Header logo is


2009


no image
MR-Based Attenuation Correction for PET/MR

Hofmann, M., Steinke, F., Bezrukov, I., Kolb, A., Aschoff, P., Lichy, M., Erb, M., Nägele, T., Brady, M., Schölkopf, B., Pichler, B.

17(260), 17th Annual Meeting of the International Society for Magnetic Resonance in Medicine (ISMRM), April 2009 (poster)

Abstract
There has recently been a growing interest in combining PET and MR. Attenuation correction (AC), which accounts for radiation attenuation properties of the tissue, is mandatory for quantitative PET. In the case of PET/MR the attenuation map needs to be determined from the MR image. This is intrinsically difficult as MR intensities are not related to the electron density information of the attenuation map. Using ultra-short echo (UTE) acquisition, atlas registration and machine learning, we present methods that allow prediction of the attenuation map based on the MR image both for brain and whole body imaging.

ei

PDF Web [BibTex]

2009


PDF Web [BibTex]


no image
Nearest Neighbor Clustering: A Baseline Method for Consistent Clustering with Arbitrary Objective Functions

Bubeck, S., von Luxburg, U.

Journal of Machine Learning Research, 10, pages: 657-698, March 2009 (article)

Abstract
Clustering is often formulated as a discrete optimization problem. The objective is to find, among all partitions of the data set, the best one according to some quality measure. However, in the statistical setting where we assume that the finite data set has been sampled from some underlying space, the goal is not to find the best partition of the given sample, but to approximate the true partition of the underlying space. We argue that the discrete optimization approach usually does not achieve this goal, and instead can lead to inconsistency. We construct examples which provably have this behavior. As in the case of supervised learning, the cure is to restrict the size of the function classes under consideration. For appropriate “small” function classes we can prove very general consistency theorems for clustering optimization schemes. As one particular algorithm for clustering with a restricted function space we introduce “nearest neighbor clustering”. Similar to the k-nearest neighbor classifier in supervised learning, this algorithm can be seen as a general baseline algorithm to minimize arbitrary clustering objective functions. We prove that it is statistically consistent for all commonly used clustering objective functions.

ei

PDF Web [BibTex]


no image
Protein Functional Class Prediction With a Combined Graph

Shin, H., Tsuda, K., Schölkopf, B.

Expert Systems with Applications, 36(2):3284-3292, March 2009 (article)

Abstract
In bioinformatics, there exist multiple descriptions of graphs for the same set of genes or proteins. For instance, in yeast systems, graph edges can represent different relationships such as protein–protein interactions, genetic interactions, or co-participation in a protein complex, etc. Relying on similarities between nodes, each graph can be used independently for prediction of protein function. However, since different graphs contain partly independent and partly complementary information about the problem at hand, one can enhance the total information extracted by combining all graphs. In this paper, we propose a method for integrating multiple graphs within a framework of semi-supervised learning. The method alternates between minimizing the objective function with respect to network output and with respect to combining weights. We apply the method to the task of protein functional class prediction in yeast. The proposed method performs significantly better than the same algorithm trained on any singl e graph.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Gaussian Process Dynamic Programming

Deisenroth, M., Rasmussen, C., Peters, J.

Neurocomputing, 72(7-9):1508-1524, March 2009 (article)

Abstract
Reinforcement learning (RL) and optimal control of systems with contin- uous states and actions require approximation techniques in most interesting cases. In this article, we introduce Gaussian process dynamic programming (GPDP), an approximate value-function based RL algorithm. We consider both a classic optimal control problem, where problem-specific prior knowl- edge is available, and a classic RL problem, where only very general priors can be used. For the classic optimal control problem, GPDP models the unknown value functions with Gaussian processes and generalizes dynamic programming to continuous-valued states and actions. For the RL problem, GPDP starts from a given initial state and explores the state space using Bayesian active learning. To design a fast learner, available data has to be used efficiently. Hence, we propose to learn probabilistic models of the a priori unknown transition dynamics and the value functions on the fly. In both cases, we successfully apply the resulting continuous-valued controllers to the under-actuated pendulum swing up and analyze the performances of the suggested algorithms. It turns out that GPDP uses data very efficiently and can be applied to problems, where classic dynamic programming would be cumbersome.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques

Hofmann, M., Pichler, B., Schölkopf, B., Beyer, T.

European Journal of Nuclear Medicine and Molecular Imaging, 36(Supplement 1):93-104, March 2009 (article)

Abstract
Introduction Positron emission tomography (PET) is a fully quantitative technology for imaging metabolic pathways and dynamic processes in vivo. Attenuation correction of raw PET data is a prerequisite for quantification and is typically based on separate transmission measurements. In PET/CT attenuation correction, however, is performed routinely based on the available CT transmission data. Objective Recently, combined PET/magnetic resonance (MR) has been proposed as a viable alternative to PET/CT. Current concepts of PET/MRI do not include CT-like transmission sources and, therefore, alternative methods of PET attenuation correction must be found. This article reviews existing approaches to MR-based attenuation correction (MR-AC). Most groups have proposed MR-AC algorithms for brain PET studies and more recently also for torso PET/MR imaging. Most MR-AC strategies require the use of complementary MR and transmission images, or morphology templates generated from transmission images. We review and discuss these algorithms and point out challenges for using MR-AC in clinical routine. Discussion MR-AC is work-in-progress with potentially promising results from a template-based approach applicable to both brain and torso imaging. While efforts are ongoing in making clinically viable MR-AC fully automatic, further studies are required to realize the potential benefits of MR-based motion compensation and partial volume correction of the PET data.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Generating Spike Trains with Specified Correlation Coefficients

Macke, J., Berens, P., Ecker, A., Tolias, A., Bethge, M.

Neural Computation, 21(2):397-423, February 2009 (article)

Abstract
Spike trains recorded from populations of neurons can exhibit substantial pairwise correlations between neurons and rich temporal structure. Thus, for the realistic simulation and analysis of neural systems, it is essential to have efficient methods for generating artificial spike trains with specified correlation structure. Here we show how correlated binary spike trains can be simulated by means of a latent multivariate gaussian model. Sampling from the model is computationally very efficient and, in particular, feasible even for large populations of neurons. The entropy of the model is close to the theoretical maximum for a wide range of parameters. In addition, this framework naturally extends to correlations over time and offers an elegant way to model correlated neural spike counts with arbitrary marginal distributions.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Automatic detection of preclinical neurodegeneration: Presymptomatic Huntington disease

Klöppel, S., Chu, C., Tan, G., Draganski, B., Johnson, H., Paulsen, J., Kienzle, W., Tabrizi, S., Ashburner, J., Frackowiak, R.

Neurology, 72(5):426-431, February 2009 (article)

Abstract
Background: Treatment of neurodegenerative diseases is likely to be most beneficial in the very early, possibly preclinical stages of degeneration. We explored the usefulness of fully automatic structural MRI classification methods for detecting subtle degenerative change. The availability of a definitive genetic test for Huntington disease (HD) provides an excellent metric for judging the performance of such methods in gene mutation carriers who are free of symptoms. Methods: Using the gray matter segment of MRI scans, this study explored the usefulness of a multivariate support vector machine to automatically identify presymptomatic HD gene mutation carriers (PSCs) in the absence of any a priori information. A multicenter data set of 96 PSCs and 95 age- and sex-matched controls was studied. The PSC group was subclassified into three groups based on time from predicted clinical onset, an estimate that is a function of DNA mutation size and age. Results: Subjects with at least a 33% chance of developing unequivocal signs of HD in 5 years were correctly assigned to the PSC group 69% of the time. Accuracy improved to 83% when regions affected by the disease were selected a priori for analysis. Performance was at chance when the probability of developing symptoms in 5 years was less than 10%. Conclusions: Presymptomatic Huntington disease gene mutation carriers close to estimated diagnostic onset were successfully separated from controls on the basis of single anatomic scans, without additional a priori information. Prior information is required to allow separation when degenerative changes are either subtle or variable.

ei

Web [BibTex]

Web [BibTex]


no image
Enumeration of condition-dependent dense modules in protein interaction networks

Georgii, E., Dietmann, S., Uno, T., Pagel, P., Tsuda, K.

Bioinformatics, 25(7):933-940, February 2009 (article)

Abstract
Motivation: Modern systems biology aims at understanding how the different molecular components of a biological cell interact. Often, cellular functions are performed by complexes consisting of many different proteins. The composition of these complexes may change according to the cellular environment, and one protein may be involved in several different processes. The automatic discovery of functional complexes from protein interaction data is challenging. While previous approaches use approximations to extract dense modules, our approach exactly solves the problem of dense module enumeration. Furthermore, constraints from additional information sources such as gene expression and phenotype data can be integrated, so we can systematically mine for dense modules with interesting profiles. Results: Given a weighted protein interaction network, our method discovers all protein sets that satisfy a user-defined minimum density threshold. We employ a reverse search strategy, which allows us to exploit the density criterion in an efficient way. Our experiments show that the novel approach is feasible and produces biologically meaningful results. In comparative validation studies using yeast data, the method achieved the best overall prediction performance with respect to confirmed complexes. Moreover, by enhancing the yeast network with phenotypic and phylogenetic profiles and the human network with tissue-specific expression data, we identified condition-dependent complex variants.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Prototype Classification: Insights from Machine Learning

Graf, A., Bousquet, O., Rätsch, G., Schölkopf, B.

Neural Computation, 21(1):272-300, January 2009 (article)

Abstract
We shed light on the discrimination between patterns belonging to two different classes by casting this decoding problem into a generalized prototype framework. The discrimination process is then separated into two stages: a projection stage that reduces the dimensionality of the data by projecting it on a line and a threshold stage where the distributions of the projected patterns of both classes are separated. For this, we extend the popular mean-of-class prototype classification using algorithms from machine learning that satisfy a set of invariance properties. We report a simple yet general approach to express different types of linear classification algorithms in an identical and easy-to-visualize formal framework using generalized prototypes where these prototypes are used to express the normal vector and offset of the hyperplane. We investigate nonmargin classifiers such as the classical prototype classifier, the Fisher classifier, and the relevance vector machine. We then study hard and soft margin cl assifiers such as the support vector machine and a boosted version of the prototype classifier. Subsequently, we relate mean-of-class prototype classification to other classification algorithms by showing that the prototype classifier is a limit of any soft margin classifier and that boosting a prototype classifier yields the support vector machine. While giving novel insights into classification per se by presenting a common and unified formalism, our generalized prototype framework also provides an efficient visualization and a principled comparison of machine learning classification.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
The DICS repository: module-assisted analysis of disease-related gene lists

Dietmann, S., Georgii, E., Antonov, A., Tsuda, K., Mewes, H.

Bioinformatics, 25(6):830-831, January 2009 (article)

Abstract
The DICS database is a dynamic web repository of computationally predicted functional modules from the human protein–protein interaction network. It provides references to the CORUM, DrugBank, KEGG and Reactome pathway databases. DICS can be accessed for retrieving sets of overlapping modules and protein complexes that are significantly enriched in a gene list, thereby providing valuable information about the functional context.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Large Margin Methods for Part of Speech Tagging

Altun, Y.

In Automatic Speech and Speaker Recognition: Large Margin and Kernel Methods, pages: 141-160, (Editors: Keshet, J. and Bengio, S.), Wiley, Hoboken, NJ, USA, January 2009 (inbook)

ei

Web [BibTex]

Web [BibTex]


no image
mGene: accurate SVM-based gene finding with an application to nematode genomes

Schweikert, G., Zien, A., Zeller, G., Behr, J., Dieterich, C., Ong, C., Philips, P., De Bona, F., Hartmann, L., Bohlen, A., Krüger, N., Sonnenburg, S., Rätsch, G.

Genome Research, 19(11):2133-43, 2009 (article)

Abstract
We present a highly accurate gene-prediction system for eukaryotic genomes, called mGene. It combines in an unprecedented manner the flexibility of generalized hidden Markov models (gHMMs) with the predictive power of modern machine learning methods, such as Support Vector Machines (SVMs). Its excellent performance was proved in an objective competition based on the genome of the nematode Caenorhabditis elegans. Considering the average of sensitivity and specificity, the developmental version of mGene exhibited the best prediction performance on nucleotide, exon, and transcript level for ab initio and multiple-genome gene-prediction tasks. The fully developed version shows superior performance in 10 out of 12 evaluation criteria compared with the other participating gene finders, including Fgenesh++ and Augustus. An in-depth analysis of mGene's genome-wide predictions revealed that approximately 2200 predicted genes were not contained in the current genome annotation. Testing a subset of 57 of these genes by RT-PCR and sequencing, we confirmed expression for 24 (42%) of them. mGene missed 300 annotated genes, out of which 205 were unconfirmed. RT-PCR testing of 24 of these genes resulted in a success rate of merely 8%. These findings suggest that even the gene catalog of a well-studied organism such as C. elegans can be substantially improved by mGene's predictions. We also provide gene predictions for the four nematodes C. briggsae, C. brenneri, C. japonica, and C. remanei. Comparing the resulting proteomes among these organisms and to the known protein universe, we identified many species-specific gene inventions. In a quality assessment of several available annotations for these genomes, we find that mGene's predictions are most accurate.

ei

DOI [BibTex]

DOI [BibTex]


no image
Structure and activity of the N-terminal substrate recognition domains in proteasomal ATPases

Djuranovic, S., Hartmann, MD., Habeck, M., Ursinus, A., Zwickl, P., Martin, J., Lupas, AN., Zeth, K.

Molecular Cell, 34(5):580-590, 2009 (article)

Abstract
The proteasome forms the core of the protein quality control system in archaea and eukaryotes and also occurs in one bacterial lineage, the Actinobacteria. Access to its proteolytic compartment is controlled by AAA ATPases, whose N-terminal domains (N domains) are thought to mediate substrate recognition. The N domains of an archaeal proteasomal ATPase, Archaeoglobus fulgidus PAN, and of its actinobacterial homolog, Rhodococcus erythropolis ARC, form hexameric rings, whose subunits consist of an N-terminal coiled coil and a C-terminal OB domain. In ARC-N, the OB domains are duplicated and form separate rings. PAN-N and ARC-N can act as chaperones, preventing the aggregation of heterologous proteins in vitro, and this activity is preserved in various chimeras, even when these include coiled coils and OB domains from unrelated proteins. The structures suggest a molecular mechanism for substrate processing based on concerted radial motions of the coiled coils relative to the OB rings.

ei

DOI [BibTex]

DOI [BibTex]


no image
Discussion of: Brownian Distance Covariance

Gretton, A., Fukumizu, K., Sriperumbudur, B.

The Annals of Applied Statistics, 3(4):1285-1294, 2009 (article)

ei

[BibTex]

[BibTex]


no image
Covariate shift and local learning by distribution matching

Gretton, A., Smola, A., Huang, J., Schmittfull, M., Borgwardt, K., Schölkopf, B.

In Dataset Shift in Machine Learning, pages: 131-160, (Editors: Quiñonero-Candela, J., Sugiyama, M., Schwaighofer, A. and Lawrence, N. D.), MIT Press, Cambridge, MA, USA, 2009 (inbook)

Abstract
Given sets of observations of training and test data, we consider the problem of re-weighting the training data such that its distribution more closely matches that of the test data. We achieve this goal by matching covariate distributions between training and test sets in a high dimensional feature space (specifically, a reproducing kernel Hilbert space). This approach does not require distribution estimation. Instead, the sample weights are obtained by a simple quadratic programming procedure. We provide a uniform convergence bound on the distance between the reweighted training feature mean and the test feature mean, a transductive bound on the expected loss of an algorithm trained on the reweighted data, and a connection to single class SVMs. While our method is designed to deal with the case of simple covariate shift (in the sense of Chapter ??), we have also found benefits for sample selection bias on the labels. Our correction procedure yields its greatest and most consistent advantages when the learning algorithm returns a classifier/regressor that is simpler" than the data might suggest.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Non-linear System Identification: Visual Saliency Inferred from Eye-Movement Data

Wichmann, F., Kienzle, W., Schölkopf, B., Franz, M.

Journal of Vision, 9(8):article 32, 2009 (article)

Abstract
For simple visual patterns under the experimenter's control we impose which information, or features, an observer can use to solve a given perceptual task. For natural vision tasks, however, there are typically a multitude of potential features in a given visual scene which the visual system may be exploiting when analyzing it: edges, corners, contours, etc. Here we describe a novel non-linear system identification technique based on modern machine learning methods that allows the critical features an observer uses to be inferred directly from the observer's data. The method neither requires stimuli to be embedded in noise nor is it limited to linear perceptive fields (classification images). We demonstrate our technique by deriving the critical image features observers fixate in natural scenes (bottom-up visual saliency). Unlike previous studies where the relevant structure is determined manually—e.g. by selecting Gabors as visual filters—we do not make any assumptions in this regard, but numerically infer number and properties them from the eye-movement data. We show that center-surround patterns emerge as the optimal solution for predicting saccade targets from local image structure. The resulting model, a one-layer feed-forward network with contrast gain-control, is surprisingly simple compared to previously suggested saliency models. Nevertheless, our model is equally predictive. Furthermore, our findings are consistent with neurophysiological hardware in the superior colliculus. Bottom-up visual saliency may thus not be computed cortically as has been thought previously.

ei

Web DOI [BibTex]


no image
mGene.web: a web service for accurate computational gene finding

Schweikert, G., Behr, J., Zien, A., Zeller, G., Ong, C., Sonnenburg, S., Rätsch, G.

Nucleic Acids Research, 37, pages: W312-6, 2009 (article)

Abstract
We describe mGene.web, a web service for the genome-wide prediction of protein coding genes from eukaryotic DNA sequences. It offers pre-trained models for the recognition of gene structures including untranslated regions in an increasing number of organisms. With mGene.web, users have the additional possibility to train the system with their own data for other organisms on the push of a button, a functionality that will greatly accelerate the annotation of newly sequenced genomes. The system is built in a highly modular way, such that individual components of the framework, like the promoter prediction tool or the splice site predictor, can be used autonomously. The underlying gene finding system mGene is based on discriminative machine learning techniques and its high accuracy has been demonstrated in an international competition on nematode genomes. mGene.web is available at http://www.mgene.org/web, it is free of charge and can be used for eukaryotic genomes of small to moderate size (several hundred Mbp).

ei

DOI [BibTex]

DOI [BibTex]

2006


no image
Some observations on the pedestal effect or dipper function

Henning, B., Wichmann, F.

Journal of Vision, 6(13):50, 2006 Fall Vision Meeting of the Optical Society of America, December 2006 (poster)

Abstract
The pedestal effect is the large improvement in the detectabilty of a sinusoidal “signal” grating observed when the signal is added to a masking or “pedestal” grating of the same spatial frequency, orientation, and phase. We measured the pedestal effect in both broadband and notched noise - noise from which a 1.5-octave band centred on the signal frequency had been removed. Although the pedestal effect persists in broadband noise, it almost disappears in the notched noise. Furthermore, the pedestal effect is substantial when either high- or low-pass masking noise is used. We conclude that the pedestal effect in the absence of notched noise results principally from the use of information derived from channels with peak sensitivities at spatial frequencies different from that of the signal and pedestal. The spatial-frequency components of the notched noise above and below the spatial frequency of the signal and pedestal prevent the use of information about changes in contrast carried in channels tuned to spatial frequencies that are very much different from that of the signal and pedestal. Thus the pedestal or dipper effect measured without notched noise is not a characteristic of individual spatial-frequency tuned channels.

ei

Web DOI [BibTex]

2006


Web DOI [BibTex]


no image
Structure validation of the Josephin domain of ataxin-3: Conclusive evidence for an open conformation

Nicastro, G., Habeck, M., Masino, L., Svergun, DI., Pastore, A.

Journal of Biomolecular NMR, 36(4):267-277, December 2006 (article)

Abstract
The availability of new and fast tools in structure determination has led to a more than exponential growth of the number of structures solved per year. It is therefore increasingly essential to assess the accuracy of the new structures by reliable approaches able to assist validation. Here, we discuss a specific example in which the use of different complementary techniques, which include Bayesian methods and small angle scattering, resulted essential for validating the two currently available structures of the Josephin domain of ataxin-3, a protein involved in the ubiquitin/proteasome pathway and responsible for neurodegenerative spinocerebellar ataxia of type 3. Taken together, our results demonstrate that only one of the two structures is compatible with the experimental information. Based on the high precision of our refined structure, we show that Josephin contains an open cleft which could be directly implicated in the interaction with polyubiquitin chains and other partners.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
A Unifying View of Wiener and Volterra Theory and Polynomial Kernel Regression

Franz, M., Schölkopf, B.

Neural Computation, 18(12):3097-3118, December 2006 (article)

Abstract
Volterra and Wiener series are perhaps the best understood nonlinear system representations in signal processing. Although both approaches have enjoyed a certain popularity in the past, their application has been limited to rather low-dimensional and weakly nonlinear systems due to the exponential growth of the number of terms that have to be estimated. We show that Volterra and Wiener series can be represented implicitly as elements of a reproducing kernel Hilbert space by utilizing polynomial kernels. The estimation complexity of the implicit representation is linear in the input dimensionality and independent of the degree of nonlinearity. Experiments show performance advantages in terms of convergence, interpretability, and system sizes that can be handled.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Prediction of Protein Function from Networks

Shin, H., Tsuda, K.

In Semi-Supervised Learning, pages: 361-376, Adaptive Computation and Machine Learning, (Editors: Chapelle, O. , B. Schölkopf, A. Zien), MIT Press, Cambridge, MA, USA, November 2006 (inbook)

Abstract
In computational biology, it is common to represent domain knowledge using graphs. Frequently there exist multiple graphs for the same set of nodes, representing information from different sources, and no single graph is sufficient to predict class labels of unlabelled nodes reliably. One way to enhance reliability is to integrate multiple graphs, since individual graphs are partly independent and partly complementary to each other for prediction. In this chapter, we describe an algorithm to assign weights to multiple graphs within graph-based semi-supervised learning. Both predicting class labels and searching for weights for combining multiple graphs are formulated into one convex optimization problem. The graph-combining method is applied to functional class prediction of yeast proteins.When compared with individual graphs, the combined graph with optimized weights performs significantly better than any single graph.When compared with the semidefinite programming-based support vector machine (SDP/SVM), it shows comparable accuracy in a remarkably short time. Compared with a combined graph with equal-valued weights, our method could select important graphs without loss of accuracy, which implies the desirable property of integration with selectivity.

ei

Web [BibTex]

Web [BibTex]


no image
Discrete Regularization

Zhou, D., Schölkopf, B.

In Semi-supervised Learning, pages: 237-250, Adaptive computation and machine learning, (Editors: O Chapelle and B Schölkopf and A Zien), MIT Press, Cambridge, MA, USA, November 2006 (inbook)

Abstract
Many real-world machine learning problems are situated on finite discrete sets, including dimensionality reduction, clustering, and transductive inference. A variety of approaches for learning from finite sets has been proposed from different motivations and for different problems. In most of those approaches, a finite set is modeled as a graph, in which the edges encode pairwise relationships among the objects in the set. Consequently many concepts and methods from graph theory are adopted. In particular, the graph Laplacian is widely used. In this chapter we present a systemic framework for learning from a finite set represented as a graph. We develop discrete analogues of a number of differential operators, and then construct a discrete analogue of classical regularization theory based on those discrete differential operators. The graph Laplacian based approaches are special cases of this general discrete regularization framework. An important thing implied in this framework is that we have a wide choices of regularization on graph in addition to the widely-used graph Laplacian based one.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Statistical Analysis of Slow Crack Growth Experiments

Pfingsten, T., Glien, K.

Journal of the European Ceramic Society, 26(15):3061-3065, November 2006 (article)

Abstract
A common approach for the determination of Slow Crack Growth (SCG) parameters are the static and dynamic loading method. Since materials with small Weibull module show a large variability in strength, a correct statistical analysis of the data is indispensable. In this work we propose the use of the Maximum Likelihood method and a Baysian analysis, which, in contrast to the standard procedures, take into account that failure strengths are Weibull distributed. The analysis provides estimates for the SCG parameters, the Weibull module, and the corresponding confidence intervals and overcomes the necessity of manual differentiation between inert and fatigue strength data. We compare the methods to a Least Squares approach, which can be considered the standard procedure. The results for dynamic loading data from the glass sealing of MEMS devices show that the assumptions inherent to the standard approach lead to significantly different estimates.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Optimizing Spatial Filters for BCI: Margin- and Evidence-Maximization Approaches

Farquhar, J., Hill, N., Schölkopf, B.

Challenging Brain-Computer Interfaces: MAIA Workshop 2006, pages: 1, November 2006 (poster)

Abstract
We present easy-to-use alternatives to the often-used two-stage Common Spatial Pattern + classifier approach for spatial filtering and classification of Event-Related Desychnronization signals in BCI. We report two algorithms that aim to optimize the spatial filters according to a criterion more directly related to the ability of the algorithms to generalize to unseen data. Both are based upon the idea of treating the spatial filter coefficients as hyperparameters of a kernel or covariance function. We then optimize these hyper-parameters directly along side the normal classifier parameters with respect to our chosen learning objective function. The two objectives considered are margin maximization as used in Support-Vector Machines and the evidence maximization framework used in Gaussian Processes. Our experiments assessed generalization error as a function of the number of training points used, on 9 BCI competition data sets and 5 offline motor imagery data sets measured in Tubingen. Both our approaches sho w consistent improvements relative to the commonly used CSP+linear classifier combination. Strikingly, the improvement is most significant in the higher noise cases, when either few trails are used for training, or with the most poorly performing subjects. This a reversal of the usual "rich get richer" effect in the development of CSP extensions, which tend to perform best when the signal is strong enough to accurately find their additional parameters. This makes our approach particularly suitable for clinical application where high levels of noise are to be expected.

ei

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Mining frequent stem patterns from unaligned RNA sequences

Hamada, M., Tsuda, K., Kudo, T., Kin, T., Asai, K.

Bioinformatics, 22(20):2480-2487, October 2006 (article)

Abstract
Motivation: In detection of non-coding RNAs, it is often necessary to identify the secondary structure motifs from a set of putative RNA sequences. Most of the existing algorithms aim to provide the best motif or few good motifs, but biologists often need to inspect all the possible motifs thoroughly. Results: Our method RNAmine employs a graph theoretic representation of RNA sequences, and detects all the possible motifs exhaustively using a graph mining algorithm. The motif detection problem boils down to finding frequently appearing patterns in a set of directed and labeled graphs. In the tasks of common secondary structure prediction and local motif detection from long sequences, our method performed favorably both in accuracy and in efficiency with the state-of-the-art methods such as CMFinder.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Large-Scale Gene Expression Profiling Reveals Major Pathogenetic Pathways of Cartilage Degeneration in Osteoarthritis

Aigner, T., Fundel, K., Saas, J., Gebhard, P., Haag, J., Weiss, T., Zien, A., Obermayr, F., Zimmer, R., Bartnik, E.

Arthritis and Rheumatism, 54(11):3533-3544, October 2006 (article)

Abstract
Objective. Despite many research efforts in recent decades, the major pathogenetic mechanisms of osteo- arthritis (OA), including gene alterations occurring during OA cartilage degeneration, are poorly under- stood, and there is no disease-modifying treatment approach. The present study was therefore initiated in order to identify differentially expressed disease-related genes and potential therapeutic targets. Methods. This investigation consisted of a large gene expression profiling study performed based on 78 normal and disease samples, using a custom-made complementar y DNA array covering >4,000 genes. Results. Many differentially expressed genes were identified, including the expected up-regulation of ana- bolic and catabolic matrix genes. In particular, the down-regulation of important oxidative defense genes, i.e., the genes for superoxide dismutases 2 and 3 and glutathione peroxidase 3, was prominent. This indicates that continuous oxidative stress to the cells and the matrix is one major underlying pathogenetic mecha- nism in OA. Also, genes that are involved in the phenot ypic stabilit y of cells, a feature that is greatly reduced in OA cartilage, appeared to be suppressed. Conclusion. Our findings provide a reference data set on gene alterations in OA cartilage and, importantly, indicate major mechanisms underlying central cell bio- logic alterations that occur during the OA disease process. These results identify molecular targets that can be further investigated in the search for therapeutic interventions.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Learning Eye Movements

Kienzle, W., Wichmann, F., Schölkopf, B., Franz, M.

Sensory Coding And The Natural Environment, 2006, pages: 1, September 2006 (poster)

Abstract
The human visual system samples images through saccadic eye movements which rapidly change the point of fixation. Although the selection of eye movement targets depends on numerous top-down mechanisms, a number of recent studies have shown that low-level image features such as local contrast or edges play an important role. These studies typically used predefined image features which were afterwards experimentally verified. Here, we follow a complementary approach: instead of testing a set of candidate image features, we infer these hypotheses from the data, using methods from statistical learning. To this end, we train a non-linear classifier on fixated vs. randomly selected image patches without making any physiological assumptions. The resulting classifier can be essentially characterized by a nonlinear combination of two center-surround receptive fields. We find that the prediction performance of this simple model on our eye movement data is indistinguishable from the physiologically motivated model of Itti & Koch (2000) which is far more complex. In particular, we obtain a comparable performance without using any multi-scale representations, long-range interactions or oriented image features.

ei

Web [BibTex]

Web [BibTex]


no image
Implicit Surface Modelling with a Globally Regularised Basis of Compact Support

Walder, C., Schölkopf, B., Chapelle, O.

Computer Graphics Forum, 25(3):635-644, September 2006 (article)

Abstract
We consider the problem of constructing a globally smooth analytic function that represents a surface implicitly by way of its zero set, given sample points with surface normal vectors. The contributions of the paper include a novel means of regularising multi-scale compactly supported basis functions that leads to the desirable interpolation properties previously only associated with fully supported bases. We also provide a regularisation framework for simpler and more direct treatment of surface normals, along with a corresponding generalisation of the representer theorem lying at the core of kernel-based machine learning methods. We demonstrate the techniques on 3D problems of up to 14 million data points, as well as 4D time series data and four-dimensional interpolation between three-dimensional shapes.

ei

PDF GZIP DOI [BibTex]


no image
An Online Support Vector Machine for Abnormal Events Detection

Davy, M., Desobry, F., Gretton, A., Doncarli, C.

Signal Processing, 86(8):2009-2025, August 2006 (article)

Abstract
The ability to detect online abnormal events in signals is essential in many real-world Signal Processing applications. Previous algorithms require an explicit signal statistical model, and interpret abnormal events as statistical model abrupt changes. Corresponding implementation relies on maximum likelihood or on Bayes estimation theory with generally excellent performance. However, there are numerous cases where a robust and tractable model cannot be obtained, and model-free approaches need to be considered. In this paper, we investigate a machine learning, descriptor-based approach that does not require an explicit descriptors statistical model, based on Support Vector novelty detection. A sequential optimization algorithm is introduced. Theoretical considerations as well as simulations on real signals demonstrate its practical efficiency.

ei

PDF PostScript PDF DOI [BibTex]

PDF PostScript PDF DOI [BibTex]


no image
Integrating Structured Biological data by Kernel Maximum Mean Discrepancy

Borgwardt, K., Gretton, A., Rasch, M., Kriegel, H., Schölkopf, B., Smola, A.

Bioinformatics, 22(4: ISMB 2006 Conference Proceedings):e49-e57, August 2006 (article)

Abstract
Motivation: Many problems in data integration in bioinformatics can be posed as one common question: Are two sets of observations generated by the same distribution? We propose a kernel-based statistical test for this problem, based on the fact that two distributions are different if and only if there exists at least one function having different expectation on the two distributions. Consequently we use the maximum discrepancy between function means as the basis of a test statistic. The Maximum Mean Discrepancy (MMD) can take advantage of the kernel trick, which allows us to apply it not only to vectors, but strings, sequences, graphs, and other common structured data types arising in molecular biology. Results: We study the practical feasibility of an MMD-based test on three central data integration tasks: Testing cross-platform comparability of microarray data, cancer diagnosis, and data-content based schema matching for two different protein function classification schemas. In all of these experiments, including high-dimensional ones, MMD is very accurate in finding samples that were generated from the same distribution, and outperforms its best competitors. Conclusions: We have defined a novel statistical test of whether two samples are from the same distribution, compatible with both multivariate and structured data, that is fast, easy to implement, and works well, as confirmed by our experiments.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Large Scale Transductive SVMs

Collobert, R., Sinz, F., Weston, J., Bottou, L.

Journal of Machine Learning Research, 7, pages: 1687-1712, August 2006 (article)

Abstract
We show how the Concave-Convex Procedure can be applied to the optimization of Transductive SVMs, which traditionally requires solving a combinatorial search problem. This provides for the first time a highly scalable algorithm in the nonlinear case. Detailed experiments verify the utility of our approach.

ei

PostScript PDF PDF [BibTex]

PostScript PDF PDF [BibTex]


no image
Building Support Vector Machines with Reduced Classifier Complexity

Keerthi, S., Chapelle, O., DeCoste, D.

Journal of Machine Learning Research, 7, pages: 1493-1515, July 2006 (article)

Abstract
Support vector machines (SVMs), though accurate, are not preferred in applications requiring great classification speed, due to the number of support vectors being large. To overcome this problem we devise a primal method with the following properties: (1) it decouples the idea of basis functions from the concept of support vectors; (2) it greedily finds a set of kernel basis functions of a specified maximum size ($dmax$) to approximate the SVM primal cost function well; (3) it is efficient and roughly scales as $O(ndmax^2)$ where $n$ is the number of training examples; and, (4) the number of basis functions it requires to achieve an accuracy close to the SVM accuracy is usually far less than the number of SVM support vectors.

ei

PDF [BibTex]

PDF [BibTex]


no image
ARTS: Accurate Recognition of Transcription Starts in Human

Sonnenburg, S., Zien, A., Rätsch, G.

Bioinformatics, 22(14):e472-e480, July 2006 (article)

Abstract
Motivation: One of the most important features of genomic DNA are the protein-coding genes. While it is of great value to identify those genes and the encoded proteins, it is also crucial to understand how their transcription is regulated. To this end one has to identify the corresponding promoters and the contained transcription factor binding sites. TSS finders can be used to locate potential promoters. They may also be used in combination with other signal and content detectors to resolve entire gene structures. Results: We have developed a novel kernel based method - called ARTS - that accurately recognizes transcription start sites in human. The application of otherwise too computationally expensive Support Vector Machines was made possible due to the use of efficient training and evaluation techniques using suffix tries. In a carefully designed experimental study, we compare our TSS finder to state-of-the-art methods from the literature: McPromoter, Eponine and FirstEF. For given false positive rates within a reasonable range, we consistently achieve considerably higher true positive rates. For instance, ARTS finds about 24% true positives at a false positive rate of 1/1000, where the other methods find less than half (10.5%). Availability: Datasets, model selection results, whole genome predictions, and additional experimental results are available at http://www.fml.tuebingen.mpg.de/raetsch/projects/arts

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Large Scale Multiple Kernel Learning

Sonnenburg, S., Rätsch, G., Schäfer, C., Schölkopf, B.

Journal of Machine Learning Research, 7, pages: 1531-1565, July 2006 (article)

Abstract
While classical kernel-based learning algorithms are based on a single kernel, in practice it is often desirable to use multiple kernels. Lanckriet et al. (2004) considered conic combinations of kernel matrices for classification, leading to a convex quadratically constrained quadratic program. We show that it can be rewritten as a semi-infinite linear program that can be efficiently solved by recycling the standard SVM implementations. Moreover, we generalize the formulation and our method to a larger class of problems, including regression and one-class classification. Experimental results show that the proposed algorithm works for hundred thousands of examples or hundreds of kernels to be combined, and helps for automatic model selection, improving the interpretability of the learning result. In a second part we discuss general speed up mechanism for SVMs, especially when used with sparse feature maps as appear for string kernels, allowing us to train a string kernel SVM on a 10 million real-world splice data set from computational biology. We integrated multiple kernel learning in our machine learning toolbox SHOGUN for which the source code is publicly available at http://www.fml.tuebingen.mpg.de/raetsch/projects/shogun.

ei

PDF [BibTex]

PDF [BibTex]


no image
Factorial coding of natural images: how effective are linear models in removing higher-order dependencies?

Bethge, M.

Journal of the Optical Society of America A, 23(6):1253-1268, June 2006 (article)

Abstract
The performance of unsupervised learning models for natural images is evaluated quantitatively by means of information theory. We estimate the gain in statistical independence (the multi-information reduction) achieved with independent component analysis (ICA), principal component analysis (PCA), zero-phase whitening, and predictive coding. Predictive coding is translated into the transform coding framework, where it can be characterized by the constraint of a triangular filter matrix. A randomly sampled whitening basis and the Haar wavelet are included into the comparison as well. The comparison of all these methods is carried out for different patch sizes, ranging from 2x2 to 16x16 pixels. In spite of large differences in the shape of the basis functions, we find only small differences in the multi-information between all decorrelation transforms (5% or less) for all patch sizes. Among the second-order methods, PCA is optimal for small patch sizes and predictive coding performs best for large patch sizes. The extra gain achieved with ICA is always less than 2%. In conclusion, the `edge filters‘ found with ICA lead only to a surprisingly small improvement in terms of its actual objective.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Classification of natural scenes: Critical features revisited

Drewes, J., Wichmann, F., Gegenfurtner, K.

Journal of Vision, 6(6):561, 6th Annual Meeting of the Vision Sciences Society (VSS), June 2006 (poster)

Abstract
Human observers are capable of detecting animals within novel natural scenes with remarkable speed and accuracy. Despite the seeming complexity of such decisions it has been hypothesized that a simple global image feature, the relative abundance of high spatial frequencies at certain orientations, could underly such fast image classification (A. Torralba & A. Oliva, Network: Comput. Neural Syst., 2003). We successfully used linear discriminant analysis to classify a set of 11.000 images into “animal” and “non-animal” images based on their individual amplitude spectra only (Drewes, Wichmann, Gegenfurtner VSS 2005). We proceeded to sort the images based on the performance of our classifier, retaining only the best and worst classified 400 images (“best animals”, “best distractors” and “worst animals”, “worst distractors”). We used a Go/No-go paradigm to evaluate human performance on this subset of our images. Both reaction time and proportion of correctly classified images showed a significant effect of classification difficulty. Images more easily classified by our algorithm were also classified faster and better by humans, as predicted by the Torralba & Oliva hypothesis. We then equated the amplitude spectra of the 400 images, which, by design, reduced algorithmic performance to chance whereas human performance was only slightly reduced (cf. Wichmann, Rosas, Gegenfurtner, VSS 2005). Most importantly, the same images as before were still classified better and faster, suggesting that even in the original condition features other than specifics of the amplitude spectrum made particular images easy to classify, clearly at odds with the Torralba & Oliva hypothesis.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
The pedestal effect is caused by off-frequency looking, not nonlinear transduction or contrast gain-control

Wichmann, F., Henning, B.

Journal of Vision, 6(6):194, 6th Annual Meeting of the Vision Sciences Society (VSS), June 2006 (poster)

Abstract
The pedestal or dipper effect is the large improvement in the detectabilty of a sinusoidal grating observed when the signal is added to a pedestal or masking grating having the signal‘s spatial frequency, orientation, and phase. The effect is largest with pedestal contrasts just above the ‘threshold‘ in the absence of a pedestal. We measured the pedestal effect in both broadband and notched masking noise---noise from which a 1.5- octave band centered on the signal and pedestal frequency had been removed. The pedestal effect persists in broadband noise, but almost disappears with notched noise. The spatial-frequency components of the notched noise that lie above and below the spatial frequency of the signal and pedestal prevent the use of information about changes in contrast carried in channels tuned to spatial frequencies that are very much different from that of the signal and pedestal. We conclude that the pedestal effect in the absence of notched noise results principally from the use of information derived from channels with peak sensitivities at spatial frequencies that are different from that of the signal and pedestal. Thus the pedestal or dipper effect is not a characteristic of individual spatial-frequency tuned channels.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Classifying EEG and ECoG Signals without Subject Training for Fast BCI Implementation: Comparison of Non-Paralysed and Completely Paralysed Subjects

Hill, N., Lal, T., Schröder, M., Hinterberger, T., Wilhelm, B., Nijboer, F., Mochty, U., Widman, G., Elger, C., Schölkopf, B., Kübler, A., Birbaumer, N.

IEEE Transactions on Neural Systems and Rehabilitation Engineering, 14(2):183-186, June 2006 (article)

Abstract
We summarize results from a series of related studies that aim to develop a motor-imagery-based brain-computer interface using a single recording session of EEG or ECoG signals for each subject. We apply the same experimental and analytical methods to 11 non-paralysed subjects (8 EEG, 3 ECoG), and to 5 paralysed subjects (4 EEG, 1 ECoG) who had been unable to communicate for some time. While it was relatively easy to obtain classifiable signals quickly from most of the non-paralysed subjects, it proved impossible to classify the signals obtained from the paralysed patients by the same methods. This highlights the fact that though certain BCI paradigms may work well with healthy subjects, this does not necessarily indicate success with the target user group. We outline possible reasons for this failure to transfer.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
SCARNA: Fast and Accurate Structural Alignment of RNA Sequences by Matching Fixed-Length Stem Fragments

Tabei, Y., Tsuda, K., Kin, T., Asai, K.

Bioinformatics, 22(14):1723-1729, May 2006 (article)

Abstract
The functions of non-coding RNAs are strongly related to their secondary structures, but it is known that a secondary structure prediction of a single sequence is not reliable. Therefore, we have to collect similar RNA sequences with a common secondary structure for the analyses of a new non-coding RNA without knowing the exact secondary structure itself. Therefore, the sequence comparison in searching similar RNAs should consider not only their sequence similarities but their potential secondary structures. Sankoff‘s algorithm predicts the common secondary structures of the sequences, but it is computationally too expensive to apply to large-scale analyses. Because we often want to compare a large number of cDNA sequences or to search similar RNAs in the whole genome sequences, much faster algorithms are required. We propose a new method of comparing RNA sequences based on the structural alignments of the fixed-length fragments of the stem candidates. The implemented software, SCARNA (Stem Candidate Aligner for RNAs), is fast enough to apply to the long sequences in the large-scale analyses. The accuracy of the alignments is better or comparable to the much slower existing algorithms.

ei

PDF Web DOI [BibTex]


no image
The Effect of Artifacts on Dependence Measurement in fMRI

Gretton, A., Belitski, A., Murayama, Y., Schölkopf, B., Logothetis, N.

Magnetic Resonance Imaging, 24(4):401-409, April 2006 (article)

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Phase noise and the classification of natural images

Wichmann, F., Braun, D., Gegenfurtner, K.

Vision Research, 46(8-9):1520-1529, April 2006 (article)

Abstract
We measured the effect of global phase manipulations on a rapid animal categorization task. The Fourier spectra of our images of natural scenes were manipulated by adding zero-mean random phase noise at all spatial frequencies. The phase noise was the independent variable, uniformly and symmetrically distributed between 0 degree and ±180 degrees. Subjects were remarkably resistant to phase noise. Even with ±120 degree phase noise subjects were still performing at 75% correct. The high resistance of the subjects’ animal categorization rate to phase noise suggests that the visual system is highly robust to such random image changes. The proportion of correct answers closely followed the correlation between original and the phase noise-distorted images. Animal detection rate was higher when the same task was performed with contrast reduced versions of the same natural images, at contrasts where the contrast reduction mimicked that resulting from our phase randomization. Since the subjects’ categorization rate was better in the contrast experiment, reduction of local contrast alone cannot explain the performance in the phase noise experiment. This result obtained with natural images differs from those obtained for simple sinusoidal stimuli were performance changes due to phase changes are attributed to local contrast changes only. Thus the global phasechange accompanying disruption of image structure such as edges and object boundaries at different spatial scales reduces object classification over and above the performance deficit resulting from reducing contrast. Additional colour information improves the categorization performance by 2 %.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
A Direct Method for Building Sparse Kernel Learning Algorithms

Wu, M., Schölkopf, B., BakIr, G.

Journal of Machine Learning Research, 7, pages: 603-624, April 2006 (article)

Abstract
Many Kernel Learning Algorithms(KLA), including Support Vector Machine (SVM), result in a Kernel Machine (KM), such as a kernel classifier, whose key component is a weight vector in a feature space implicitly introduced by a positive definite kernel function. This weight vector is usually obtained by solving a convex optimization problem. Based on this fact we present a direct method to build Sparse Kernel Learning Algorithms (SKLA) by adding one more constraint to the original convex optimization problem, such that the sparseness of the resulting KM is explicitly controlled while at the same time the performance of the resulting KM can be kept as high as possible. A gradient based approach is provided to solve this modified optimization problem. Applying this method to the SVM results in a concrete algorithm for building Sparse Large Margin Classifiers (SLMC). Further analysis of the SLMC algorithm indicates that it essentially finds a discriminating subspace that can be spanned by a small number of vectors, and in this subspace, the different classes of data are linearly well separated. Experimental results over several classification benchmarks demonstrate the effectiveness of our approach.

ei

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
The Pedestal Effect is Caused by Off-Frequency Looking, not Nonlinear Transduction or Contrast Gain-Control

Wichmann, F., Henning, G.

9, pages: 174, 9th T{\"u}bingen Perception Conference (TWK), March 2006 (poster)

Abstract
The pedestal or dipper effect is the large improvement in the detectability of a sinusoidal grating observed when the signal is added to a pedestal or masking grating having the signal‘s spatial frequency, orientation, and phase. The effect is largest with pedestal contrasts just above the ‘threshold’ in the absence of a pedestal. We measured the pedestal effect in both broadband and notched masking noise---noise from which a 1.5-octave band centered on the signal and pedestal frequency had been removed. The pedestal effect persists in broadband noise, but almost disappears with notched noise. The spatial-frequency components of the notched noise that lie above and below the spatial frequency of the signal and pedestal prevent the use of information about changes in contrast carried in channels tuned to spatial frequencies that are very much different from that of the signal and pedestal. We conclude that the pedestal effect in the absence of notched noise results principally from the use of information derived from channels with peak sensitivities at spatial frequencies that are different from that of the signal and pedestal. Thus the pedestal or dipper effect is not a characteristic of individual spatial-frequency tuned channels.

ei

Web [BibTex]

Web [BibTex]


no image
Statistical Properties of Kernel Principal Component Analysis

Blanchard, G., Bousquet, O., Zwald, L.

Machine Learning, 66(2-3):259-294, March 2006 (article)

Abstract
We study the properties of the eigenvalues of Gram matrices in a non-asymptotic setting. Using local Rademacher averages, we provide data-dependent and tight bounds for their convergence towards eigenvalues of the corresponding kernel operator. We perform these computations in a functional analytic framework which allows to deal implicitly with reproducing kernel Hilbert spaces of infinite dimension. This can have applications to various kernel algorithms, such as Support Vector Machines (SVM). We focus on Kernel Principal Component Analysis (KPCA) and, using such techniques, we obtain sharp excess risk bounds for the reconstruction error. In these bounds, the dependence on the decay of the spectrum and on the closeness of successive eigenvalues is made explicit.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Network-based de-noising improves prediction from microarray data

Kato, T., Murata, Y., Miura, K., Asai, K., Horton, P., Tsuda, K., Fujibuchi, W.

BMC Bioinformatics, 7(Suppl. 1):S4-S4, March 2006 (article)

Abstract
Prediction of human cell response to anti-cancer drugs (compounds) from microarray data is a challenging problem, due to the noise properties of microarrays as well as the high variance of living cell responses to drugs. Hence there is a strong need for more practical and robust methods than standard methods for real-value prediction. We devised an extended version of the off-subspace noise-reduction (de-noising) method to incorporate heterogeneous network data such as sequence similarity or protein-protein interactions into a single framework. Using that method, we first de-noise the gene expression data for training and test data and also the drug-response data for training data. Then we predict the unknown responses of each drug from the de-noised input data. For ascertaining whether de-noising improves prediction or not, we carry out 12-fold cross-validation for assessment of the prediction performance. We use the Pearson‘s correlation coefficient between the true and predicted respon se values as the prediction performance. De-noising improves the prediction performance for 65% of drugs. Furthermore, we found that this noise reduction method is robust and effective even when a large amount of artificial noise is added to the input data. We found that our extended off-subspace noise-reduction method combining heterogeneous biological data is successful and quite useful to improve prediction of human cell cancer drug responses from microarray data.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Classification of Natural Scenes: Critical Features Revisited

Drewes, J., Wichmann, F., Gegenfurtner, K.

9, pages: 92, 9th T{\"u}bingen Perception Conference (TWK), March 2006 (poster)

Abstract
Human observers are capable of detecting animals within novel natural scenes with remarkable speed and accuracy. Despite the seeming complexity of such decisions it has been hypothesized that a simple global image feature, the relative abundance of high spatial frequencies at certain orientations, could underly such fast image classification [1]. We successfully used linear discriminant analysis to classify a set of 11.000 images into “animal” and “non-animal” images based on their individual amplitude spectra only [2]. We proceeded to sort the images based on the performance of our classifier, retaining only the best and worst classified 400 images ("best animals", "best distractors" and "worst animals", "worst distractors"). We used a Go/No-go paradigm to evaluate human performance on this subset of our images. Both reaction time and proportion of correctly classified images showed a significant effect of classification difficulty. Images more easily classified by our algorithm were also classified faster and better by humans, as predicted by the Torralba & Oliva hypothesis. We then equated the amplitude spectra of the 400 images, which, by design, reduced algorithmic performance to chance whereas human performance was only slightly reduced [3]. Most importantly, the same images as before were still classified better and faster, suggesting that even in the original condition features other than specifics of the amplitude spectrum made particular images easy to classify, clearly at odds with the Torralba & Oliva hypothesis.

ei

Web [BibTex]

Web [BibTex]


no image
Factorial Coding of Natural Images: How Effective are Linear Models in Removing Higher-Order Dependencies?

Bethge, M.

9, pages: 90, 9th T{\"u}bingen Perception Conference (TWK), March 2006 (poster)

Abstract
The performance of unsupervised learning models for natural images is evaluated quantitatively by means of information theory. We estimate the gain in statistical independence (the multi-information reduction) achieved with independent component analysis (ICA), principal component analysis (PCA), zero-phase whitening, and predictive coding. Predictive coding is translated into the transform coding framework, where it can be characterized by the constraint of a triangular filter matrix. A randomly sampled whitening basis and the Haar wavelet are included into the comparison as well. The comparison of all these methods is carried out for different patch sizes, ranging from 2x2 to 16x16 pixels. In spite of large differences in the shape of the basis functions, we find only small differences in the multi-information between all decorrelation transforms (5% or less) for all patch sizes. Among the second-order methods, PCA is optimal for small patch sizes and predictive coding performs best for large patch sizes. The extra gain achieved with ICA is always less than 2%. In conclusion, the `edge filters‘ found with ICA lead only to a surprisingly small improvement in terms of its actual objective.

ei

Web [BibTex]

Web [BibTex]


no image
Model-based Design Analysis and Yield Optimization

Pfingsten, T., Herrmann, D., Rasmussen, C.

IEEE Transactions on Semiconductor Manufacturing, 19(4):475-486, February 2006 (article)

Abstract
Fluctuations are inherent to any fabrication process. Integrated circuits and micro-electro-mechanical systems are particularly affected by these variations, and due to high quality requirements the effect on the devices’ performance has to be understood quantitatively. In recent years it has become possible to model the performance of such complex systems on the basis of design specifications, and model-based Sensitivity Analysis has made its way into industrial engineering. We show how an efficient Bayesian approach, using a Gaussian process prior, can replace the commonly used brute-force Monte Carlo scheme, making it possible to apply the analysis to computationally costly models. We introduce a number of global, statistically justified sensitivity measures for design analysis and optimization. Two models of integrated systems serve us as case studies to introduce the analysis and to assess its convergence properties. We show that the Bayesian Monte Carlo scheme can save costly simulation runs and can ensure a reliable accuracy of the analysis.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]