps

pdf Project Page Project Page [BibTex]

pdf Project Page Project Page [BibTex]


Thumb xl roser
Simultaneous Underwater Visibility Assessment, Enhancement and Improved Stereo

Roser, M., Dunbabin, M., Geiger, A.

IEEE International Conference on Robotics and Automation, pages: 3840 - 3847 , Hong Kong, China, IEEE International Conference on Robotics and Automation, June 2014 (conference)

Abstract
Vision-based underwater navigation and obstacle avoidance demands robust computer vision algorithms, particularly for operation in turbid water with reduced visibility. This paper describes a novel method for the simultaneous underwater image quality assessment, visibility enhancement and disparity computation to increase stereo range resolution under dynamic, natural lighting and turbid conditions. The technique estimates the visibility properties from a sparse 3D map of the original degraded image using a physical underwater light attenuation model. Firstly, an iterated distance-adaptive image contrast enhancement enables a dense disparity computation and visibility estimation. Secondly, using a light attenuation model for ocean water, a color corrected stereo underwater image is obtained along with a visibility distance estimate. Experimental results in shallow, naturally lit, high-turbidity coastal environments show the proposed technique improves range estimation over the original images as well as image quality and color for habitat classification. Furthermore, the recursiveness and robustness of the technique allows real-time implementation onboard an Autonomous Underwater Vehicles for improved navigation and obstacle avoidance performance.

avg ps

pdf DOI [BibTex]

pdf DOI [BibTex]


Thumb xl icmlteaser
Preserving Modes and Messages via Diverse Particle Selection

Pacheco, J., Zuffi, S., Black, M. J., Sudderth, E.

In Proceedings of the 31st International Conference on Machine Learning (ICML-14), 32(1):1152-1160, J. Machine Learning Research Workshop and Conf. and Proc., Beijing, China, International Conference on Machine Learning (ICML), June 2014 (inproceedings)

Abstract
In applications of graphical models arising in domains such as computer vision and signal processing, we often seek the most likely configurations of high-dimensional, continuous variables. We develop a particle-based max-product algorithm which maintains a diverse set of posterior mode hypotheses, and is robust to initialization. At each iteration, the set of hypotheses at each node is augmented via stochastic proposals, and then reduced via an efficient selection algorithm. The integer program underlying our optimization-based particle selection minimizes errors in subsequent max-product message updates. This objective automatically encourages diversity in the maintained hypotheses, without requiring tuning of application-specific distances among hypotheses. By avoiding the stochastic resampling steps underlying particle sum-product algorithms, we also avoid common degeneracies where particles collapse onto a single hypothesis. Our approach significantly outperforms previous particle-based algorithms in experiments focusing on the estimation of human pose from single images.

ps

pdf SupMat link (url) Project Page Project Page [BibTex]

pdf SupMat link (url) Project Page Project Page [BibTex]


Thumb xl schoenbein
Calibrating and Centering Quasi-Central Catadioptric Cameras

Schoenbein, M., Strauss, T., Geiger, A.

IEEE International Conference on Robotics and Automation, pages: 4443 - 4450, Hong Kong, China, IEEE International Conference on Robotics and Automation, June 2014 (conference)

Abstract
Non-central catadioptric models are able to cope with irregular camera setups and inaccuracies in the manufacturing process but are computationally demanding and thus not suitable for robotic applications. On the other hand, calibrating a quasi-central (almost central) system with a central model introduces errors due to a wrong relationship between the viewing ray orientations and the pixels on the image sensor. In this paper, we propose a central approximation to quasi-central catadioptric camera systems that is both accurate and efficient. We observe that the distance to points in 3D is typically large compared to deviations from the single viewpoint. Thus, we first calibrate the system using a state-of-the-art non-central camera model. Next, we show that by remapping the observations we are able to match the orientation of the viewing rays of a much simpler single viewpoint model with the true ray orientations. While our approximation is general and applicable to all quasi-central camera systems, we focus on one of the most common cases in practice: hypercatadioptric cameras. We compare our model to a variety of baselines in synthetic and real localization and motion estimation experiments. We show that by using the proposed model we are able to achieve near non-central accuracy while obtaining speed-ups of more than three orders of magnitude compared to state-of-the-art non-central models.

avg ps

pdf DOI [BibTex]

pdf DOI [BibTex]


Thumb xl pami
3D Traffic Scene Understanding from Movable Platforms

Geiger, A., Lauer, M., Wojek, C., Stiller, C., Urtasun, R.

IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 36(5):1012-1025, published, IEEE, Los Alamitos, CA, May 2014 (article)

Abstract
In this paper, we present a novel probabilistic generative model for multi-object traffic scene understanding from movable platforms which reasons jointly about the 3D scene layout as well as the location and orientation of objects in the scene. In particular, the scene topology, geometry and traffic activities are inferred from short video sequences. Inspired by the impressive driving capabilities of humans, our model does not rely on GPS, lidar or map knowledge. Instead, it takes advantage of a diverse set of visual cues in the form of vehicle tracklets, vanishing points, semantic scene labels, scene flow and occupancy grids. For each of these cues we propose likelihood functions that are integrated into a probabilistic generative model. We learn all model parameters from training data using contrastive divergence. Experiments conducted on videos of 113 representative intersections show that our approach successfully infers the correct layout in a variety of very challenging scenarios. To evaluate the importance of each feature cue, experiments using different feature combinations are conducted. Furthermore, we show how by employing context derived from the proposed method we are able to improve over the state-of-the-art in terms of object detection and object orientation estimation in challenging and cluttered urban environments.

avg ps

pdf link (url) [BibTex]

pdf link (url) [BibTex]


Thumb xl blueman cropped2
Modeling the Human Body in 3D: Data Registration and Human Shape Representation

Tsoli, A.

Brown University, Department of Computer Science, May 2014 (phdthesis)

ps

pdf [BibTex]

pdf [BibTex]


Thumb xl modeltransport
Model transport: towards scalable transfer learning on manifolds - supplemental material

Freifeld, O., Hauberg, S., Black, M. J.

(9), April 2014 (techreport)

Abstract
This technical report is complementary to "Model Transport: Towards Scalable Transfer Learning on Manifolds" and contains proofs, explanation of the attached video (visualization of bases from the body shape experiments), and high-resolution images of select results of individual reconstructions from the shape experiments. It is identical to the supplemental mate- rial submitted to the Conference on Computer Vision and Pattern Recognition (CVPR 2014) on November 2013.

ps

PDF [BibTex]


Thumb xl aistats2014
Probabilistic Solutions to Differential Equations and their Application to Riemannian Statistics

Hennig, P., Hauberg, S.

In Proceedings of the 17th International Conference on Artificial Intelligence and Statistics, 33, pages: 347-355, JMLR: Workshop and Conference Proceedings, (Editors: S Kaski and J Corander), Microtome Publishing, Brookline, MA, AISTATS, April 2014 (inproceedings)

Abstract
We study a probabilistic numerical method for the solution of both boundary and initial value problems that returns a joint Gaussian process posterior over the solution. Such methods have concrete value in the statistics on Riemannian manifolds, where non-analytic ordinary differential equations are involved in virtually all computations. The probabilistic formulation permits marginalising the uncertainty of the numerical solution such that statistics are less sensitive to inaccuracies. This leads to new Riemannian algorithms for mean value computations and principal geodesic analysis. Marginalisation also means results can be less precise than point estimates, enabling a noticeable speed-up over the state of the art. Our approach is an argument for a wider point that uncertainty caused by numerical calculations should be tracked throughout the pipeline of machine learning algorithms.

ei ps pn

pdf Youtube Supplements Project page link (url) [BibTex]

pdf Youtube Supplements Project page link (url) [BibTex]


Thumb xl thumb
Multi-View Priors for Learning Detectors from Sparse Viewpoint Data

Pepik, B., Stark, M., Gehler, P., Schiele, B.

International Conference on Learning Representations, International Conference on Learning Representations (ICLR), April 2014 (conference)

Abstract
While the majority of today's object class models provide only 2D bounding boxes, far richer output hypotheses are desirable including viewpoint, fine-grained category, and 3D geometry estimate. However, models trained to provide richer output require larger amounts of training data, preferably well covering the relevant aspects such as viewpoint and fine-grained categories. In this paper, we address this issue from the perspective of transfer learning, and design an object class model that explicitly leverages correlations between visual features. Specifically, our model represents prior distributions over permissible multi-view detectors in a parametric way -- the priors are learned once from training data of a source object class, and can later be used to facilitate the learning of a detector for a target class. As we show in our experiments, this transfer is not only beneficial for detectors based on basic-level category representations, but also enables the robust learning of detectors that represent classes at finer levels of granularity, where training data is typically even scarcer and more unbalanced. As a result, we report largely improved performance in simultaneous 2D object localization and viewpoint estimation on a recent dataset of challenging street scenes.

ps

reviews pdf Project Page [BibTex]

reviews pdf Project Page [BibTex]


no image
Local Gaussian Regression

Meier, F., Hennig, P., Schaal, S.

arXiv preprint, March 2014, clmc (misc)

Abstract
Abstract: Locally weighted regression was created as a nonparametric learning method that is computationally efficient, can learn from very large amounts of data and add data incrementally. An interesting feature of locally weighted regression is that it can work with ...

am pn

Web link (url) [BibTex]

Web link (url) [BibTex]