Header logo is


2017


no image
Causal Discovery from Nonstationary/Heterogeneous Data: Skeleton Estimation and Orientation Determination

Zhang, K., Huang, B., Zhang, J., Glymour, C., Schölkopf, B.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI), pages: 1347-1353, (Editors: Carles Sierra), August 2017 (conference)

ei

PDF DOI [BibTex]

2017


PDF DOI [BibTex]


Thumb xl joel slow flow crop
Slow Flow: Exploiting High-Speed Cameras for Accurate and Diverse Optical Flow Reference Data

Janai, J., Güney, F., Wulff, J., Black, M., Geiger, A.

In Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, pages: 1406-1416, IEEE, Piscataway, NJ, USA, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017 (inproceedings)

Abstract
Existing optical flow datasets are limited in size and variability due to the difficulty of capturing dense ground truth. In this paper, we tackle this problem by tracking pixels through densely sampled space-time volumes recorded with a high-speed video camera. Our model exploits the linearity of small motions and reasons about occlusions from multiple frames. Using our technique, we are able to establish accurate reference flow fields outside the laboratory in natural environments. Besides, we show how our predictions can be used to augment the input images with realistic motion blur. We demonstrate the quality of the produced flow fields on synthetic and real-world datasets. Finally, we collect a novel challenging optical flow dataset by applying our technique on data from a high-speed camera and analyze the performance of the state-of-the-art in optical flow under various levels of motion blur.

avg ps

pdf suppmat Project page Video DOI Project Page [BibTex]

pdf suppmat Project page Video DOI Project Page [BibTex]


Thumb xl img03
OctNet: Learning Deep 3D Representations at High Resolutions

Riegler, G., Ulusoy, O., Geiger, A.

In Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, IEEE, Piscataway, NJ, USA, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017 (inproceedings)

Abstract
We present OctNet, a representation for deep learning with sparse 3D data. In contrast to existing models, our representation enables 3D convolutional networks which are both deep and high resolution. Towards this goal, we exploit the sparsity in the input data to hierarchically partition the space using a set of unbalanced octrees where each leaf node stores a pooled feature representation. This allows to focus memory allocation and computation to the relevant dense regions and enables deeper networks without compromising resolution. We demonstrate the utility of our OctNet representation by analyzing the impact of resolution on several 3D tasks including 3D object classification, orientation estimation and point cloud labeling.

avg ps

pdf suppmat Project Page Video Project Page [BibTex]

pdf suppmat Project Page Video Project Page [BibTex]


no image
Flexible Spatio-Temporal Networks for Video Prediction

Lu, C., Hirsch, M., Schölkopf, B.

Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, pages: 2137-2145, IEEE, Piscataway, NJ, USA, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017 (conference)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl schoeps2017cvpr
A Multi-View Stereo Benchmark with High-Resolution Images and Multi-Camera Videos

Schöps, T., Schönberger, J. L., Galliani, S., Sattler, T., Schindler, K., Pollefeys, M., Geiger, A.

In Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, IEEE, Piscataway, NJ, USA, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017 (inproceedings)

Abstract
Motivated by the limitations of existing multi-view stereo benchmarks, we present a novel dataset for this task. Towards this goal, we recorded a variety of indoor and outdoor scenes using a high-precision laser scanner and captured both high-resolution DSLR imagery as well as synchronized low-resolution stereo videos with varying fields-of-view. To align the images with the laser scans, we propose a robust technique which minimizes photometric errors conditioned on the geometry. In contrast to previous datasets, our benchmark provides novel challenges and covers a diverse set of viewpoints and scene types, ranging from natural scenes to man-made indoor and outdoor environments. Furthermore, we provide data at significantly higher temporal and spatial resolution. Our benchmark is the first to cover the important use case of hand-held mobile devices while also providing high-resolution DSLR camera images. We make our datasets and an online evaluation server available at http://www.eth3d.net.

avg

pdf suppmat Project Page Project Page [BibTex]

pdf suppmat Project Page Project Page [BibTex]


no image
Discovering Causal Signals in Images

Lopez-Paz, D., Nishihara, R., Chintala, S., Schölkopf, B., Bottou, L.

Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, pages: 58-66, IEEE, Piscataway, NJ, USA, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017 (conference)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl camposeco2017cvpr
Toroidal Constraints for Two Point Localization Under High Outlier Ratios

Camposeco, F., Sattler, T., Cohen, A., Geiger, A., Pollefeys, M.

In Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, IEEE, Piscataway, NJ, USA, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017 (inproceedings)

Abstract
Localizing a query image against a 3D model at large scale is a hard problem, since 2D-3D matches become more and more ambiguous as the model size increases. This creates a need for pose estimation strategies that can handle very low inlier ratios. In this paper, we draw new insights on the geometric information available from the 2D-3D matching process. As modern descriptors are not invariant against large variations in viewpoint, we are able to find the rays in space used to triangulate a given point that are closest to a query descriptor. It is well known that two correspondences constrain the camera to lie on the surface of a torus. Adding the knowledge of direction of triangulation, we are able to approximate the position of the camera from \emphtwo matches alone. We derive a geometric solver that can compute this position in under 1 microsecond. Using this solver, we propose a simple yet powerful outlier filter which scales quadratically in the number of matches. We validate the accuracy of our solver and demonstrate the usefulness of our method in real world settings.

avg

pdf suppmat Project Page Project Page [BibTex]

pdf suppmat Project Page pdf Project Page [BibTex]


no image
Dynamic Time-of-Flight

Schober, M., Adam, A., Yair, O., Mazor, S., Nowozin, S.

Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, pages: 170-179, IEEE, Piscataway, NJ, USA, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017 (conference)

ei pn

DOI [BibTex]

DOI [BibTex]


Thumb xl cvpr2017 landpsace
Semantic Multi-view Stereo: Jointly Estimating Objects and Voxels

Ulusoy, A. O., Black, M. J., Geiger, A.

In Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, IEEE, Piscataway, NJ, USA, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017 (inproceedings)

Abstract
Dense 3D reconstruction from RGB images is a highly ill-posed problem due to occlusions, textureless or reflective surfaces, as well as other challenges. We propose object-level shape priors to address these ambiguities. Towards this goal, we formulate a probabilistic model that integrates multi-view image evidence with 3D shape information from multiple objects. Inference in this model yields a dense 3D reconstruction of the scene as well as the existence and precise 3D pose of the objects in it. Our approach is able to recover fine details not captured in the input shapes while defaulting to the input models in occluded regions where image evidence is weak. Due to its probabilistic nature, the approach is able to cope with the approximate geometry of the 3D models as well as input shapes that are not present in the scene. We evaluate the approach quantitatively on several challenging indoor and outdoor datasets.

avg ps

YouTube pdf suppmat Project Page [BibTex]

YouTube pdf suppmat Project Page [BibTex]


no image
Strategic exploration in human adaptive control

Schulz, E., Klenske, E., Bramley, N., Speekenbrink, M.

Proceedings of the 39th Annual Conference of the Cognitive Science Society (CogSci), (Editors: Glenn Gunzelmann, Andrew Howes, Thora Tenbrink and Eddy J. Davelaar), cognitivesciencesociety.org, July 2017 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
State-Regularized Policy Search for Linearized Dynamical Systems

Abdulsamad, H., Arenz, O., Peters, J., Neumann, G.

Proceedings of the Twenty-Seventh International Conference on Automated Planning and Scheduling, (ICAPS), pages: 419-424, (Editors: Laura Barbulescu, Jeremy Frank, Mausam and Stephen F. Smith), AAAI Press, June 2017 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Deep Reinforcement Learning for Robotic Manipulation with Asynchronous Off-Policy Updates

Gu*, S., Holly*, E., Lillicrap, T., Levine, S.

Proceedings 2017 IEEE International Conference on Robotics and Automation (ICRA), IEEE, Piscataway, NJ, USA, IEEE International Conference on Robotics and Automation (ICRA), May 2017, *equal contribution (conference)

ei

Arxiv Project Page [BibTex]

Arxiv Project Page [BibTex]


no image
Context-Driven Movement Primitive Adaptation

Wilbers, D., Lioutikov, R., Peters, J.

IEEE International Conference on Robotics and Automation (ICRA), pages: 3469-3475, IEEE, May 2017 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
A Learning-based Shared Control Architecture for Interactive Task Execution

Farraj, F. B., Osa, T., Pedemonte, N., Peters, J., Neumann, G., Giordano, P.

IEEE International Conference on Robotics and Automation (ICRA), pages: 329-335, IEEE, May 2017 (conference)

ei

DOI Project Page Project Page [BibTex]

DOI Project Page Project Page [BibTex]


no image
Frequency Peak Features for Low-Channel Classification in Motor Imagery Paradigms

Jayaram, V., Schölkopf, B., Grosse-Wentrup, M.

Proceedings of the 8th International IEEE/EMBS Conference on Neural Engineering (NER), pages: 321-324, May 2017 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
Empowered skills

Gabriel, A., Akrour, R., Peters, J., Neumann, G.

IEEE International Conference on Robotics and Automation (ICRA), pages: 6435-6441, IEEE, May 2017 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Layered direct policy search for learning hierarchical skills

End, F., Akrour, R., Peters, J., Neumann, G.

IEEE International Conference on Robotics and Automation (ICRA), pages: 6442-6448, IEEE, May 2017 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Q-Prop: Sample-Efficient Policy Gradient with An Off-Policy Critic

Gu, S., Lillicrap, T., Ghahramani, Z., Turner, R. E., Levine, S.

Proceedings International Conference on Learning Representations (ICLR), OpenReviews.net, International Conference on Learning Representations, April 2017 (conference)

ei

PDF link (url) Project Page [BibTex]

PDF link (url) Project Page [BibTex]


no image
Categorical Reparametrization with Gumbel-Softmax

Jang, E., Gu, S., Poole, B.

Proceedings International Conference on Learning Representations 2017, OpenReviews.net, International Conference on Learning Representations, April 2017 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
DeepCoder: Learning to Write Programs

Balog, M., Gaunt, A. L., Brockschmidt, M., Nowozin, S., Tarlow, D.

Proceedings International Conference on Learning Representations 2017, OpenReviews.net, International Conference on Learning Representations, April 2017 (conference)

ei

Arxiv link (url) Project Page [BibTex]

Arxiv link (url) Project Page [BibTex]


Thumb xl reliability icon
Distilling Information Reliability and Source Trustworthiness from Digital Traces

Tabibian, B., Valera, I., Farajtabar, M., Song, L., Schölkopf, B., Gomez Rodriguez, M.

Proceedings of the 26th International Conference on World Wide Web (WWW), pages: 847-855, (Editors: Barrett, R., Cummings, R., Agichtein, E. and Gabrilovich, E. ), ACM, April 2017 (conference)

ei

Project DOI Project Page Project Page [BibTex]

Project DOI Project Page Project Page [BibTex]


no image
Local Group Invariant Representations via Orbit Embeddings

Raj, A., Kumar, A., Mroueh, Y., Fletcher, T., Schölkopf, B.

Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS), 54, pages: 1225-1235, Proceedings of Machine Learning Research, (Editors: Aarti Singh and Jerry Zhu), April 2017 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Pre-Movement Contralateral EEG Low Beta Power Is Modulated with Motor Adaptation Learning

Ozdenizci, O., Yalcin, M., Erdogan, A., Patoglu, V., Grosse-Wentrup, M., Cetin, M.

International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages: 934-938, March 2017 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
Automatic detection of motion artifacts in MR images using CNNs

Meding, K., Loktyushin, A., Hirsch, M.

42nd IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages: 811-815, March 2017 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
Catching heuristics are optimal control policies

Belousov, B., Neumann, G., Rothkopf, C., Peters, J.

Proceedings of the Thirteenth Karniel Computational Motor Control Workshop, March 2017 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
DiSMEC – Distributed Sparse Machines for Extreme Multi-label Classification

Babbar, R., Schölkopf, B.

Proceedings of the Tenth ACM International Conference on Web Search and Data Mining (WSDM), pages: 721-729, Febuary 2017 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Policy Search with High-Dimensional Context Variables

Tangkaratt, V., van Hoof, H., Parisi, S., Neumann, G., Peters, J., Sugiyama, M.

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI), pages: 2632-2638, (Editors: Satinder P. Singh and Shaul Markovitch), AAAI Press, Febuary 2017 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Iterative Feedback-basierte Korrekturstrategien beim Bewegungslernen von Mensch-Roboter-Dyaden

Ewerton, M., Kollegger, G., Maeda, G., Wiemeyer, J., Peters, J.

In DVS Sportmotorik 2017, 2017 (inproceedings)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
BIMROB - Bidirectional Interaction between human and robot for the learning of movements - Robot trains human - Human trains robot

Kollegger, G., Wiemeyer, J., Ewerton, M., Peters, J.

In Inovation & Technologie im Sport - 23. Sportwissenschaftlicher Hochschultag der deutschen Vereinigung für Sportwissenschaft, pages: 179, (Editors: A. Schwirtz, F. Mess, Y. Demetriou & V. Senner ), Czwalina-Feldhaus, 2017 (inproceedings)

ei

[BibTex]

[BibTex]


no image
BIMROB – Bidirektionale Interaktion von Mensch und Roboter beim Bewegungslernen

Wiemeyer, J., Peters, J., Kollegger, G., Ewerton, M.

DVS Sportmotorik 2017, 2017 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]

2010


no image
Learning Table Tennis with a Mixture of Motor Primitives

Mülling, K., Kober, J., Peters, J.

In Proceedings of the 10th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2010), pages: 411-416, IEEE, Piscataway, NJ, USA, 10th IEEE-RAS International Conference on Humanoid Robots (Humanoids), December 2010 (inproceedings)

Abstract
Table tennis is a sufficiently complex motor task for studying complete skill learning systems. It consists of several elementary motions and requires fast movements, accurate control, and online adaptation. To represent the elementary movements needed for robot table tennis, we rely on dynamic systems motor primitives (DMP). While such DMPs have been successfully used for learning a variety of simple motor tasks, they only represent single elementary actions. In order to select and generalize among different striking movements, we present a new approach, called Mixture of Motor Primitives that uses a gating network to activate appropriate motor primitives. The resulting policy enables us to select among the appropriate motor primitives as well as to generalize between them. In order to obtain a fully learned robot table tennis setup, we also address the problem of predicting the necessary context information, i.e., the hitting point in time and space where we want to hit the ball. We show that the resulting setup was capable of playing rudimentary table tennis using an anthropomorphic robot arm.

ei

Web DOI [BibTex]

2010


Web DOI [BibTex]


no image
Learning an interactive segmentation system

Nickisch, H., Rother, C., Kohli, P., Rhemann, C.

In Proceedings of the Seventh Indian Conference on Computer Vision, Graphics and Image Processing (ICVGIP 2010), pages: 274-281, (Editors: Chellapa, R. , P. Anandan, A. N. Rajagopalan, P. J. Narayanan, P. Torr), ACM Press, Nw York, NY, USA, Seventh Indian Conference on Computer Vision, Graphics and Image Processing (ICVGIP), December 2010 (inproceedings)

Abstract
Many successful applications of computer vision to image or video manipulation are interactive by nature. However, parameters of such systems are often trained neglecting the user. Traditionally, interactive systems have been treated in the same manner as their fully automatic counterparts. Their performance is evaluated by computing the accuracy of their solutions under some fixed set of user interactions. This paper proposes a new evaluation and learning method which brings the user in the loop. It is based on the use of an active robot user -- a simulated model of a human user. We show how this approach can be used to evaluate and learn parameters of state-of-the-art interactive segmentation systems. We also show how simulated user models can be integrated into the popular max-margin method for parameter learning and propose an algorithm to solve the resulting optimisation problem.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Using an Infinite Von Mises-Fisher Mixture Model to Cluster Treatment Beam Directions in External Radiation Therapy

Bangert, M., Hennig, P., Oelfke, U.

In pages: 746-751 , (Editors: Draghici, S. , T.M. Khoshgoftaar, V. Palade, W. Pedrycz, M.A. Wani, X. Zhu), IEEE, Piscataway, NJ, USA, Ninth International Conference on Machine Learning and Applications (ICMLA), December 2010 (inproceedings)

Abstract
We present a method for fully automated selection of treatment beam ensembles for external radiation therapy. We reformulate the beam angle selection problem as a clustering problem of locally ideal beam orientations distributed on the unit sphere. For this purpose we construct an infinite mixture of von Mises-Fisher distributions, which is suited in general for density estimation from data on the D-dimensional sphere. Using a nonparametric Dirichlet process prior, our model infers probability distributions over both the number of clusters and their parameter values. We describe an efficient Markov chain Monte Carlo inference algorithm for posterior inference from experimental data in this model. The performance of the suggested beam angle selection framework is illustrated for one intra-cranial, pancreas, and prostate case each. The infinite von Mises-Fisher mixture model (iMFMM) creates between 18 and 32 clusters, depending on the patient anatomy. This suggests to use the iMFMM directly for beam ensemble selection in robotic radio surgery, or to generate low-dimensional input for both subsequent optimization of trajectories for arc therapy and beam ensemble selection for conventional radiation therapy.

ei pn

Web DOI [BibTex]

Web DOI [BibTex]


no image
Online algorithms for submodular minimization with combinatorial constraints

Jegelka, S., Bilmes, J.

In pages: 1-6, NIPS Workshop on Discrete Optimization in Machine Learning: Structures, Algorithms and Applications (DISCML), December 2010 (inproceedings)

Abstract
Building on recent results for submodular minimization with combinatorial constraints, and on online submodular minimization, we address online approximation algorithms for submodular minimization with combinatorial constraints. We discuss two types of algorithms and outline approximation algorithms that integrate into those.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Multi-agent random walks for local clustering

Alamgir, M., von Luxburg, U.

In Proceedings of the IEEE International Conference on Data Mining (ICDM 2010), pages: 18-27, (Editors: Webb, G. I., B. Liu, C. Zhang, D. Gunopulos, X. Wu), IEEE, Piscataway, NJ, USA, IEEE International Conference on Data Mining (ICDM), December 2010 (inproceedings)

Abstract
We consider the problem of local graph clustering where the aim is to discover the local cluster corresponding to a point of interest. The most popular algorithms to solve this problem start a random walk at the point of interest and let it run until some stopping criterion is met. The vertices visited are then considered the local cluster. We suggest a more powerful alternative, the multi-agent random walk. It consists of several “agents” connected by a fixed rope of length l. All agents move independently like a standard random walk on the graph, but they are constrained to have distance at most l from each other. The main insight is that for several agents it is harder to simultaneously travel over the bottleneck of a graph than for just one agent. Hence, the multi-agent random walk has less tendency to mistakenly merge two different clusters than the original random walk. In our paper we analyze the multi-agent random walk theoretically and compare it experimentally to the major local graph clustering algorithms from the literature. We find that our multi-agent random walk consistently outperforms these algorithms.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Effects of Packet Losses to Stability in Bilateral Teleoperation Systems

Hong, A., Cho, JH., Lee, DY.

In pages: 1043-1044, Korean Society of Mechanical Engineers, Seoul, South Korea, KSME Fall Annual Meeting, November 2010 (inproceedings)

ei

[BibTex]

[BibTex]


no image
Combining Real-Time Brain-Computer Interfacing and Robot Control for Stroke Rehabilitation

Gomez Rodriguez, M., Peters, J., Hill, J., Gharabaghi, A., Schölkopf, B., Grosse-Wentrup, M.

In Proceedings of SIMPAR 2010 Workshops, pages: 59-63, Brain-Computer Interface Workshop at SIMPAR: 2nd International Conference on Simulation, Modeling, and Programming for Autonomous Robots, November 2010 (inproceedings)

Abstract
Brain-Computer Interfaces based on electrocorticography (ECoG) or electroencephalography (EEG), in combination with robot-assisted active physical therapy, may support traditional rehabilitation procedures for patients with severe motor impairment due to cerebrovascular brain damage caused by stroke. In this short report, we briefly review the state-of-the art in this exciting new field, give an overview of the work carried out at the Max Planck Institute for Biological Cybernetics and the University of T{\"u}bingen, and discuss challenges that need to be addressed in order to move from basic research to clinical studies.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Comparative Quantitative Evaluation of MR-Based Attenuation Correction Methods in Combined Brain PET/MR

Mantlik, F., Hofmann, M., Bezrukov, I., Kolb, A., Beyer, T., Reimold, M., Pichler, B., Schölkopf, B.

2010(M08-4), 2010 Nuclear Science Symposium and Medical Imaging Conference (NSS-MIC), November 2010 (talk)

Abstract
Combined PET/MR provides at the same time molecular and functional imaging as well as excellent soft tissue contrast. It does not allow one to directly measure the attenuation properties of scanned tissues, despite the fact that accurate attenuation maps are necessary for quantitative PET imaging. Several methods have therefore been proposed for MR-based attenuation correction (MR-AC). So far, they have only been evaluated on data acquired from separate MR and PET scanners. We evaluated several MR-AC methods on data from 10 patients acquired on a combined BrainPET/MR scanner. This allowed the consideration of specific PET/MR issues, such as the RF coil that attenuates and scatters 511 keV gammas. We evaluated simple MR thresholding methods as well as atlas and machine learning-based MR-AC. CT-based AC served as gold standard reference. To comprehensively evaluate the MR-AC accuracy, we used RoIs from 2 anatomic brain atlases with different levels of detail. Visual inspection of the PET images indicated that even the basic FLASH threshold MR-AC may be sufficient for several applications. Using a UTE sequence for bone prediction in MR-based thresholding occasionally led to false prediction of bone tissue inside the brain, causing a significant overestimation of PET activity. Although it yielded a lower mean underestimation of activity, it exhibited the highest variance of all methods. The atlas averaging approach had a smaller mean error, but showed high maximum overestimation on the RoIs of the more detailed atlas. The Nave Bayes and Atlas-Patch MR-AC yielded the smallest variance, and the Atlas-Patch also showed the smallest mean error. In conclusion, Atlas-based AC using only MR information on the BrainPET/MR yields a high level of accuracy that is sufficient for clinical quantitative imaging requirements. The Atlas-Patch approach was superior to alternative atlas-based methods, yielding a quantification error below 10% for all RoIs except very small ones.

ei

[BibTex]

[BibTex]


no image
Learning as a key ability for Human-Friendly Robots

Peters, J., Kober, J., Mülling, K., Krömer, O., Nguyen-Tuong, D., Wang, Z., Rodriguez Gomez, M., Grosse-Wentrup, M.

In pages: 1-2, 3rd Workshop for Young Researchers on Human-Friendly Robotics (HFR), October 2010 (inproceedings)

ei

Web [BibTex]

Web [BibTex]


no image
Closing the sensorimotor loop: Haptic feedback facilitates decoding of arm movement imagery

Gomez Rodriguez, M., Peters, J., Hill, J., Schölkopf, B., Gharabaghi, A., Grosse-Wentrup, M.

In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics (SMC 2010), pages: 121-126, IEEE, Piscataway, NJ, USA, IEEE International Conference on Systems, Man and Cybernetics (SMC), October 2010 (inproceedings)

Abstract
Brain-Computer Interfaces (BCIs) in combination with robot-assisted physical therapy may become a valuable tool for neurorehabilitation of patients with severe hemiparetic syndromes due to cerebrovascular brain damage (stroke) and other neurological conditions. A key aspect of this approach is reestablishing the disrupted sensorimotor feedback loop, i.e., determining the intended movement using a BCI and helping a human with impaired motor function to move the arm using a robot. It has not been studied yet, however, how artificially closing the sensorimotor feedback loop affects the BCI decoding performance. In this article, we investigate this issue in six healthy subjects, and present evidence that haptic feedback facilitates the decoding of arm movement intention. The results provide evidence of the feasibility of future rehabilitative efforts combining robot-assisted physical therapy with BCIs.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Learning Probabilistic Discriminative Models of Grasp Affordances under Limited Supervision

Erkan, A., Kroemer, O., Detry, R., Altun, Y., Piater, J., Peters, J.

In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2010), pages: 1586-1591, IEEE, Piscataway, NJ, USA, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), October 2010 (inproceedings)

Abstract
This paper addresses the problem of learning and efficiently representing discriminative probabilistic models of object-specific grasp affordances particularly when the number of labeled grasps is extremely limited. The proposed method does not require an explicit 3D model but rather learns an implicit manifold on which it defines a probability distribution over grasp affordances. We obtain hypothetical grasp configurations from visual descriptors that are associated with the contours of an object. While these hypothetical configurations are abundant, labeled configurations are very scarce as these are acquired via time-costly experiments carried out by the robot. Kernel logistic regression (KLR) via joint kernel maps is trained to map the hypothesis space of grasps into continuous class-conditional probability values indicating their achievability. We propose a soft-supervised extension of KLR and a framework to combine the merits of semi-supervised and active learning approaches to tackle the scarcity of labeled grasps. Experimental evaluation shows that combining active and semi-supervised learning is favorable in the existence of an oracle. Furthermore, semi-supervised learning outperforms supervised learning, particularly when the labeled data is very limited.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
A biomimetic approach to robot table tennis

Mülling, K., Kober, J., Peters, J.

In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2010), pages: 1921-1926, IEEE, Piscataway, NJ, USA, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), October 2010 (inproceedings)

Abstract
Although human beings see and move slower than table tennis or baseball robots, they manage to outperform such robot systems. One important aspect of this better performance is the human movement generation. In this paper, we study trajectory generation for table tennis from a biomimetic point of view. Our focus lies on generating efficient stroke movements capable of mastering variations in the environmental conditions, such as changing ball speed, spin and position. We study table tennis from a human motor control point of view. To make headway towards this goal, we construct a trajectory generator for a single stroke using the discrete movement stages hypothesis and the virtual hitting point hypothesis to create a model that produces a human-like stroke movement. We verify the functionality of the trajectory generator for a single forehand stroke both in a simulation and using a real Barrett WAM.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Weakly-Paired Maximum Covariance Analysis for Multimodal Dimensionality Reduction and Transfer Learning

Lampert, C., Kroemer, O.

In Computer Vision – ECCV 2010, pages: 566-579, (Editors: Daniilidis, K. , P. Maragos, N. Paragios), Springer, Berlin, Germany, 11th European Conference on Computer Vision, September 2010 (inproceedings)

Abstract
We study the problem of multimodal dimensionality reduction assuming that data samples can be missing at training time, and not all data modalities may be present at application time. Maximum covariance analysis, as a generalization of PCA, has many desirable properties, but its application to practical problems is limited by its need for perfectly paired data. We overcome this limitation by a latent variable approach that allows working with weakly paired data and is still able to efficiently process large datasets using standard numerical routines. The resulting weakly paired maximum covariance analysis often finds better representations than alternative methods, as we show in two exemplary tasks: texture discrimination and transfer learning.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Simple algorithmic modifications for improving blind steganalysis performance

Schwamberger, V., Franz, M.

In Proceedings of the 12th ACM workshop on Multimedia and Security (MM&Sec 2010), pages: 225-230, (Editors: Campisi, P. , J. Dittmann, S. Craver), ACM Press, New York, NY, USA, 12th ACM Workshop on Multimedia and Security (MM&Sec), September 2010 (inproceedings)

Abstract
Most current algorithms for blind steganalysis of images are based on a two-stages approach: First, features are extracted in order to reduce dimensionality and to highlight potential manipulations; second, a classifier trained on pairs of clean and stego images finds a decision rule for these features to detect stego images. Thereby, vector components might vary significantly in their values, hence normalization of the feature vectors is crucial. Furthermore, most classifiers contain free parameters, and an automatic model selection step has to be carried out for adapting these parameters. However, the commonly used cross-validation destroys some information needed by the classifier because of the arbitrary splitting of image pairs (stego and clean version) in the training set. In this paper, we propose simple modifications of normalization and for standard cross-validation. In our experiments, we show that these methods lead to a significant improvement of the standard blind steganalyzer of Lyu and Farid.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Semi-supervised Remote Sensing Image Classification via Maximum Entropy

Erkan, A., Camps-Valls, G., Altun, Y.

In Proceedings of the 2010 IEEE International Workshop on Machine Learning for Signal Processing (MLSP 2010), pages: 313-318, IEEE, Piscataway, NJ, USA, 2010 IEEE International Workshop on Machine Learning for Signal Processing (MLSP), September 2010 (inproceedings)

Abstract
Remote sensing image segmentation requires multi-category classification typically with limited number of labeled training samples. While semi-supervised learning (SSL) has emerged as a sub-field of machine learning to tackle the scarcity of labeled samples, most SSL algorithms to date have had trade-offs in terms of scalability and/or applicability to multi-categorical data. In this paper, we evaluate semi-supervised logistic regression (SLR), a recent information theoretic semi-supervised algorithm, for remote sensing image classification problems. SLR is a probabilistic discriminative classifier and a specific instance of the generalized maximum entropy framework with a convex loss function. Moreover, the method is inherently multi-class and easy to implement. These characteristics make SLR a strong alternative to the widely used semi-supervised variants of SVM for the segmentation of remote sensing images. We demonstrate the competitiveness of SLR in multispectral, hyperspectral and radar image classifica tion.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
MLSP Competition, 2010: Description of first place method

Leiva, JM., Martens, SMM.

In Proceedings of the 2010 IEEE International Workshop on Machine Learning for Signal Processing (MLSP 2010), pages: 112-113, IEEE, Piscataway, NJ, USA, 2010 IEEE International Workshop on Machine Learning for Signal Processing (MLSP), September 2010 (inproceedings)

Abstract
Our winning approach to the 2010 MLSP Competition is based on a generative method for P300-based BCI decoding, successfully applied to visual spellers. Here, generative has a double meaning. On the one hand, we work with a probability density model of the data given the target/non target labeling, as opposed to discriminative (e.g. SVM-based) methods. On the other hand, the natural consequence of this approach is a decoding based on comparing the observation to templates generated from the data.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Multiframe Blind Deconvolution, Super-Resolution, and Saturation Correction via Incremental EM

Harmeling, S., Sra, S., Hirsch, M., Schölkopf, B.

In Proceedings of the 17th International Conference on Image Processing (ICIP 2010), pages: 3313-3316, IEEE, Piscataway, NJ, USA, 17th International Conference on Image Processing (ICIP), September 2010 (inproceedings)

Abstract
We formulate the multiframe blind deconvolution problem in an incremental expectation maximization (EM) framework. Beyond deconvolution, we show how to use the same framework to address: (i) super-resolution despite noise and unknown blurring; (ii) saturationcorrection of overexposed pixels that confound image restoration. The abundance of data allows us to address both of these without using explicit image or blur priors. The end result is a simple but effective algorithm with no hyperparameters. We apply this algorithm to real-world images from astronomy and to super resolution tasks: for both, our algorithm yields increased resolution and deconvolved images simultaneously.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Gaussian Mixture Modeling with Gaussian Process Latent Variable Models

Nickisch, H., Rasmussen, C.

In Pattern Recognition, pages: 271-282, (Editors: Goesele, M. , S. Roth, A. Kuijper, B. Schiele, K. Schindler), Springer, Berlin, Germany, 32nd Annual Symposium of the German Association for Pattern Recognition (DAGM), September 2010 (inproceedings)

Abstract
Density modeling is notoriously difficult for high dimensional data. One approach to the problem is to search for a lower dimensional manifold which captures the main characteristics of the data. Recently, the Gaussian Process Latent Variable Model (GPLVM) has successfully been used to find low dimensional manifolds in a variety of complex data. The GPLVM consists of a set of points in a low dimensional latent space, and a stochastic map to the observed space. We show how it can be interpreted as a density model in the observed space. However, the GPLVM is not trained as a density model and therefore yields bad density estimates. We propose a new training strategy and obtain improved generalisation performance and better density estimates in comparative evaluations on several benchmark data sets.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
A Nearest Neighbor Data Structure for Graphics Hardware

Cayton, L.

In Proceedings of the First International Workshop on Accelerating Data Management Systems Using Modern Processor and Storage Architectures (ADMS 2010), pages: 1-6, First International Workshop on Accelerating Data Management Systems Using Modern Processor and Storage Architectures (ADMS), September 2010 (inproceedings)

Abstract
Nearest neighbor search is a core computational task in database systems and throughout data analysis. It is also a major computational bottleneck, and hence an enormous body of research has been devoted to data structures and algorithms for accelerating the task. Recent advances in graphics hardware provide tantalizing speedups on a variety of tasks and suggest an alternate approach to the problem: simply run brute force search on a massively parallel sys- tem. In this paper we marry the approaches with a novel data structure that can effectively make use of parallel systems such as graphics cards. The architectural complexities of graphics hardware - the high degree of parallelism, the small amount of memory relative to instruction throughput, and the single instruction, multiple data design- present significant challenges for data structure design. Furthermore, the brute force approach applies perfectly to graphics hardware, leading one to question whether an intelligent algorithm or data structure can even hope to outperform this basic approach. Despite these challenges and misgivings, we demonstrate that our data structure - termed a Random Ball Cover - provides significant speedups over the GPU- based brute force approach.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Statistical image analysis and percolation theory

Davies, P., Langovoy, M., Wittich, O.

73rd Annual Meeting of the Institute of Mathematical Statistics (IMS), August 2010 (talk)

Abstract
We develop a novel method for detection of signals and reconstruction of images in the presence of random noise. The method uses results from percolation theory. We specifically address the problem of detection of objects of unknown shapes in the case of nonparametric noise. The noise density is unknown and can be heavy-tailed. We view the object detection problem as hypothesis testing for discrete statistical inverse problems. We present an algorithm that allows to detect objects of various shapes in noisy images. We prove results on consistency and algorithmic complexity of our procedures.

ei

Web [BibTex]

Web [BibTex]