Header logo is


2011


no image
Restricted boltzmann machines as useful tool for detecting oscillatory eeg components

Balderas, D., Zander, TO., Bachl, F., Neuper, C., Scherer, R.

In Proceedings of the 5th International Brain–Computer Interface Conference, pages: 68-71, (Editors: GR Müller-Putz and R Scherer and M Billinger and A Kkreilinger and V Kaiser and C Neuper), Graz: Verlag der Technischen Universität, 2011 (inproceedings)

ei

[BibTex]

2011


[BibTex]


no image
Hierarchical Multitask Structured Output Learning for Large-scale Sequence Segmentation

Görnitz, N., Widmer, C., Zeller, G., Kahles, A., Sonnenburg, S., Rätsch, G.

In Advances in Neural Information Processing Systems 24, pages: 2690-2698, (Editors: J Shawe-Taylor and RS Zemel and P Bartlett and FCN Pereira and KQ Weinberger), Curran Associates, Inc., Red Hook, NY, USA, Twenty-Fifth Annual Conference on Neural Information Processing Systems (NIPS), 2011 (inproceedings)

ei

PDF [BibTex]

PDF [BibTex]


no image
Phase transition in the family of p-resistances

Alamgir, M., von Luxburg, U.

In Advances in Neural Information Processing Systems 24, pages: 379-387, (Editors: J Shawe-Taylor and RS Zemel and P Bartlett and F Pereira and KQ Weinberger), Twenty-Fifth Annual Conference on Neural Information Processing Systems (NIPS), 2011 (inproceedings)

Abstract
We study the family of p-resistances on graphs for p ≥ 1. This family generalizes the standard resistance distance. We prove that for any fixed graph, for p=1, the p-resistance coincides with the shortest path distance, for p=2 it coincides with the standard resistance distance, and for p → ∞ it converges to the inverse of the minimal s-t-cut in the graph. Secondly, we consider the special case of random geometric graphs (such as k-nearest neighbor graphs) when the number n of vertices in the graph tends to infinity. We prove that an interesting phase-transition takes place. There exist two critical thresholds p^* and p^** such that if p < p^*, then the p-resistance depends on meaningful global properties of the graph, whereas if p > p^**, it only depends on trivial local quantities and does not convey any useful information. We can explicitly compute the critical values: p^* = 1 + 1/(d-1) and p^** = 1 + 1/(d-2) where d is the dimension of the underlying space (we believe that the fact that there is a small gap between p^* and p^** is an artifact of our proofs. We also relate our findings to Laplacian regularization and suggest to use q-Laplacians as regularizers, where q satisfies 1/p^* + 1/q = 1.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
On Fast Approximate Submodular Minimization

Jegelka, S., Lin, H., Bilmes, J.

In Advances in Neural Information Processing Systems 24, pages: 460-468, (Editors: J Shawe-Taylor and RS Zemel and P Bartlett and F Pereira and KQ Weinberger), Twenty-Fifth Annual Conference on Neural Information Processing Systems (NIPS), 2011 (inproceedings)

Abstract
We are motivated by an application to extract a representative subset of machine learning training data and by the poor empirical performance we observe of the popular minimum norm algorithm. In fact, for our application, minimum norm can have a running time of about O(n7) (O(n5) oracle calls). We therefore propose a fast approximate method to minimize arbitrary submodular functions. For a large sub-class of submodular functions, the algorithm is exact. Other submodular functions are iteratively approximated by tight submodular upper bounds, and then repeatedly optimized. We show theoretical properties, and empirical results suggest significant speedups over minimum norm while retaining higher accuracies.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
PAC-Bayesian Analysis of Contextual Bandits

Seldin, Y., Auer, P., Laviolette, F., Shawe-Taylor, J., Ortner, R.

In Advances in Neural Information Processing Systems 24, pages: 1683-1691, (Editors: J Shawe-Taylor and RS Zemel and P Bartlett and F Pereira and KQ Weinberger), Twenty-Fifth Annual Conference on Neural Information Processing Systems (NIPS), 2011 (inproceedings)

Abstract
We derive an instantaneous (per-round) data-dependent regret bound for stochastic multiarmed bandits with side information (also known as contextual bandits). The scaling of our regret bound with the number of states (contexts) $N$ goes as $\sqrt{N I_{\rho_t}(S;A)}$, where $I_{\rho_t}(S;A)$ is the mutual information between states and actions (the side information) used by the algorithm at round $t$. If the algorithm uses all the side information, the regret bound scales as $\sqrt{N \ln K}$, where $K$ is the number of actions (arms). However, if the side information $I_{\rho_t}(S;A)$ is not fully used, the regret bound is significantly tighter. In the extreme case, when $I_{\rho_t}(S;A) = 0$, the dependence on the number of states reduces from linear to logarithmic. Our analysis allows to provide the algorithm large amount of side information, let the algorithm to decide which side information is relevant for the task, and penalize the algorithm only for the side information that it is using de facto. We also present an algorithm for multiarmed bandits with side information with computational complexity that is a linear in the number of actions.

ei

PDF PDF Web [BibTex]

PDF PDF Web [BibTex]


no image
Fast projections onto L1,q-norm balls for grouped feature selection

Sra, S.

In Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2011, LNCS vol 6913, Part III, pages: 305-317, (Editors: D Gunopulos and T Hofmann and D Malerba and M Vazirgiannis), Springer, 22th European Conference on Machine Learning (ECML), 2011 (inproceedings)

ei

DOI [BibTex]

DOI [BibTex]


no image
Model Learning in Robot Control

Nguyen-Tuong, D.

Albert-Ludwigs-Universität Freiburg, Germany, 2011 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Kernel Belief Propagation

Song, L., Gretton, A., Bickson, D., Low, Y., Guestrin, C.

In Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, Vol. 15, pages: 707-715, (Editors: G Gordon and D Dunson and M Dudík), JMLR, AISTATS, 2011 (inproceedings)

ei

PDF [BibTex]

PDF [BibTex]


no image
On Causal Discovery with Cyclic Additive Noise Models

Mooij, J., Janzing, D., Schölkopf, B., Heskes, T.

In Advances in Neural Information Processing Systems 24, pages: 639-647, (Editors: J Shawe-Taylor and RS Zemel and PL Bartlett and FCN Pereira and KQ Weinberger), Curran Associates, Inc., Red Hook, NY, USA, Twenty-Fifth Annual Conference on Neural Information Processing Systems (NIPS), 2011 (inproceedings)

Abstract
We study a particular class of cyclic causal models, where each variable is a (possibly nonlinear) function of its parents and additive noise. We prove that the causal graph of such models is generically identifiable in the bivariate, Gaussian-noise case. We also propose a method to learn such models from observational data. In the acyclic case, the method reduces to ordinary regression, but in the more challenging cyclic case, an additional term arises in the loss function, which makes it a special case of nonlinear independent component analysis. We illustrate the proposed method on synthetic data.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Additive Gaussian Processes

Duvenaud, D., Nickisch, H., Rasmussen, C.

In Advances in Neural Information Processing Systems 24, pages: 226-234, (Editors: J Shawe-Taylor and RS Zemel and P Bartlett and F Pereira and KQ Weinberger), Twenty-Fifth Annual Conference on Neural Information Processing Systems (NIPS), 2011 (inproceedings)

Abstract
We introduce a Gaussian process model of functions which are additive. An additive function is one which decomposes into a sum of low-dimensional functions, each depending on only a subset of the input variables. Additive GPs generalize both Generalized Additive Models, and the standard GP models which use squared-exponential kernels. Hyperparameter learning in this model can be seen as Bayesian Hierarchical Kernel Learning (HKL). We introduce an expressive but tractable parameterization of the kernel function, which allows efficient evaluation of all input interaction terms, whose number is exponential in the input dimension. The additional structure discoverable by this model results in increased interpretability, as well as state-of-the-art predictive power in regression tasks.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
k-NN Regression Adapts to Local Intrinsic Dimension

Kpotufe, S.

In Advances in Neural Information Processing Systems 24, pages: 729-737, (Editors: J Shawe-Taylor and RS Zemel and P Bartlett and F Pereira and KQ Weinberger), Twenty-Fifth Annual Conference on Neural Information Processing Systems (NIPS), 2011 (inproceedings)

Abstract
Many nonparametric regressors were recently shown to converge at rates that depend only on the intrinsic dimension of data. These regressors thus escape the curse of dimension when high-dimensional data has low intrinsic dimension (e.g. a manifold). We show that k-NN regression is also adaptive to intrinsic dimension. In particular our rates are local to a query x and depend only on the way masses of balls centered at x vary with radius. Furthermore, we show a simple way to choose k = k(x) locally at any x so as to nearly achieve the minimax rate at x in terms of the unknown intrinsic dimension in the vicinity of x. We also establish that the minimax rate does not depend on a particular choice of metric space or distribution, but rather that this minimax rate holds for any metric space and doubling measure.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Fast Newton-type Methods for Total-Variation with Applications

Barbero, A., Sra, S.

In Proceedings of the 28th International Conference on Machine Learning, ICML 2011, pages: 313-320, (Editors: L Getoor and T Scheffer), Omnipress, 28th International Conference on Machine Learning (ICML), 2011 (inproceedings)

ei

[BibTex]

[BibTex]


no image
Parallel Gibbs Sampling: From Colored Fields to Thin Junction Trees

Gonzalez, J., Low, Y., Gretton, A., Guestrin, C.

In Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, Vol. 15, pages: 324-332, (Editors: G Gordon and D Dunson and M Dudík), JMLR, AISTATS, 2011 (inproceedings)

ei

PDF [BibTex]

PDF [BibTex]


no image
Transfer Learning with Copulas

Lopez-Paz, D., Hernandez-Lobato, J.

Neural Information Processing Systems (NIPS), 2011 (poster)

ei

PDF [BibTex]

PDF [BibTex]


Thumb xl problem
Recovering Intrinsic Images with a Global Sparsity Prior on Reflectance

Gehler, P., Rother, C., Kiefel, M., Zhang, L., Schölkopf, B.

In Advances in Neural Information Processing Systems 24, pages: 765-773, (Editors: Shawe-Taylor, John and Zemel, Richard S. and Bartlett, Peter L. and Pereira, Fernando C. N. and Weinberger, Kilian Q.), Curran Associates, Inc., Red Hook, NY, USA, Twenty-Fifth Annual Conference on Neural Information Processing Systems (NIPS), 2011 (inproceedings)

Abstract
We address the challenging task of decoupling material properties from lighting properties given a single image. In the last two decades virtually all works have concentrated on exploiting edge information to address this problem. We take a different route by introducing a new prior on reflectance, that models reflectance values as being drawn from a sparse set of basis colors. This results in a Random Field model with global, latent variables (basis colors) and pixel-accurate output reflectance values. We show that without edge information high-quality results can be achieved, that are on par with methods exploiting this source of information. Finally, we are able to improve on state-of-the-art results by integrating edge information into our model. We believe that our new approach is an excellent starting point for future developments in this field.

ei ps

website + code pdf poster Project Page Project Page [BibTex]

website + code pdf poster Project Page Project Page [BibTex]

2010


no image
Computationally efficient algorithms for statistical image processing: Implementation in R

Langovoy, M., Wittich, O.

(2010-053), EURANDOM, Technische Universiteit Eindhoven, December 2010 (techreport)

Abstract
In the series of our earlier papers on the subject, we proposed a novel statistical hy- pothesis testing method for detection of objects in noisy images. The method uses results from percolation theory and random graph theory. We developed algorithms that allowed to detect objects of unknown shapes in the presence of nonparametric noise of unknown level and of un- known distribution. No boundary shape constraints were imposed on the objects, only a weak bulk condition for the object's interior was required. Our algorithms have linear complexity and exponential accuracy. In the present paper, we describe an implementation of our nonparametric hypothesis testing method. We provide a program that can be used for statistical experiments in image processing. This program is written in the statistical programming language R.

ei

PDF [BibTex]

2010


PDF [BibTex]


no image
Learning Table Tennis with a Mixture of Motor Primitives

Mülling, K., Kober, J., Peters, J.

In Proceedings of the 10th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2010), pages: 411-416, IEEE, Piscataway, NJ, USA, 10th IEEE-RAS International Conference on Humanoid Robots (Humanoids), December 2010 (inproceedings)

Abstract
Table tennis is a sufficiently complex motor task for studying complete skill learning systems. It consists of several elementary motions and requires fast movements, accurate control, and online adaptation. To represent the elementary movements needed for robot table tennis, we rely on dynamic systems motor primitives (DMP). While such DMPs have been successfully used for learning a variety of simple motor tasks, they only represent single elementary actions. In order to select and generalize among different striking movements, we present a new approach, called Mixture of Motor Primitives that uses a gating network to activate appropriate motor primitives. The resulting policy enables us to select among the appropriate motor primitives as well as to generalize between them. In order to obtain a fully learned robot table tennis setup, we also address the problem of predicting the necessary context information, i.e., the hitting point in time and space where we want to hit the ball. We show that the resulting setup was capable of playing rudimentary table tennis using an anthropomorphic robot arm.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Similarities in resting state and feature-driven activity: Non-parametric evaluation of human fMRI

Shelton, J., Blaschko, M., Gretton, A., Müller, J., Fischer, E., Bartels, A.

NIPS Workshop on Learning and Planning from Batch Time Series Data, December 2010 (poster)

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Fast Convergent Algorithms for Expectation Propagation Approximate Bayesian Inference

Seeger, M., Nickisch, H.

Max Planck Institute for Biological Cybernetics, December 2010 (techreport)

Abstract
We propose a novel algorithm to solve the expectation propagation relaxation of Bayesian inference for continuous-variable graphical models. In contrast to most previous algorithms, our method is provably convergent. By marrying convergent EP ideas from (Opper&amp;Winther 05) with covariance decoupling techniques (Wipf&amp;Nagarajan 08, Nickisch&amp;Seeger 09), it runs at least an order of magnitude faster than the most commonly used EP solver.

ei

Web [BibTex]

Web [BibTex]


no image
Learning an interactive segmentation system

Nickisch, H., Rother, C., Kohli, P., Rhemann, C.

In Proceedings of the Seventh Indian Conference on Computer Vision, Graphics and Image Processing (ICVGIP 2010), pages: 274-281, (Editors: Chellapa, R. , P. Anandan, A. N. Rajagopalan, P. J. Narayanan, P. Torr), ACM Press, Nw York, NY, USA, Seventh Indian Conference on Computer Vision, Graphics and Image Processing (ICVGIP), December 2010 (inproceedings)

Abstract
Many successful applications of computer vision to image or video manipulation are interactive by nature. However, parameters of such systems are often trained neglecting the user. Traditionally, interactive systems have been treated in the same manner as their fully automatic counterparts. Their performance is evaluated by computing the accuracy of their solutions under some fixed set of user interactions. This paper proposes a new evaluation and learning method which brings the user in the loop. It is based on the use of an active robot user -- a simulated model of a human user. We show how this approach can be used to evaluate and learn parameters of state-of-the-art interactive segmentation systems. We also show how simulated user models can be integrated into the popular max-margin method for parameter learning and propose an algorithm to solve the resulting optimisation problem.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Using an Infinite Von Mises-Fisher Mixture Model to Cluster Treatment Beam Directions in External Radiation Therapy

Bangert, M., Hennig, P., Oelfke, U.

In pages: 746-751 , (Editors: Draghici, S. , T.M. Khoshgoftaar, V. Palade, W. Pedrycz, M.A. Wani, X. Zhu), IEEE, Piscataway, NJ, USA, Ninth International Conference on Machine Learning and Applications (ICMLA), December 2010 (inproceedings)

Abstract
We present a method for fully automated selection of treatment beam ensembles for external radiation therapy. We reformulate the beam angle selection problem as a clustering problem of locally ideal beam orientations distributed on the unit sphere. For this purpose we construct an infinite mixture of von Mises-Fisher distributions, which is suited in general for density estimation from data on the D-dimensional sphere. Using a nonparametric Dirichlet process prior, our model infers probability distributions over both the number of clusters and their parameter values. We describe an efficient Markov chain Monte Carlo inference algorithm for posterior inference from experimental data in this model. The performance of the suggested beam angle selection framework is illustrated for one intra-cranial, pancreas, and prostate case each. The infinite von Mises-Fisher mixture model (iMFMM) creates between 18 and 32 clusters, depending on the patient anatomy. This suggests to use the iMFMM directly for beam ensemble selection in robotic radio surgery, or to generate low-dimensional input for both subsequent optimization of trajectories for arc therapy and beam ensemble selection for conventional radiation therapy.

ei pn

Web DOI [BibTex]

Web DOI [BibTex]


no image
Markerless tracking of Dynamic 3D Scans of Faces

Walder, C., Breidt, M., Bülthoff, H., Schölkopf, B., Curio, C.

In Dynamic Faces: Insights from Experiments and Computation, pages: 255-276, (Editors: Curio, C., Bülthoff, H. H. and Giese, M. A.), MIT Press, Cambridge, MA, USA, December 2010 (inbook)

ei

Web [BibTex]

Web [BibTex]


no image
Causal relationships between frequency bands of extracellular signals in visual cortex revealed by an information theoretic analysis

Besserve, M., Schölkopf, B., Logothetis, N., Panzeri, S.

Journal of Computational Neuroscience, 29(3):547-566, December 2010 (article)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Tackling Box-Constrained Optimization via a New Projected Quasi-Newton Approach

Kim, D., Sra, S., Dhillon, I.

SIAM Journal on Scientific Computing, 32(6):3548-3563 , December 2010 (article)

Abstract
Numerous scientific applications across a variety of fields depend on box-constrained convex optimization. Box-constrained problems therefore continue to attract research interest. We address box-constrained (strictly convex) problems by deriving two new quasi-Newton algorithms. Our algorithms are positioned between the projected-gradient [J. B. Rosen, J. SIAM, 8 (1960), pp. 181–217] and projected-Newton [D. P. Bertsekas, SIAM J. Control Optim., 20 (1982), pp. 221–246] methods. We also prove their convergence under a simple Armijo step-size rule. We provide experimental results for two particular box-constrained problems: nonnegative least squares (NNLS), and nonnegative Kullback–Leibler (NNKL) minimization. For both NNLS and NNKL our algorithms perform competitively as compared to well-established methods on medium-sized problems; for larger problems our approach frequently outperforms the competition.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Algorithmen zum Automatischen Erlernen von Motorfähigkeiten

Peters, J., Kober, J., Schaal, S.

at - Automatisierungstechnik, 58(12):688-694, December 2010 (article)

Abstract
Robot learning methods which allow autonomous robots to adapt to novel situations have been a long standing vision of robotics, artificial intelligence, and cognitive sciences. However, to date, learning techniques have yet to fulfill this promise as only few methods manage to scale into the high-dimensional domains of manipulator robotics, or even the new upcoming trend of humanoid robotics. If possible, scaling was usually only achieved in precisely pre-structured domains. In this paper, we investigate the ingredients for a general approach policy learning with the goal of an application to motor skill refinement in order to get one step closer towards human-like performance. For doing so, we study two major components for such an approach, i. e., firstly, we study policy learning algorithms which can be applied in the general setting of motor skill learning, and, secondly, we study a theoretically well-founded general approach to representing the required control structures for task representation and execution.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Online algorithms for submodular minimization with combinatorial constraints

Jegelka, S., Bilmes, J.

In pages: 1-6, NIPS Workshop on Discrete Optimization in Machine Learning: Structures, Algorithms and Applications (DISCML), December 2010 (inproceedings)

Abstract
Building on recent results for submodular minimization with combinatorial constraints, and on online submodular minimization, we address online approximation algorithms for submodular minimization with combinatorial constraints. We discuss two types of algorithms and outline approximation algorithms that integrate into those.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
PAC-Bayesian Analysis of Co-clustering and Beyond

Seldin, Y., Tishby, N.

Journal of Machine Learning Research, 11, pages: 3595-3646, December 2010 (article)

ei

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Multi-agent random walks for local clustering

Alamgir, M., von Luxburg, U.

In Proceedings of the IEEE International Conference on Data Mining (ICDM 2010), pages: 18-27, (Editors: Webb, G. I., B. Liu, C. Zhang, D. Gunopulos, X. Wu), IEEE, Piscataway, NJ, USA, IEEE International Conference on Data Mining (ICDM), December 2010 (inproceedings)

Abstract
We consider the problem of local graph clustering where the aim is to discover the local cluster corresponding to a point of interest. The most popular algorithms to solve this problem start a random walk at the point of interest and let it run until some stopping criterion is met. The vertices visited are then considered the local cluster. We suggest a more powerful alternative, the multi-agent random walk. It consists of several “agents” connected by a fixed rope of length l. All agents move independently like a standard random walk on the graph, but they are constrained to have distance at most l from each other. The main insight is that for several agents it is harder to simultaneously travel over the bottleneck of a graph than for just one agent. Hence, the multi-agent random walk has less tendency to mistakenly merge two different clusters than the original random walk. In our paper we analyze the multi-agent random walk theoretically and compare it experimentally to the major local graph clustering algorithms from the literature. We find that our multi-agent random walk consistently outperforms these algorithms.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Policy Gradient Methods

Peters, J., Bagnell, J.

In Encyclopedia of Machine Learning, pages: 774-776, (Editors: Sammut, C. and Webb, G. I.), Springer, Berlin, Germany, December 2010 (inbook)

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Augmentation of fMRI Data Analysis using Resting State Activity and Semi-supervised Canonical Correlation Analysis

Shelton, JA., Blaschko, MB., Bartels, A.

NIPS Women in Machine Learning Workshop (WiML), December 2010 (poster)

Abstract
Resting state activity is brain activation that arises in the absence of any task, and is usually measured in awake subjects during prolonged fMRI scanning sessions where the only instruction given is to close the eyes and do nothing. It has been recognized in recent years that resting state activity is implicated in a wide variety of brain function. While certain networks of brain areas have different levels of activation at rest and during a task, there is nevertheless significant similarity between activations in the two cases. This suggests that recordings of resting state activity can be used as a source of unlabeled data to augment kernel canonical correlation analysis (KCCA) in a semisupervised setting. We evaluate this setting empirically yielding three main results: (i) KCCA tends to be improved by the use of Laplacian regularization even when no additional unlabeled data are available, (ii) resting state data seem to have a similar marginal distribution to that recorded during the execution of a visual processing task implying largely similar types of activation, and (iii) this source of information can be broadly exploited to improve the robustness of empirical inference in fMRI studies, an inherently data poor domain.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Effects of Packet Losses to Stability in Bilateral Teleoperation Systems

Hong, A., Cho, JH., Lee, DY.

In pages: 1043-1044, Korean Society of Mechanical Engineers, Seoul, South Korea, KSME Fall Annual Meeting, November 2010 (inproceedings)

ei

[BibTex]

[BibTex]


no image
Gaussian Processes for Machine Learning (GPML) Toolbox

Rasmussen, C., Nickisch, H.

Journal of Machine Learning Research, 11, pages: 3011-3015, November 2010 (article)

Abstract
The GPML toolbox provides a wide range of functionality for Gaussian process (GP) inference and prediction. GPs are specified by mean and covariance functions; we offer a library of simple mean and covariance functions and mechanisms to compose more complex ones. Several likelihood functions are supported including Gaussian and heavy-tailed for regression as well as others suitable for classification. Finally, a range of inference methods is provided, including exact and variational inference, Expectation Propagation, and Laplace's method dealing with non-Gaussian likelihoods and FITC for dealing with large regression tasks.

ei

Web [BibTex]

Web [BibTex]


no image
Combining Real-Time Brain-Computer Interfacing and Robot Control for Stroke Rehabilitation

Gomez Rodriguez, M., Peters, J., Hill, J., Gharabaghi, A., Schölkopf, B., Grosse-Wentrup, M.

In Proceedings of SIMPAR 2010 Workshops, pages: 59-63, Brain-Computer Interface Workshop at SIMPAR: 2nd International Conference on Simulation, Modeling, and Programming for Autonomous Robots, November 2010 (inproceedings)

Abstract
Brain-Computer Interfaces based on electrocorticography (ECoG) or electroencephalography (EEG), in combination with robot-assisted active physical therapy, may support traditional rehabilitation procedures for patients with severe motor impairment due to cerebrovascular brain damage caused by stroke. In this short report, we briefly review the state-of-the art in this exciting new field, give an overview of the work carried out at the Max Planck Institute for Biological Cybernetics and the University of T{\"u}bingen, and discuss challenges that need to be addressed in order to move from basic research to clinical studies.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Cryo-EM structure and rRNA model of a translating eukaryotic 80S ribosome at 5.5-Å resolution

Armache, J-P., Jarasch, A., Anger, AM., Villa, E., Becker, T., Bhushan, S., Jossinet, F., Habeck, M., Dindar, G., Franckenberg, S., Marquez, V., Mielke, T., Thomm, M., Berninghausen, O., Beatrix, B., Söding, J., Westhof, E., Wilson, DN., Beckmann, R.

Proceedings of the National Academy of Sciences of the United States of America, 107(46):19748-19753, November 2010 (article)

Abstract
Protein biosynthesis, the translation of the genetic code into polypeptides, occurs on ribonucleoprotein particles called ribosomes. Although X-ray structures of bacterial ribosomes are available, high-resolution structures of eukaryotic 80S ribosomes are lacking. Using cryoelectron microscopy and single-particle reconstruction, we have determined the structure of a translating plant (Triticum aestivum) 80S ribosome at 5.5-Å resolution. This map, together with a 6.1-Å map of a Saccharomyces cerevisiae 80S ribosome, has enabled us to model ∼98% of the rRNA. Accurate assignment of the rRNA expansion segments (ES) and variable regions has revealed unique ES–ES and r-protein–ES interactions, providing insight into the structure and evolution of the eukaryotic ribosome.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Policy gradient methods

Peters, J.

Scholarpedia, 5(11):3698, November 2010 (article)

Abstract
Policy gradient methods are a type of reinforcement learning techniques that rely upon optimizing parametrized policies with respect to the expected return (long-term cumulative reward) by gradient descent. They do not suffer from many of the problems that have been marring traditional reinforcement learning approaches such as the lack of guarantees of a value function, the intractability problem resulting from uncertain state information and the complexity arising from continuous states & actions.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
High frequency phase-spike synchronization of extracellular signals modulates causal interactions in monkey primary visual cortex

Besserve, M., Murayama, Y., Schölkopf, B., Logothetis, N., Panzeri, S.

40(616.2), 40th Annual Meeting of the Society for Neuroscience (Neuroscience), November 2010 (poster)

Abstract
Functional correlates of Rhythms in the gamma band (30-100Hz) are observed in the mammalian brain with a large variety of functional correlates. Nevertheless, their functional role is still debated. One way to disentangle this issue is to go beyond usual correlation analysis and apply causality measures that quantify the directed interactions between the gamma rhythms and other aspects of neural activity. These measures can be further compared with other aspects of neurophysicological signals to find markers of neural interactions. In a recent study, we analyzed extracellular recordings in the primary visual cortex of 4 anesthetized macaques during the presentation of movie stimuli using a causality measure named Transfer Entropy. We found causal interactions between high frequency gamma rhythms (60-100Hz) recorded in different electrodes, involving in particular their phase, and between the gamma phase and spiking activity quantified by the instantaneous envelope of the MUA band (1-3kHz). Here, we further investigate in the same dataset the meaning of these phase-MUA and phase-phase causal interactions by studying the distribution of phases at multiple recording sites at lags around the occurrence of spiking events. First, we found a sharpening of the gamma phase distribution in one electrode when spikes are occurring in other recording site. This phenomena appeared as a form of phase-spike synchronization and was quantified by an information theoretic measure. We found this measure correlates significantly with phase-MUA causal interactions. Additionally, we quantified in a similar way the interplay between spiking and the phase difference between two recording sites (reflecting the well-know concept of phase synchronization). We found that, depending on the couple of recording site, spiking can correlate either with a phase synchronization or with a desynchronization with respect to the baseline. This effect correlates very well with the phase-phase causality measure. These results provide evidence for high frequency phase-spike synchronization to reflect communication between distant neural populations in V1. Conversely, both phase synchronization or desynchronization may favor neural communication between recording sites. This new result, which contrasts with current hypothesis on the role of phase synchronization, could be interpreted as the presence of inhibitory interactions that are suppressed by desynchronization. Finally, our findings give new insights into the role of gamma rhythms in regulating local computation in the visual cortex.

ei

Web [BibTex]

Web [BibTex]


no image
Localization of eukaryote-specific ribosomal proteins in a 5.5-Å cryo-EM map of the 80S eukaryotic ribosome

Armache, J-P., Jarasch, A., Anger, AM., Villa, E., Becker, T., Bhushan, S., Jossinet, F., Habeck, M., Dindar, G., Franckenberg, S., Marquez, V., Mielke, T., Thomm, M., Berninghausen, O., Beatrix, B., Söding, J., Westhof, E., Wilson, DN., Beckmann, R.

Proceedings of the National Academy of Sciences of the United States of America, 107(46):19754-19759, November 2010 (article)

Abstract
Protein synthesis in all living organisms occurs on ribonucleoprotein particles, called ribosomes. Despite the universality of this process, eukaryotic ribosomes are significantly larger in size than their bacterial counterparts due in part to the presence of 80 r proteins rather than 54 in bacteria. Using cryoelectron microscopy reconstructions of a translating plant (Triticum aestivum) 80S ribosome at 5.5-Å resolution, together with a 6.1-Å map of a translating Saccharomyces cerevisiae 80S ribosome, we have localized and modeled 74/80 (92.5%) of the ribosomal proteins, encompassing 12 archaeal/eukaryote-specific small subunit proteins as well as the complete complement of the ribosomal proteins of the eukaryotic large subunit. Near-complete atomic models of the 80S ribosome provide insights into the structure, function, and evolution of the eukaryotic translational apparatus.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Attenuation Correction for Whole Body PET/MR: Quantitative Evaluation and Lung Attenuation Estimation with Consistency Information

Bezrukov, I., Hofmann, M., Aschoff, P., Beyer, T., Mantlik, F., Pichler, B., Schölkopf, B.

2010(M13-122), 2010 Nuclear Science Symposium and Medical Imaging Conference (NSS-MIC), November 2010 (poster)

ei

[BibTex]

[BibTex]


no image
PET/MRI: Observation of Non-Isotropic Positron Distribution in High Magnetic Fields and Its Diagnostic Impact

Kolb, A., Hofmann, M., Sauter, A., Liu, C., Schölkopf, B., Pichler, B.

2010 Nuclear Science Symposium and Medical Imaging Conference, 2010(M18-119):1, November 2010 (poster)

ei

Web [BibTex]

Web [BibTex]


no image
Comparative Quantitative Evaluation of MR-Based Attenuation Correction Methods in Combined Brain PET/MR

Mantlik, F., Hofmann, M., Bezrukov, I., Kolb, A., Beyer, T., Reimold, M., Pichler, B., Schölkopf, B.

2010(M08-4), 2010 Nuclear Science Symposium and Medical Imaging Conference (NSS-MIC), November 2010 (talk)

Abstract
Combined PET/MR provides at the same time molecular and functional imaging as well as excellent soft tissue contrast. It does not allow one to directly measure the attenuation properties of scanned tissues, despite the fact that accurate attenuation maps are necessary for quantitative PET imaging. Several methods have therefore been proposed for MR-based attenuation correction (MR-AC). So far, they have only been evaluated on data acquired from separate MR and PET scanners. We evaluated several MR-AC methods on data from 10 patients acquired on a combined BrainPET/MR scanner. This allowed the consideration of specific PET/MR issues, such as the RF coil that attenuates and scatters 511 keV gammas. We evaluated simple MR thresholding methods as well as atlas and machine learning-based MR-AC. CT-based AC served as gold standard reference. To comprehensively evaluate the MR-AC accuracy, we used RoIs from 2 anatomic brain atlases with different levels of detail. Visual inspection of the PET images indicated that even the basic FLASH threshold MR-AC may be sufficient for several applications. Using a UTE sequence for bone prediction in MR-based thresholding occasionally led to false prediction of bone tissue inside the brain, causing a significant overestimation of PET activity. Although it yielded a lower mean underestimation of activity, it exhibited the highest variance of all methods. The atlas averaging approach had a smaller mean error, but showed high maximum overestimation on the RoIs of the more detailed atlas. The Nave Bayes and Atlas-Patch MR-AC yielded the smallest variance, and the Atlas-Patch also showed the smallest mean error. In conclusion, Atlas-based AC using only MR information on the BrainPET/MR yields a high level of accuracy that is sufficient for clinical quantitative imaging requirements. The Atlas-Patch approach was superior to alternative atlas-based methods, yielding a quantification error below 10% for all RoIs except very small ones.

ei

[BibTex]

[BibTex]


no image
Spatio-Spectral Remote Sensing Image Classification With Graph Kernels

Camps-Valls, G., Shervashidze, N., Borgwardt, K.

IEEE Geoscience and Remote Sensing Letters, 7(4):741-745, October 2010 (article)

Abstract
This letter presents a graph kernel for spatio-spectral remote sensing image classification with support vector machines (SVMs). The method considers higher order relations in the neighborhood (beyond pairwise spatial relations) to iteratively compute a kernel matrix for SVM learning. The proposed kernel is easy to compute and constitutes a powerful alternative to existing approaches. The capabilities of the method are illustrated in several multi- and hyperspectral remote sensing images acquired over both urban and agricultural areas.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Causal Inference Using the Algorithmic Markov Condition

Janzing, D., Schölkopf, B.

IEEE Transactions on Information Theory, 56(10):5168-5194, October 2010 (article)

Abstract
Inferring the causal structure that links $n$ observables is usually based upon detecting statistical dependences and choosing simple graphs that make the joint measure Markovian. Here we argue why causal inference is also possible when the sample size is one. We develop a theory how to generate causal graphs explaining similarities between single objects. To this end, we replace the notion of conditional stochastic independence in the causal Markov condition with the vanishing of conditional algorithmic mutual information and describe the corresponding causal inference rules. We explain why a consistent reformulation of causal inference in terms of algorithmic complexity implies a new inference principle that takes into account also the complexity of conditional probability densities, making it possible to select among Markov equivalent causal graphs. This insight provides a theoretical foundation of a heuristic principle proposed in earlier work. We also sketch some ideas on how to replace Kolmogorov complexity with decidable complexity criteria. This can be seen as an algorithmic analog of replacing the empirically undecidable question of statistical independence with practical independence tests that are based on implicit or explicit assumptions on the underlying distribution.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Recurrent Policy Gradients

Wierstra, D., Förster, A., Peters, J., Schmidhuber, J.

Logic Journal of the IGPL, 18(5):620-634, October 2010 (article)

Abstract
Reinforcement learning for partially observable Markov decision problems (POMDPs) is a challenge as it requires policies with an internal state. Traditional approaches suffer significantly from this shortcoming and usually make strong assumptions on the problem domain such as perfect system models, state-estimators and a Markovian hidden system. Recurrent neural networks (RNNs) offer a natural framework for dealing with policy learning using hidden state and require only few limiting assumptions. As they can be trained well using gradient descent, they are suited for policy gradient approaches. In this paper, we present a policy gradient method, the Recurrent Policy Gradient which constitutes a model-free reinforcement learning method. It is aimed at training limited-memory stochastic policies on problems which require long-term memories of past observations. The approach involves approximating a policy gradient for a recurrent neural network by backpropagating return-weighted characteristic eligibilities through time. Using a ‘‘Long Short-Term Memory’’ RNN architecture, we are able to outperform previous RL methods on three important benchmark tasks. Furthermore, we show that using history-dependent baselines helps reducing estimation variance significantly, thus enabling our approach to tackle more challenging, highly stochastic environments.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Learning as a key ability for Human-Friendly Robots

Peters, J., Kober, J., Mülling, K., Krömer, O., Nguyen-Tuong, D., Wang, Z., Rodriguez Gomez, M., Grosse-Wentrup, M.

In pages: 1-2, 3rd Workshop for Young Researchers on Human-Friendly Robotics (HFR), October 2010 (inproceedings)

ei

Web [BibTex]

Web [BibTex]


no image
Closing the sensorimotor loop: Haptic feedback facilitates decoding of arm movement imagery

Gomez Rodriguez, M., Peters, J., Hill, J., Schölkopf, B., Gharabaghi, A., Grosse-Wentrup, M.

In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics (SMC 2010), pages: 121-126, IEEE, Piscataway, NJ, USA, IEEE International Conference on Systems, Man and Cybernetics (SMC), October 2010 (inproceedings)

Abstract
Brain-Computer Interfaces (BCIs) in combination with robot-assisted physical therapy may become a valuable tool for neurorehabilitation of patients with severe hemiparetic syndromes due to cerebrovascular brain damage (stroke) and other neurological conditions. A key aspect of this approach is reestablishing the disrupted sensorimotor feedback loop, i.e., determining the intended movement using a BCI and helping a human with impaired motor function to move the arm using a robot. It has not been studied yet, however, how artificially closing the sensorimotor feedback loop affects the BCI decoding performance. In this article, we investigate this issue in six healthy subjects, and present evidence that haptic feedback facilitates the decoding of arm movement intention. The results provide evidence of the feasibility of future rehabilitative efforts combining robot-assisted physical therapy with BCIs.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Probabilistic Assignment of Chemical Shift Data for Semi-Automatic Amino Acid Recognition

Hooge, J.

11(10):30, 11th Conference of Junior Neuroscientists of T{\"u}bingen (NeNa), October 2010 (poster)

Abstract
manner. First the backbone resonances are assigned. This is usually achieved from sequential information provided by three chemical shifts: CA, CB and C’. Once the sequence is solved, the second assignment step takes place. For this purpose, the CA-CB and HA chemical shifts are used as a start point for assignment of the side chain resonances, thus connecting the backbone resonances to their respective side chains. This strategy is unfortunately limited by the size of the protein due to increasing signal overlap and missing signals. Therefore, amino acid recognition is in many cases not possible as the CA-CB chemical shift pattern is not sufficient to discriminate between the 20 amino acids. As a result, the first step of the strategy described above remains tedious and time consuming. The combination of modern NMR techniques with new spectrometers now provide information that was not always accessible in the past, due to sensitivity problems. These experiments can be applied efficiently to measure a protein size up to 45 kDa and furthermore provide a unique combination of sequential carbon spin system information. The assignment process can thus benefit from a maximum knowledge input, containing âallâ backbone and side chain chemical shifts as well as an immediate amino acid recognition from the side chain spin system. We propose to extend the software PASTA (Protein ASsignment by Threshold Accepting) to achieve a general sequential assignment of backbone and side-chain resonances in a semi- to fullautomatic per-residue approach. PASTA will offer the possibility to achieve the sequential assignment using any kind of chemical shifts (carbons and/or protons) that can provide sequential information combined with an amino acid recognition feature based on carbon spin system analysis.

ei

PDF [BibTex]

PDF [BibTex]


no image
Learning Probabilistic Discriminative Models of Grasp Affordances under Limited Supervision

Erkan, A., Kroemer, O., Detry, R., Altun, Y., Piater, J., Peters, J.

In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2010), pages: 1586-1591, IEEE, Piscataway, NJ, USA, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), October 2010 (inproceedings)

Abstract
This paper addresses the problem of learning and efficiently representing discriminative probabilistic models of object-specific grasp affordances particularly when the number of labeled grasps is extremely limited. The proposed method does not require an explicit 3D model but rather learns an implicit manifold on which it defines a probability distribution over grasp affordances. We obtain hypothetical grasp configurations from visual descriptors that are associated with the contours of an object. While these hypothetical configurations are abundant, labeled configurations are very scarce as these are acquired via time-costly experiments carried out by the robot. Kernel logistic regression (KLR) via joint kernel maps is trained to map the hypothesis space of grasps into continuous class-conditional probability values indicating their achievability. We propose a soft-supervised extension of KLR and a framework to combine the merits of semi-supervised and active learning approaches to tackle the scarcity of labeled grasps. Experimental evaluation shows that combining active and semi-supervised learning is favorable in the existence of an oracle. Furthermore, semi-supervised learning outperforms supervised learning, particularly when the labeled data is very limited.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Generalizing Demonstrated Actions in Manipulation Tasks

Kroemer, O., Detry, R., Piater, J., Peters, J.

IROS 2010 Workshop on Grasp Planning and Task Learning by Imitation, 2010, pages: 1, October 2010 (poster)

Abstract
Programming-by-demonstration promises to significantly reduce the burden of coding robots to perform new tasks. However, service robots will be presented with a variety of different situations that were not specifically demonstrated to it. In such cases, the robot must autonomously generalize its learned motions to these new situations. We propose a system that can generalize movements to new target locations and even new objects. The former is achieved by using a task-specific coordinate system together with dynamical systems motor primitives. Generalizing actions to new objects is a more complex problem, which we solve by treating it as a continuum-armed bandits problem. Using the bandits framework, we can efficiently optimize the learned action for a specific object. The proposed method was implemented on a real robot and succesfully adapted the grasping action to three different objects. Although we focus on grasping as an example of a task, the proposed methods are much more widely applicable to robot manipulation tasks.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Discriminative frequent subgraph mining with optimality guarantees

Thoma, M., Cheng, H., Gretton, A., Han, J., Kriegel, H., Smola, A., Song, L., Yu, P., Yan, X., Borgwardt, K.

Journal of Statistical Analysis and Data Mining, 3(5):302–318, October 2010 (article)

Abstract
The goal of frequent subgraph mining is to detect subgraphs that frequently occur in a dataset of graphs. In classification settings, one is often interested in discovering discriminative frequent subgraphs, whose presence or absence is indicative of the class membership of a graph. In this article, we propose an approach to feature selection on frequent subgraphs, called CORK, that combines two central advantages. First, it optimizes a submodular quality criterion, which means that we can yield a near-optimal solution using greedy feature selection. Second, our submodular quality function criterion can be integrated into gSpan, the state-of-the-art tool for frequent subgraph mining, and help to prune the search space for discriminative frequent subgraphs even during frequent subgraph mining.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
A biomimetic approach to robot table tennis

Mülling, K., Kober, J., Peters, J.

In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2010), pages: 1921-1926, IEEE, Piscataway, NJ, USA, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), October 2010 (inproceedings)

Abstract
Although human beings see and move slower than table tennis or baseball robots, they manage to outperform such robot systems. One important aspect of this better performance is the human movement generation. In this paper, we study trajectory generation for table tennis from a biomimetic point of view. Our focus lies on generating efficient stroke movements capable of mastering variations in the environmental conditions, such as changing ball speed, spin and position. We study table tennis from a human motor control point of view. To make headway towards this goal, we construct a trajectory generator for a single stroke using the discrete movement stages hypothesis and the virtual hitting point hypothesis to create a model that produces a human-like stroke movement. We verify the functionality of the trajectory generator for a single forehand stroke both in a simulation and using a real Barrett WAM.

ei

Web DOI [BibTex]

Web DOI [BibTex]