Header logo is


2013


Thumb xl thumb
Occlusion Patterns for Object Class Detection

Pepik, B., Stark, M., Gehler, P., Schiele, B.

In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Portland, OR, June 2013 (inproceedings)

Abstract
Despite the success of recent object class recognition systems, the long-standing problem of partial occlusion re- mains a major challenge, and a principled solution is yet to be found. In this paper we leave the beaten path of meth- ods that treat occlusion as just another source of noise – instead, we include the occluder itself into the modelling, by mining distinctive, reoccurring occlusion patterns from annotated training data. These patterns are then used as training data for dedicated detectors of varying sophistica- tion. In particular, we evaluate and compare models that range from standard object class detectors to hierarchical, part-based representations of occluder/occludee pairs. In an extensive evaluation we derive insights that can aid fur- ther developments in tackling the occlusion challenge.

ps

pdf Project Page [BibTex]

2013


pdf Project Page [BibTex]


Thumb xl lost
Lost! Leveraging the Crowd for Probabilistic Visual Self-Localization

(CVPR13 Best Paper Runner-Up)

Brubaker, M. A., Geiger, A., Urtasun, R.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR 2013), pages: 3057-3064, IEEE, Portland, OR, June 2013 (inproceedings)

Abstract
In this paper we propose an affordable solution to self- localization, which utilizes visual odometry and road maps as the only inputs. To this end, we present a probabilis- tic model as well as an efficient approximate inference al- gorithm, which is able to utilize distributed computation to meet the real-time requirements of autonomous systems. Because of the probabilistic nature of the model we are able to cope with uncertainty due to noisy visual odometry and inherent ambiguities in the map ( e.g ., in a Manhattan world). By exploiting freely available, community devel- oped maps and visual odometry measurements, we are able to localize a vehicle up to 3m after only a few seconds of driving on maps which contain more than 2,150km of driv- able roads.

avg ps

pdf supplementary project page [BibTex]

pdf supplementary project page [BibTex]


Thumb xl poseregression
Human Pose Estimation using Body Parts Dependent Joint Regressors

Dantone, M., Gall, J., Leistner, C., van Gool, L.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages: 3041-3048, IEEE, Portland, OR, USA, June 2013 (inproceedings)

Abstract
In this work, we address the problem of estimating 2d human pose from still images. Recent methods that rely on discriminatively trained deformable parts organized in a tree model have shown to be very successful in solving this task. Within such a pictorial structure framework, we address the problem of obtaining good part templates by proposing novel, non-linear joint regressors. In particular, we employ two-layered random forests as joint regressors. The first layer acts as a discriminative, independent body part classifier. The second layer takes the estimated class distributions of the first one into account and is thereby able to predict joint locations by modeling the interdependence and co-occurrence of the parts. This results in a pose estimation framework that takes dependencies between body parts already for joint localization into account and is thus able to circumvent typical ambiguities of tree structures, such as for legs and arms. In the experiments, we demonstrate that our body parts dependent joint regressors achieve a higher joint localization accuracy than tree-based state-of-the-art methods.

ps

pdf DOI Project Page [BibTex]

pdf DOI Project Page [BibTex]


Thumb xl deqingcvpr13b
A fully-connected layered model of foreground and background flow

Sun, D., Wulff, J., Sudderth, E., Pfister, H., Black, M.

In IEEE Conf. on Computer Vision and Pattern Recognition, (CVPR 2013), pages: 2451-2458, Portland, OR, June 2013 (inproceedings)

Abstract
Layered models allow scene segmentation and motion estimation to be formulated together and to inform one another. Traditional layered motion methods, however, employ fairly weak models of scene structure, relying on locally connected Ising/Potts models which have limited ability to capture long-range correlations in natural scenes. To address this, we formulate a fully-connected layered model that enables global reasoning about the complicated segmentations of real objects. Optimization with fully-connected graphical models is challenging, and our inference algorithm leverages recent work on efficient mean field updates for fully-connected conditional random fields. These methods can be implemented efficiently using high-dimensional Gaussian filtering. We combine these ideas with a layered flow model, and find that the long-range connections greatly improve segmentation into figure-ground layers when compared with locally connected MRF models. Experiments on several benchmark datasets show that the method can recover fine structures and large occlusion regions, with good flow accuracy and much lower computational cost than previous locally-connected layered models.

ps

pdf Supplemental Material Project Page Project Page [BibTex]

pdf Supplemental Material Project Page Project Page [BibTex]


Thumb xl featureextraction
Hypothesis Testing Framework for Active Object Detection

Sankaran, B., Atanasov, N., Le Ny, J., Koletschka, T., Pappas, G., Daniilidis, K.

In IEEE International Conference on Robotics and Automation (ICRA), May 2013, clmc (inproceedings)

Abstract
One of the central problems in computer vision is the detection of semantically important objects and the estimation of their pose. Most of the work in object detection has been based on single image processing and its performance is limited by occlusions and ambiguity in appearance and geometry. This paper proposes an active approach to object detection by controlling the point of view of a mobile depth camera. When an initial static detection phase identifies an object of interest, several hypotheses are made about its class and orientation. The sensor then plans a sequence of view-points, which balances the amount of energy used to move with the chance of identifying the correct hypothesis. We formulate an active M-ary hypothesis testing problem, which includes sensor mobility, and solve it using a point-based approximate POMDP algorithm. The validity of our approach is verified through simulation and experiments with real scenes captured by a kinect sensor. The results suggest a significant improvement over static object detection.

am

pdf [BibTex]

pdf [BibTex]


Thumb xl screen shot 2017 06 14 at 3.09.16 pm
Benefits of an active spine supported bounding locomotion with a small compliant quadruped robot

Khoramshahi, M., Spröwitz, A., Tuleu, A., Ahmadabadi, M. N., Ijspeert, A. J.

In Robotics and Automation (ICRA), 2013 IEEE International Conference on, pages: 3329-3334, May 2013 (inproceedings)

Abstract
We studied the effect of the control of an active spine versus a fixed spine, on a quadruped robot running in bound gait. Active spine supported actuation led to faster locomotion, with less foot sliding on the ground, and a higher stability to go straight forward. However, we did no observe an improvement of cost of transport of the spine-actuated, faster robot system compared to the rigid spine.

dlg

Youtube DOI Project Page [BibTex]

Youtube DOI Project Page [BibTex]


no image
Virtual Alteration of Body Material by Reality-Based Periodic Vibrotactile Feedback

Kurihara, Y., Hachisu, T., Sato, M., Fukushima, S., Kuchenbecker, K. J., Kajimoto, H.

In Proc. JSME Robotics and Mechatronics Conference (ROBOMEC), Tsukuba, Japan, May 2013, Paper written in Japanese. Poster presentation given by {Kurihara} (inproceedings)

hi

[BibTex]

[BibTex]


no image
Perception-driven multi-robot formation control

Ahmad, A., Nascimento, T., Conceicao, A., Moreira, A., Lima, P.

In pages: 1851-1856, IEEE, IEEE International Conference on Robotics and Automation (ICRA), May 2013 (inproceedings)

Abstract
Maximizing the performance of cooperative perception of a tracked target by a team of mobile robots while maintaining the team's formation is the core problem addressed in this work. We propose a solution by integrating the controller and the estimator modules in a formation control loop. The controller module is a distributed non-linear model predictive controller and the estimator module is based on a particle filter for cooperative target tracking. A formal description of the integration followed by simulation and real robot results on two different teams of homogeneous robots are presented. The results highlight how our method successfully enables a team of homogeneous robots to minimize the total uncertainty of the tracked target's cooperative estimate while complying with the performance criteria such as keeping a pre-set distance between the team-mates and/or the target and obstacle avoidance.

ps

DOI [BibTex]

DOI [BibTex]


no image
Cooperative Robot Localization and Target Tracking based on Least Squares Minimization

Ahmad, A., Tipaldi, G., Lima, P., Burgard, W.

In pages: 5696-5701, IEEE, IEEE International Conference on Robotics and Automation (ICRA), May 2013 (inproceedings)

Abstract
In this paper we address the problem of cooperative localization and target tracking with a team of moving robots. We model the problem as a least squares minimization problem and show that this problem can be efficiently solved using sparse optimization methods. To achieve this, we represent the problem as a graph, where the nodes are robot and target poses at individual time-steps and the edges are their relative measurements. Static landmarks at known position are used to define a common reference frame for the robots and the targets. In this way, we mitigate the risk of using measurements and state estimates more than once, since all the relative measurements are i.i.d. and no marginalization is performed. Experiments performed using a set of real robots show higher accuracy compared to a Kalman filter.

ps

DOI [BibTex]

DOI [BibTex]


no image
The Design and Field Observation of a Haptic Notification System for Oral Presentations

Tam, D., MacLean, K. E., McGrenere, J., Kuchenbecker, K. J.

In Proc. SIGCHI Conference on Human Factors in Computing Systems, pages: 1689-1698, Paris, France, May 2013, Oral presentation given by Tam (inproceedings)

hi

[BibTex]

[BibTex]


no image
Using Robotic Exploratory Procedures to Learn the Meaning of Haptic Adjectives

Chu, V., McMahon, I., Riano, L., McDonald, C. G., He, Q., Perez-Tejada, J. M., Arrigo, M., Fitter, N., Nappo, J., Darrell, T., Kuchenbecker, K. J.

In Proc. IEEE International Conference on Robotics and Automation, pages: 3048-3055, Karlsruhe, Germany, May 2013, Oral presentation given by Chu. Best Cognitive Robotics Paper Award (inproceedings)

hi

[BibTex]

[BibTex]


no image
Instrument contact vibrations are a construct-valid measure of technical skill in Fundamentals of Laparoscopic Surgery Training Tasks

Gomez, E. D., Aggarwal, R., McMahan, W., Koch, E., Hashimoto, D. A., Darzi, A., Murayama, K. M., Dumon, K. R., Williams, N. N., Kuchenbecker, K. J.

In Proc. Annual Meeting of the Association for Surgical Education, Orlando, Florida, USA, 2013, Oral presentation given by Gomez (inproceedings)

hi

[BibTex]

[BibTex]


no image
Dynamic Simulation of Tool-Mediated Texture Interaction

McDonald, C. G., Kuchenbecker, K. J.

In Proc. IEEE World Haptics Conference, pages: 307-312, Daejeon, South Korea, April 2013, Oral presentation given by McDonald (inproceedings)

hi

[BibTex]

[BibTex]


no image
Generating Haptic Texture Models From Unconstrained Tool-Surface Interactions

Culbertson, H., Unwin, J., Goodman, B. E., Kuchenbecker, K. J.

In Proc. IEEE World Haptics Conference, pages: 295-300, Daejeon, South Korea, April 2013, Oral presentation given by Culbertson. Finalist for Best Paper Award (inproceedings)

hi

[BibTex]

[BibTex]


no image
A practical System for Recording Instrument Contacts and Collisions During Transoral Robotic Surgery

Gomez, E. D., Weinstein, G. S., O’Malley, J. B. W., McMahan, W., Chen, L., Kuchenbecker, K. J.

In Proc. Annual Meeting of the Triological Society, Orlando, Florida, USA, April 2013, Poster presentation given by Gomez (inproceedings)

hi

[BibTex]

[BibTex]


no image
Unknown-color spherical object detection and tracking

Troppan, A., Guerreiro, E., Celiberti, F., Santos, G., Ahmad, A., Lima, P.

In pages: 1-4, IEEE, 13th International Conference on Autonomous Robot Systems (Robotica), April 2013 (inproceedings)

Abstract
Detection and tracking of an unknown-color spherical object in a partially-known environment using a robot with a single camera is the core problem addressed in this article. A novel color detection mechanism, which exploits the geometrical properties of the spherical object's projection onto the image plane, precedes the object's detection process. A Kalman filter-based tracker uses the object detection in its update step and tracks the spherical object. Real robot experimental evaluation of the proposed method is presented on soccer robots detecting and tracking an unknown-color ball.

ps

DOI [BibTex]

DOI [BibTex]


no image
Action and Goal Related Decision Variables Modulate the Competition Between Multiple Potential Targets

Enachescu, V, Christopoulos, Vassilios N, Schrater, P. R., Schaal, S.

In Abstracts of Neural Control of Movement Conference (NCM 2013), February 2013 (inproceedings)

am

[BibTex]

[BibTex]


Thumb xl visapp
Simple, fast, accurate melanocytic lesion segmentation in 1D colour space

Peruch, F., Bogo, F., Bonazza, M., Bressan, M., Cappelleri, V., Peserico, E.

In VISAPP (1), pages: 191-200, Barcelona, February 2013 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


no image
Falsification and future performance

Balduzzi, D.

In Algorithmic Probability and Friends. Bayesian Prediction and Artificial Intelligence, 7070, pages: 65-78, Lecture Notes in Computer Science, Springer, Berlin, Germany, Solomonoff 85th Memorial Conference, January 2013 (inproceedings)

Abstract
We information-theoretically reformulate two measures of capacity from statistical learning theory: empirical VC-entropy and empirical Rademacher complexity. We show these capacity measures count the number of hypotheses about a dataset that a learning algorithm falsifies when it finds the classifier in its repertoire minimizing empirical risk. It then follows from that the future performance of predictors on unseen data is controlled in part by how many hypotheses the learner falsifies. As a corollary we show that empirical VC-entropy quantifies the message length of the true hypothesis in the optimal code of a particular probability distribution, the so-called actual repertoire.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Feedback Error Learning for Rhythmic Motor Primitives

Gopalan, N., Deisenroth, M., Peters, J.

In Proceedings of 2013 IEEE International Conference on Robotics and Automation (ICRA 2013), pages: 1317-1322, 2013 (inproceedings)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Gaussian Process Vine Copulas for Multivariate Dependence

Lopez-Paz, D., Hernandez-Lobato, J., Ghahramani, Z.

In Proceedings of the 30th International Conference on Machine Learning, W&CP 28(2), pages: 10-18, (Editors: S Dasgupta and D McAllester), JMLR, ICML, 2013, Poster: http://people.tuebingen.mpg.de/dlopez/papers/icml2013_gpvine_poster.pdf (inproceedings)

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
The Randomized Dependence Coefficient

Lopez-Paz, D., Hennig, P., Schölkopf, B.

In Advances in Neural Information Processing Systems 26, pages: 1-9, (Editors: C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger), 27th Annual Conference on Neural Information Processing Systems (NIPS), 2013 (inproceedings)

ei pn

PDF [BibTex]

PDF [BibTex]


no image
On a link between kernel mean maps and Fraunhofer diffraction, with an application to super-resolution beyond the diffraction limit

Harmeling, S., Hirsch, M., Schölkopf, B.

In IEEE Conference on Computer Vision and Pattern Recognition, pages: 1083-1090, IEEE, CVPR, 2013 (inproceedings)

ei

DOI [BibTex]

DOI [BibTex]


no image
Output Kernel Learning Methods

Dinuzzo, F., Ong, C., Fukumizu, K.

In International Workshop on Advances in Regularization, Optimization, Kernel Methods and Support Vector Machines: theory and applications, ROKS, 2013 (inproceedings)

ei

[BibTex]

[BibTex]


no image
Alignment-based Transfer Learning for Robot Models

Bocsi, B., Csato, L., Peters, J.

In Proceedings of the 2013 International Joint Conference on Neural Networks (IJCNN 2013), pages: 1-7, 2013 (inproceedings)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Nonlinear Causal Discovery for High Dimensional Data: A Kernelized Trace Method

Chen, Z., Zhang, K., Chan, L.

In 13th International Conference on Data Mining, pages: 1003-1008, (Editors: H. Xiong, G. Karypis, B. M. Thuraisingham, D. J. Cook and X. Wu), IEEE Computer Society, ICDM, 2013 (inproceedings)

ei

DOI [BibTex]

DOI [BibTex]


no image
A probabilistic approach to robot trajectory generation

Paraschos, A., Neumann, G., Peters, J.

In Proceedings of the 13th IEEE International Conference on Humanoid Robots (HUMANOIDS), pages: 477-483, IEEE, 13th IEEE-RAS International Conference on Humanoid Robots, 2013 (inproceedings)

ei

DOI [BibTex]

DOI [BibTex]


no image
Geometric optimisation on positive definite matrices for elliptically contoured distributions

Sra, S., Hosseini, R.

In Advances in Neural Information Processing Systems 26, pages: 2562-2570, (Editors: C.J.C. Burges and L. Bottou and M. Welling and Z. Ghahramani and K.Q. Weinberger), 27th Annual Conference on Neural Information Processing Systems (NIPS), 2013 (inproceedings)

ei

PDF [BibTex]

PDF [BibTex]


no image
Fast Probabilistic Optimization from Noisy Gradients

Hennig, P.

In Proceedings of The 30th International Conference on Machine Learning, JMLR W&CP 28(1), pages: 62–70, (Editors: S Dasgupta and D McAllester), ICML, 2013 (inproceedings)

ei pn

PDF [BibTex]

PDF [BibTex]


no image
Structure and Dynamics of Information Pathways in On-line Media

Gomez Rodriguez, M., Leskovec, J., Schölkopf, B.

In 6th ACM International Conference on Web Search and Data Mining (WSDM), pages: 23-32, (Editors: S Leonardi, A Panconesi, P Ferragina, and A Gionis), ACM, WSDM, 2013 (inproceedings)

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Evaluation and Analysis of the Performance of the EXP3 Algorithm in Stochastic Environments

Seldin, Y., Szepesvári, C., Auer, P., Abbasi-Yadkori, Y.

In Proceedings of the Tenth European Workshop on Reinforcement Learning , pages: 103-116, (Editors: MP Deisenroth and C Szepesvári and J Peters), JMLR, EWRL, 2013 (inproceedings)

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Domain adaptation under Target and Conditional Shift

Zhang, K., Schölkopf, B., Muandet, K., Wang, Z.

In Proceedings of the 30th International Conference on Machine Learning, W&CP 28 (3), pages: 819–827, (Editors: S Dasgupta and D McAllester), JMLR, ICML, 2013 (inproceedings)

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
From Ordinary Differential Equations to Structural Causal Models: the deterministic case

Mooij, J., Janzing, D., Schölkopf, B.

In Proceedings of the Twenty-Ninth Conference Annual Conference on Uncertainty in Artificial Intelligence, pages: 440-448, (Editors: A Nicholson and P Smyth), AUAI Press, Corvallis, Oregon, UAI, 2013 (inproceedings)

ei

PDF [BibTex]

PDF [BibTex]


no image
A machine learning approach for non-blind image deconvolution

Schuler, C., Burger, H., Harmeling, S., Schölkopf, B.

In IEEE Conference on Computer Vision and Pattern Recognition, pages: 1067-1074, IEEE, CVPR, 2013 (inproceedings)

ei

Web Web DOI [BibTex]

Web Web DOI [BibTex]


no image
Autonomous Reinforcement Learning with Hierarchical REPS

Daniel, C., Neumann, G., Peters, J.

In Proceedings of the 2013 International Joint Conference on Neural Networks (IJCNN 2013), pages: 1-8, 2013 (inproceedings)

ei

DOI [BibTex]

DOI [BibTex]


no image
Geometric Tree Kernels: Classification of COPD from Airway Tree Geometry

Feragen, A., Petersen, J., Grimm, D., Dirksen, A., Pedersen, JH., Borgwardt, KM., de Bruijne, M.

In Information Processing in Medical Imaging, pages: 171-183, (Editors: JC Gee and S Joshi and KM Pohl and WM Wells and L Zöllei), Springer, Berlin Heidelberg, 23rd International Conference on Information Processing in Medical Imaging (IPMI), 2013, Lecture Notes in Computer Science, Vol. 7017 (inproceedings)

ei

DOI [BibTex]

DOI [BibTex]


no image
On estimation of functional causal models: Post-nonlinear causal model as an example

Zhang, K., Wang, Z., Schölkopf, B.

In First IEEE ICDM workshop on causal discovery , 2013, Held in conjunction with the 12th IEEE International Conference on Data Mining (ICDM 2013) (inproceedings)

ei

PDF [BibTex]

PDF [BibTex]


no image
Object Modeling and Segmentation by Robot Interaction with Cluttered Environments

van Hoof, H., Krömer, O., Peters, J.

In Proceedings of the IEEE International Conference on Humanoid Robots (HUMANOIDS), pages: 169-176, IEEE, 13th IEEE-RAS International Conference on Humanoid Robots, 2013 (inproceedings)

ei

DOI [BibTex]

DOI [BibTex]


no image
Reflection methods for user-friendly submodular optimization

Jegelka, S., Bach, F., Sra, S.

In Advances in Neural Information Processing Systems 26, pages: 1313-1321, (Editors: C.J.C. Burges and L. Bottou and M. Welling and Z. Ghahramani and K.Q. Weinberger), 27th Annual Conference on Neural Information Processing Systems (NIPS), 2013 (inproceedings)

ei

PDF [BibTex]

PDF [BibTex]


no image
On Flat versus Hierarchical Classification in Large-Scale Taxonomies

Babbar, R., Partalas, I., Gaussier, E., Amini, M.

In Advances in Neural Information Processing Systems 26, pages: 1824-1832, (Editors: C.J.C. Burges and L. Bottou and M. Welling and Z. Ghahramani and K.Q. Weinberger), 27th Annual Conference on Neural Information Processing Systems (NIPS), 2013 (inproceedings)

ei

PDF [BibTex]

PDF [BibTex]


no image
Data-Efficient Generalization of Robot Skills with Contextual Policy Search

Kupcsik, A., Deisenroth, M., Peters, J., Neumann, G.

In Proceedings of the 27th National Conference on Artificial Intelligence (AAAI 2013), (Editors: desJardins, M. and Littman, M. L.), AAAI Press, 2013 (inproceedings)

ei

PDF [BibTex]

PDF [BibTex]


no image
One-class Support Measure Machines for Group Anomaly Detection

Muandet, K., Schölkopf, B.

In Proceedings 29th Conference on Uncertainty in Artificial Intelligence (UAI), pages: 449-458, (Editors: Ann Nicholson and Padhraic Smyth), AUAI Press, Corvallis, Oregon, UAI, 2013 (inproceedings)

ei

PDF [BibTex]

PDF [BibTex]


no image
Modeling Information Propagation with Survival Theory

Gomez Rodriguez, M., Leskovec, J., Schölkopf, B.

In Proceedings of the 30th International Conference on Machine Learning, JMLR W&CP 28 (3), pages: 666-674, (Editors: S Dasgupta and D McAllester), JMLR, ICML, 2013 (inproceedings)

ei

Web [BibTex]

Web [BibTex]


no image
How to Test the Quality of Reconstructed Sources in Independent Component Analysis (ICA) of EEG/MEG Data

Grosse-Wentrup, M., Harmeling, S., Zander, T., Hill, J., Schölkopf, B.

In Proceedings of the 3rd International Workshop on Pattern Recognition in NeuroImaging (PRNI), pages: 102-105, IEEE Xplore Digital Library, PRNI, 2013 (inproceedings)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Identifying Finite Mixtures of Nonparametric Product Distributions and Causal Inference of Confounders

Sgouritsa, E., Janzing, D., Peters, J., Schölkopf, B.

In Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence (UAI), pages: 556-565, (Editors: A Nicholson and P Smyth), AUAI Press Corvallis, Oregon, USA, UAI, 2013 (inproceedings)

ei

PDF [BibTex]

PDF [BibTex]


no image
Improving alpha matting and motion blurred foreground estimation

Köhler, R., Hirsch, M., Schölkopf, B., Harmeling, S.

In IEEE Conference on Image Processing (ICIP), pages: 3446-3450, IEEE, ICIP, 2013 (inproceedings)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Towards Robot Skill Learning: From Simple Skills to Table Tennis

Peters, J., Kober, J., Mülling, K., Kroemer, O., Neumann, G.

In Machine Learning and Knowledge Discovery in Databases, Proceedings of the European Conference on Machine Learning, Part III (ECML 2013), LNCS 8190, pages: 627-631, (Editors: Blockeel, H.,Kersting, K., Nijssen, S., and Zelezný, F.), Springer, 2013 (inproceedings)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


Thumb xl error vs dt fine
Nonparametric dynamics estimation for time periodic systems

Klenske, E., Zeilinger, M., Schölkopf, B., Hennig, P.

In Proceedings of the 51st Annual Allerton Conference on Communication, Control, and Computing, pages: 486-493 , 2013 (inproceedings)

ei pn

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Scalable kernels for graphs with continuous attributes

Feragen, A., Kasenburg, N., Petersen, J., de Bruijne, M., Borgwardt, KM.

In Advances in Neural Information Processing Systems 26, pages: 216-224, (Editors: C.J.C. Burges and L. Bottou and M. Welling and Z. Ghahramani and K.Q. Weinberger), 27th Annual Conference on Neural Information Processing Systems (NIPS), 2013 (inproceedings)

ei

PDF [BibTex]

PDF [BibTex]


no image
Auto-Calibrating Spherical Deconvolution Based on ODF Sparsity

Schultz, T., Gröschel, S.

In Proceedings of Medical Image Computing and Computer-Assisted Intervention, Part I, pages: 663-670, (Editors: K Mori and I Sakuma and Y Sato and C Barillot and N Navab), Springer, MICCAI, 2013, Lecture Notes in Computer Science, vol. 8149 (inproceedings)

ei

DOI [BibTex]

DOI [BibTex]