Header logo is


2004


no image
Behaviour and Convergence of the Constrained Covariance

Gretton, A., Smola, A., Bousquet, O., Herbrich, R., Schölkopf, B., Logothetis, N.

(130), MPI for Biological Cybernetics, 2004 (techreport)

Abstract
We discuss reproducing kernel Hilbert space (RKHS)-based measures of statistical dependence, with emphasis on constrained covariance (COCO), a novel criterion to test dependence of random variables. We show that COCO is a test for independence if and only if the associated RKHSs are universal. That said, no independence test exists that can distinguish dependent and independent random variables in all circumstances. Dependent random variables can result in a COCO which is arbitrarily close to zero when the source densities are highly non-smooth, which can make dependence hard to detect empirically. All current kernel-based independence tests share this behaviour. Finally, we demonstrate exponential convergence between the population and empirical COCO, which implies that COCO does not suffer from slow learning rates when used as a dependence test.

ei

PDF [BibTex]

2004


PDF [BibTex]


no image
Early visual processing—data, theory, models

Wichmann, F.

Experimentelle Psychologie. Beitr{\"a}ge zur 46. Tagung experimentell arbeitender Psychologen, 46, pages: 24, 2004 (poster)

ei

[BibTex]

[BibTex]


no image
Statistical Learning with Similarity and Dissimilarity Functions

von Luxburg, U.

pages: 1-166, Technische Universität Berlin, Germany, Technische Universität Berlin, Germany, 2004 (phdthesis)

ei

PDF PostScript [BibTex]

PDF PostScript [BibTex]


no image
Statistische Lerntheorie und Empirische Inferenz

Schölkopf, B.

Jahrbuch der Max-Planck-Gesellschaft, 2004, pages: 377-382, 2004 (misc)

Abstract
Statistical learning theory studies the process of inferring regularities from empirical data. The fundamental problem is what is called generalization: how it is possible to infer a law which will be valid for an infinite number of future observations, given only a finite amount of data? This problem hinges upon fundamental issues of statistics and science in general, such as the problems of complexity of explanations, a priori knowledge, and representation of data.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Bayesian analysis of the Scatterometer Wind Retrieval Inverse Problem: Some New Approaches

Cornford, D., Csato, L., Evans, D., Opper, M.

Journal of the Royal Statistical Society B, 66, pages: 1-17, 3, 2004 (article)

Abstract
The retrieval of wind vectors from satellite scatterometer observations is a non-linear inverse problem.A common approach to solving inverse problems is to adopt a Bayesian framework and to infer the posterior distribution of the parameters of interest given the observations by using a likelihood model relating the observations to the parameters, and a prior distribution over the parameters.We show how Gaussian process priors can be used efficiently with a variety of likelihood models, using local forward (observation) models and direct inverse models for the scatterometer.We present an enhanced Markov chain Monte Carlo method to sample from the resulting multimodal posterior distribution.We go on to show how the computational complexity of the inference can be controlled by using a sparse, sequential Bayes algorithm for estimation with Gaussian processes.This helps to overcome the most serious barrier to the use of probabilistic, Gaussian process methods in remote sensing inverse problems, which is the prohibitively large size of the data sets.We contrast the sampling results with the approximations that are found by using the sparse, sequential Bayes algorithm.

ei

PDF [BibTex]

PDF [BibTex]


no image
Feature Selection for Support Vector Machines Using Genetic Algorithms

Fröhlich, H., Chapelle, O., Schölkopf, B.

International Journal on Artificial Intelligence Tools (Special Issue on Selected Papers from the 15th IEEE International Conference on Tools with Artificial Intelligence 2003), 13(4):791-800, 2004 (article)

ei

Web [BibTex]

Web [BibTex]


no image
Semi-supervised kernel regression using whitened function classes

Franz, M., Kwon, Y., Rasmussen, C., Schölkopf, B.

In Pattern Recognition, Proceedings of the 26th DAGM Symposium, Lecture Notes in Computer Science, Vol. 3175, LNCS 3175, pages: 18-26, (Editors: CE Rasmussen and HH Bülthoff and MA Giese and B Schölkopf), Springer, Berlin, Gerrmany, 26th DAGM Symposium, 2004 (inproceedings)

Abstract
The use of non-orthonormal basis functions in ridge regression leads to an often undesired non-isotropic prior in function space. In this study, we investigate an alternative regularization technique that results in an implicit whitening of the basis functions by penalizing directions in function space with a large prior variance. The regularization term is computed from unlabelled input data that characterizes the input distribution. Tests on two datasets using polynomial basis functions showed an improved average performance compared to standard ridge regression.

ei

PDF PostScript [BibTex]

PDF PostScript [BibTex]


no image
Maximal Margin Classification for Metric Spaces

Hein, M., Bousquet, O.

In Learning Theory and Kernel Machines, pages: 72-86, (Editors: Schölkopf, B. and Warmuth, M. K.), Springer, Heidelberg, Germany, 16. Annual Conference on Computational Learning Theory / COLT Kernel, 2004 (inproceedings)

Abstract
In this article we construct a maximal margin classification algorithm for arbitrary metric spaces. At first we show that the Support Vector Machine (SVM) is a maximal margin algorithm for the class of metric spaces where the negative squared distance is conditionally positive definite (CPD). This means that the metric space can be isometrically embedded into a Hilbert space, where one performs linear maximal margin separation. We will show that the solution only depends on the metric, but not on the kernel. Following the framework we develop for the SVM, we construct an algorithm for maximal margin classification in arbitrary metric spaces. The main difference compared with SVM is that we no longer embed isometrically into a Hilbert space, but a Banach space. We further give an estimate of the capacity of the function class involved in this algorithm via Rademacher averages. We recover an algorithm of Graepel et al. [6].

ei

PDF PostScript PDF DOI [BibTex]

PDF PostScript PDF DOI [BibTex]


no image
On the Convergence of Spectral Clustering on Random Samples: The Normalized Case

von Luxburg, U., Bousquet, O., Belkin, M.

In Proceedings of the 17th Annual Conference on Learning Theory, pages: 457-471, Proceedings of the 17th Annual Conference on Learning Theory, 2004 (inproceedings)

ei

PDF PostScript [BibTex]

PDF PostScript [BibTex]


no image
Introduction to Statistical Learning Theory

Bousquet, O., Boucheron, S., Lugosi, G.

In Lecture Notes in Artificial Intelligence 3176, pages: 169-207, (Editors: Bousquet, O., U. von Luxburg and G. Rätsch), Springer, Heidelberg, Germany, 2004 (inbook)

ei

PDF [BibTex]

PDF [BibTex]


no image
A Primer on Kernel Methods

Vert, J., Tsuda, K., Schölkopf, B.

In Kernel Methods in Computational Biology, pages: 35-70, (Editors: B Schölkopf and K Tsuda and JP Vert), MIT Press, Cambridge, MA, USA, 2004 (inbook)

ei

PDF [BibTex]

PDF [BibTex]


no image
Confidence Sets for Ratios: A Purely Geometric Approach To Fieller’s Theorem

von Luxburg, U., Franz, V.

(133), Max Planck Institute for Biological Cybernetics, 2004 (techreport)

Abstract
We present a simple, geometric method to construct Fieller's exact confidence sets for ratios of jointly normally distributed random variables. Contrary to previous geometric approaches in the literature, our method is valid in the general case where both sample mean and covariance are unknown. Moreover, not only the construction but also its proof are purely geometric and elementary, thus giving intuition into the nature of the confidence sets.

ei

PDF [BibTex]

PDF [BibTex]


no image
Transductive Inference with Graphs

Zhou, D., Schölkopf, B.

Max Planck Institute for Biological Cybernetics, 2004, See the improved version Regularization on Discrete Spaces. (techreport)

Abstract
We propose a general regularization framework for transductive inference. The given data are thought of as a graph, where the edges encode the pairwise relationships among data. We develop discrete analysis and geometry on graphs, and then naturally adapt the classical regularization in the continuous case to the graph situation. A new and effective algorithm is derived from this general framework, as well as an approach we developed before.

ei

[BibTex]

[BibTex]


no image
Classification and Feature Extraction in Man and Machine

Graf, AAB.

Biologische Kybernetik, University of Tübingen, Germany, 2004, online publication (phdthesis)

ei

[BibTex]

[BibTex]


no image
Phenotypic Characterization of Human Chondrocyte Cell Line C-20/A4: A Comparison between Monolayer and Alginate Suspension Culture

Finger, F., Schorle, C., Söder, S., Zien, A., Goldring, M., Aigner, T.

Cells Tissues Organs, 178(2):65-77, 2004 (article)

Abstract
DNA microarray analysis was used to investigate the molecular phenotype of one of the first human chondrocyte cell lines, C-20/A4, derived from juvenile costal chondrocytes by immortalization with origin-defective simian virus 40 large T antigen. Clontech Human Cancer Arrays 1.2 and quantitative PCR were used to examine gene expression profiles of C-20/A4 cells cultured in the presence of serum in monolayer and alginate beads. In monolayer cultures, genes involved in cell proliferation were strongly upregulated compared to those expressed by human adult articular chondrocytes in primary culture. Of the cell cycle-regulated genes, only two, the CDK regulatory subunit and histone H4, were downregulated after culture in alginate beads, consistent with the ability of these cells to proliferate in suspension culture. In contrast, the expression of several genes that are involved in pericellular matrix formation, including MMP-14, COL6A1, fibronectin, biglycan and decorin, was upregulated when the C-20/A4 cells were transferred to suspension culture in alginate. Also, nexin-1, vimentin, and IGFBP-3, which are known to be expressed by primary chondrocytes, were differentially expressed in our study. Consistent with the proliferative phenotype of this cell line, few genes involved in matrix synthesis and turnover were highly expressed in the presence of serum. These results indicate that immortalized chondrocyte cell lines, rather than substituting for primary chondrocytes, may serve as models for extending findings on chondrocyte function not achievable by the use of primary chondrocytes.

ei

[BibTex]

[BibTex]


no image
Kernel Methods and their Potential Use in Signal Processing

Perez-Cruz, F., Bousquet, O.

IEEE Signal Processing Magazine, (Special issue on Signal Processing for Mining), 2004 (article) Accepted

ei

PostScript [BibTex]

PostScript [BibTex]


no image
Concentration Inequalities

Boucheron, S., Lugosi, G., Bousquet, O.

In Lecture Notes in Artificial Intelligence 3176, pages: 208-240, (Editors: Bousquet, O., U. von Luxburg and G. Rätsch), Springer, Heidelberg, Germany, 2004 (inbook)

ei

PDF [BibTex]

PDF [BibTex]


no image
Kernels for graphs

Kashima, H., Tsuda, K., Inokuchi, A.

In pages: 155-170, (Editors: Schoelkopf, B., K. Tsuda and J.P. Vert), MIT Press, Cambridge, MA; USA, 2004 (inbook)

ei

PDF [BibTex]

PDF [BibTex]


no image
A primer on molecular biology

Zien, A.

In pages: 3-34, (Editors: Schoelkopf, B., K. Tsuda and J. P. Vert), MIT Press, Cambridge, MA, USA, 2004 (inbook)

Abstract
Modern molecular biology provides a rich source of challenging machine learning problems. This tutorial chapter aims to provide the necessary biological background knowledge required to communicate with biologists and to understand and properly formalize a number of most interesting problems in this application domain. The largest part of the chapter (its first section) is devoted to the cell as the basic unit of life. Four aspects of cells are reviewed in sequence: (1) the molecules that cells make use of (above all, proteins, RNA, and DNA); (2) the spatial organization of cells (``compartmentalization''); (3) the way cells produce proteins (``protein expression''); and (4) cellular communication and evolution (of cells and organisms). In the second section, an overview is provided of the most frequent measurement technologies, data types, and data sources. Finally, important open problems in the analysis of these data (bioinformatics challenges) are briefly outlined.

ei

PDF PostScript Web [BibTex]

PDF PostScript Web [BibTex]


no image
Implicit Wiener series for capturing higher-order interactions in images

Franz, M., Schölkopf, B.

Sensory coding and the natural environment, (Editors: Olshausen, B.A. and M. Lewicki), 2004 (poster)

Abstract
The information about the objects in an image is almost exclusively described by the higher-order interactions of its pixels. The Wiener series is one of the standard methods to systematically characterize these interactions. However, the classical estimation method of the Wiener expansion coefficients via cross-correlation suffers from severe problems that prevent its application to high-dimensional and strongly nonlinear signals such as images. We propose an estimation method based on regression in a reproducing kernel Hilbert space that overcomes these problems using polynomial kernels as known from Support Vector Machines and other kernel-based methods. Numerical experiments show performance advantages in terms of convergence, interpretability and system sizes that can be handled. By the time of the conference, we will be able to present first results on the higher-order structure of natural images.

ei

[BibTex]

[BibTex]


no image
Classification and Memory Behaviour of Man Revisited by Machine

Graf, A., Wichmann, F., Bülthoff, H., Schölkopf, B.

CSHL Meeting on Computational & Systems Neuroscience (COSYNE), 2004 (poster)

ei

[BibTex]

[BibTex]


no image
Advanced Statistical Learning Theory

Bousquet, O.

Machine Learning Summer School, 2004 (talk)

ei

PDF [BibTex]

PDF [BibTex]