Header logo is


2015


no image
Local control of domain wall dynamics in ferromagnetic rings

Richter, K., Mawass, M., Krone, A., Krüger, B., Weigand, M., Stoll, H., Schütz, G., Kläui, M.

In IEEE International Magnetics Conference (INTERMAG 2015), IEEE, Beijing, China, 2015 (inproceedings)

mms

DOI [BibTex]

2015


DOI [BibTex]


no image
Developing neural networks with neurons competing for survival

Peng, Z, Braun, DA

pages: 152-153, IEEE, Piscataway, NJ, USA, 5th Joint IEEE International Conference on Development and Learning and on Epigenetic Robotics (IEEE ICDL-EPIROB), August 2015 (conference)

Abstract
We study developmental growth in a feedforward neural network model inspired by the survival principle in nature. Each neuron has to select its incoming connections in a way that allow it to fire, as neurons that are not able to fire over a period of time degenerate and die. In order to survive, neurons have to find reoccurring patterns in the activity of the neurons in the preceding layer, because each neuron requires more than one active input at any one time to have enough activation for firing. The sensory input at the lowest layer therefore provides the maximum amount of activation that all neurons compete for. The whole network grows dynamically over time depending on how many patterns can be found and how many neurons can maintain themselves accordingly. We show in simulations that this naturally leads to abstractions in higher layers that emerge in a unsupervised fashion. When evaluating the network in a supervised learning paradigm, it is clear that our network is not competitive. What is interesting though is that this performance was achieved by neurons that simply struggle for survival and do not know about performance error. In contrast to most studies on neural evolution that rely on a network-wide fitness function, our goal was to show that learning behaviour can appear in a system without being driven by any specific utility function or reward signal.

ei

DOI [BibTex]

DOI [BibTex]


no image
When to use which heuristic: A rational solution to the strategy selection problem

Lieder, F., Griffiths, T. L.

In Proceedings of the 37th Annual Conference of the Cognitive Science Society, 2015 (inproceedings)

re

Project Page [BibTex]

Project Page [BibTex]


no image
From Humans to Robots and Back: Role of Arm Movement in Medio-lateral Balance Control

Huber, M, Chiovetto, E, Schaal, S., Giese, M., Sternad, D

In Annual Meeting of Neural Control of Movement, Charleston, NC, 2015 (inproceedings)

am

[BibTex]

[BibTex]


no image
Children and adults differ in their strategies for social learning

Lieder, F., Sim, Z., Hu, J., Griffiths, T., Xu, F.

In Proceedings of the 37th Annual Conference of the Cognitive Science Society, 2015 (inproceedings)

re

[BibTex]

[BibTex]


no image
Ultrafast demagnetization after laser pulse irradiation in Ni: Ab-initio electron-phonon scattering and phase space calculations

Illg, C., Haag, M., Fähnle, M.

In Ultrafast Magnetism I. Proceedings of the International Conference UMC 2013, 159, pages: 131-133, Springer Proceedings in Physics, Springer, Strasbourg, 2015 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Trajectory generation for multi-contact momentum control

Herzog, A., Rotella, N., Schaal, S., Righetti, L.

In 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), pages: 874-880, IEEE, Seoul, South Korea, 2015 (inproceedings)

Abstract
Simplified models of the dynamics such as the linear inverted pendulum model (LIPM) have proven to perform well for biped walking on flat ground. However, for more complex tasks the assumptions of these models can become limiting. For example, the LIPM does not allow for the control of contact forces independently, is limited to co-planar contacts and assumes that the angular momentum is zero. In this paper, we propose to use the full momentum equations of a humanoid robot in a trajectory optimization framework to plan its center of mass, linear and angular momentum trajectories. The model also allows for planning desired contact forces for each end-effector in arbitrary contact locations. We extend our previous results on linear quadratic regulator (LQR) design for momentum control by computing the (linearized) optimal momentum feedback law in a receding horizon fashion. The resulting desired momentum and the associated feedback law are then used in a hierarchical whole body control approach. Simulation experiments show that the approach is computationally fast and is able to generate plans for locomotion on complex terrains while demonstrating good tracking performance for the full humanoid control.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Super-Resolution Keyframe Fusion for 3D Modeling with High-Quality Textures

Maier, R., Stueckler, J., Cremers, D.

In International Conference on 3D Vision (3DV), October 2015, {[slides] [poster]} (inproceedings)

ev

[BibTex]

[BibTex]


no image
Utility-weighted sampling in decisions from experience

Lieder, F., Griffiths, T. L., Hsu, M.

In The 2nd Multidisciplinary Conference on Reinforcement Learning and Decision Making, 2015 (inproceedings)

re

[BibTex]

[BibTex]


no image
Nachhaltige Effekte simulatorbasierten Trainings auf eine ökologische Fahrweise [Sustainable effects of simulator-based training on ecological driving]

Lüderitz, C., Wirzberger, M., Karrer-Gauß, K.

In VerANTWORTung für die Arbeit der Zukunft, 61st Conference of the Society for Ergonomics and Work Science, GfA Press, Dortmund, 2015 (inproceedings)

re

[BibTex]

[BibTex]


no image
Automotive domain wall propagation in ferromagnetic rings

Richter, K., Mawass, M., Krone, A., Krüger, B., Weigand, M., Schütz, G., Stoll, H., Kläui, M.

In IEEE International Magnetics Conference (INTERMAG 2015), IEEE, Beijing, China, 2015 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Humanoid Momentum Estimation Using Sensed Contact Wrenches

Rotella, N., Herzog, A., Schaal, S., Righetti, L.

In 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), pages: 556-563, IEEE, Seoul, South Korea, 2015 (inproceedings)

Abstract
This work presents approaches for the estimation of quantities important for the control of the momentum of a humanoid robot. In contrast to previous approaches which use simplified models such as the Linear Inverted Pendulum Model, we present estimators based on the momentum dynamics of the robot. By using this simple yet dynamically-consistent model, we avoid the issues of using simplified models for estimation. We develop an estimator for the center of mass and full momentum which can be reformulated to estimate center of mass offsets as well as external wrenches applied to the robot. The observability of these estimators is investigated and their performance is evaluated in comparison to previous approaches.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Reconstructing Street-Scenes in Real-Time From a Driving Car

Usenko, V., Engel, J., Stueckler, J., Cremers, D.

In Proc. of the Int. Conference on 3D Vision (3DV), October 2015 (inproceedings)

ev

[BibTex]

[BibTex]


no image
Cognitive modeling meets instructional design: Exploring Cognitive Load Theory with ACT-R

Wirzberger, M., Rey, G. D.

In Trends in Neuroergonomics. Proceedings of the 11th Berlin Workshop Human-Machine Systems, pages: 190-193, Universitätsverlag der TU Berlin, Berlin, 2015 (inproceedings)

re

DOI [BibTex]

DOI [BibTex]


no image
The third dimension: Vortex core reversal by interaction with \textquotesingleflexure modes’

Noske, M., Stoll, H., Fähnle, M., Weigand, M., Dieterle, G., Förster, J., Gangwar, A., Slavin, A., Back, C. H., Schütz, G.

In IEEE International Magnetics Conference (INTERMAG 2015), IEEE, Beijing, China, 2015 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Skyrmions at room temperature in magnetic multilayers

Moreau-Luchaire, C., Reyren, N., Moutafis, C., Sampaio, J., Van Horne, N., Vaz, C. A., Warnicke, P., Garcia, K., Weigand, M., Bouzehouane, K., Deranlot, C., George, J., Raabe, J., Cros, V., Fert, A.

In IEEE International Magnetics Conference (INTERMAG 2015), IEEE, Beijing, China, 2015 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]

2005


no image
Kernel ICA for Large Scale Problems

Jegelka, S., Gretton, A., Achlioptas, D.

In pages: -, NIPS Workshop on Large Scale Kernel Machines, December 2005 (inproceedings)

ei

Web [BibTex]

2005


Web [BibTex]


no image
Infinite dimensional exponential families by reproducing kernel Hilbert spaces

Fukumizu, K.

In IGAIA 2005, pages: 324-333, 2nd International Symposium on Information Geometry and its Applications, December 2005 (inproceedings)

Abstract
The purpose of this paper is to propose a method of constructing exponential families of Hilbert manifold, on which estimation theory can be built. Although there have been works on infinite dimensional exponential families of Banach manifolds (Pistone and Sempi, 1995; Gibilisco and Pistone, 1998; Pistone and Rogantin, 1999), they are not appropriate to discuss statistical estimation with finite number of samples; the likelihood function with finite samples is not continuous on the manifold. In this paper we use a reproducing kernel Hilbert space as a functional space for constructing an exponential manifold. A reproducing kernel Hilbert space is dened as a Hilbert space of functions such that evaluation of a function at an arbitrary point is a continuous functional on the Hilbert space. Since we can discuss the value of a function with this space, it is very natural to use a manifold associated with a reproducing kernel Hilbert space as a basis of estimation theory. We focus on the maximum likelihood estimation (MLE) with the exponential manifold of a reproducing kernel Hilbert space. As in many non-parametric estimation methods, straightforward extension of MLE to an infinite dimensional exponential manifold suffers the problem of ill-posedness caused by the fact that the estimator should be chosen from the infinite dimensional space with only finite number of constraints given by the data. To solve this problem, a pseudo-maximum likelihood method is proposed by restricting the infinite dimensional manifold to a series of finite dimensional submanifolds, which enlarge as the number of samples increases. Some asymptotic results in the limit of infinite samples are shown, including the consistency of the pseudo-MLE.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Shortest-path kernels on graphs

Borgwardt, KM., Kriegel, H-P.

In pages: 74-81, IEEE Computer Society, Los Alamitos, CA, USA, Fifth International Conference on Data Mining (ICDM), November 2005 (inproceedings)

Abstract
Data mining algorithms are facing the challenge to deal with an increasing number of complex objects. For graph data, a whole toolbox of data mining algorithms becomes available by defining a kernel function on instances of graphs. Graph kernels based on walks, subtrees and cycles in graphs have been proposed so far. As a general problem, these kernels are either computationally expensive or limited in their expressiveness. We try to overcome this problem by defining expressive graph kernels which are based on paths. As the computation of all paths and longest paths in a graph is NP-hard, we propose graph kernels based on shortest paths. These kernels are computable in polynomial time, retain expressivity and are still positive definite. In experiments on classification of graph models of proteins, our shortest-path kernels show significantly higher classification accuracy than walk-based kernels.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Training Support Vector Machines with Multiple Equality Constraints

Kienzle, W., Schölkopf, B.

In Proceedings of the 16th European Conference on Machine Learning, Lecture Notes in Computer Science, Vol. 3720, pages: 182-193, (Editors: JG Carbonell and J Siekmann), Springer, Berlin, Germany, ECML, November 2005 (inproceedings)

Abstract
In this paper we present a primal-dual decomposition algorithm for support vector machine training. As with existing methods that use very small working sets (such as Sequential Minimal Optimization (SMO), Successive Over-Relaxation (SOR) or the Kernel Adatron (KA)), our method scales well, is straightforward to implement, and does not require an external QP solver. Unlike SMO, SOR and KA, the method is applicable to a large number of SVM formulations regardless of the number of equality constraints involved. The effectiveness of our algorithm is demonstrated on a more difficult SVM variant in this respect, namely semi-parametric support vector regression.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Measuring Statistical Dependence with Hilbert-Schmidt Norms

Gretton, A., Bousquet, O., Smola, A., Schoelkopf, B.

In Algorithmic Learning Theory, Lecture Notes in Computer Science, Vol. 3734, pages: 63-78, (Editors: S Jain and H-U Simon and E Tomita), Springer, Berlin, Germany, 16th International Conference ALT, October 2005 (inproceedings)

Abstract
We propose an independence criterion based on the eigenspectrum of covariance operators in reproducing kernel Hilbert spaces (RKHSs), consisting of an empirical estimate of the Hilbert-Schmidt norm of the cross-covariance operator (we term this a Hilbert-Schmidt Independence Criterion, or HSIC). This approach has several advantages, compared with previous kernel-based independence criteria. First, the empirical estimate is simpler than any other kernel dependence test, and requires no user-defined regularisation. Second, there is a clearly defined population quantity which the empirical estimate approaches in the large sample limit, with exponential convergence guaranteed between the two: this ensures that independence tests based on {methodname} do not suffer from slow learning rates. Finally, we show in the context of independent component analysis (ICA) that the performance of HSIC is competitive with that of previously published kernel-based criteria, and of other recently published ICA methods.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
An Analysis of the Anti-Learning Phenomenon for the Class Symmetric Polyhedron

Kowalczyk, A., Chapelle, O.

In Algorithmic Learning Theory: 16th International Conference, pages: 78-92, Algorithmic Learning Theory, October 2005 (inproceedings)

Abstract
This paper deals with an unusual phenomenon where most machine learning algorithms yield good performance on the training set but systematically worse than random performance on the test set. This has been observed so far for some natural data sets and demonstrated for some synthetic data sets when the classification rule is learned from a small set of training samples drawn from some high dimensional space. The initial analysis presented in this paper shows that anti-learning is a property of data sets and is quite distinct from overfitting of a training data. Moreover, the analysis leads to a specification of some machine learning procedures which can overcome anti-learning and generate ma- chines able to classify training and test data consistently.

ei

PDF [BibTex]

PDF [BibTex]


Thumb xl pets 2005 copy
A quantitative evaluation of video-based 3D person tracking

Balan, A. O., Sigal, L., Black, M. J.

In The Second Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, VS-PETS, pages: 349-356, October 2005 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


no image
Perception of Curvature and Object Motion Via Contact Location Feedback

Provancher, W. R., Kuchenbecker, K. J., Niemeyer, G., Cutkosky, M. R.

In Proceedings of the International Symposium on Robotics Research (ISRR), 15, pages: 456-465, Springer Tracts in Advanced Robotics, Springer, Siena, Italy, 2005, Oral presentation given by Provancher in October of 2003 (inproceedings)

hi

[BibTex]

[BibTex]


no image
A new methodology for robot controller design

Peters, J., Peters, J., Mistry, M., Udwadia, F.

In Proceedings of the 5th ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC‘05), 5, pages: 1067-1076 , ASME, New York, NY, USA, 5th ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC-MSNDC), September 2005 (inproceedings)

Abstract
Gauss' principle of least constraint and its generalizations have provided a useful insights for the development of tracking controllers for mechanical systems [1]. Using this concept, we present a novel methodology for the design of a specific class of robot controllers. With our new framework, we demonstrate that well-known and also several novel nonlinear robot control laws can be derived from this generic framework, and show experimental verifications on a Sarcos Master Arm robot for some of these controllers. We believe that the suggested approach unifies and simplifies the design of optimal nonlinear control laws for robots obeying rigid body dynamics equations, both with or without external constraints, holonomic or nonholonomic constraints, with over-actuation or underactuation, as well as open-chain and closed-chain kinematics.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
EEG-Based Mental Task Classification: Linear and Nonlinear Classification of Movement Imagery

Athena Akrami, A.

In EMBS, 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), September 1-4,, Shanghai, China (Accepted), September 2005 (inproceedings) Accepted

Abstract
Abstract—Use of EEG signals as a channel of communication between men and machines represents one of the current challenges in signal theory research. The principal element of such a communication system, known as a “Brain-Computer Interface,” is the interpretation of the EEG signals related to the characteristic parameters of brain electrical activity. Our goal in this work was extracting quantitative changes in the EEG due to movement imagination. Subject‘s EEG was recorded while he performed left or right hand movement imagination. Different feature sets extracted from EEG were used as inputs into linear, Neural Network and HMM classifiers for the purpose of imagery movement mental task classification. The results indicate that applying linear classifier to 5 frequency features of asymmetry signal produced from channel C3 and C4 can provide a very high classification accuracy percentage as a simple classifier with small number of features comparing to other feature sets.

ei

[BibTex]

[BibTex]


Thumb xl embs05
Inferring attentional state and kinematics from motor cortical firing rates

Wood, F., Prabhat, , Donoghue, J. P., Black, M. J.

In Proc. IEEE Engineering in Medicine and Biology Society, pages: 1544-1547, September 2005 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


Thumb xl arma
Motor cortical decoding using an autoregressive moving average model

Fisher, J., Black, M. J.

In Proc. IEEE Engineering in Medicine and Biology Society, pages: 1469-1472, September 2005 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


no image
Building Sparse Large Margin Classifiers

Wu, M., Schölkopf, B., BakIr, G.

In Proceedings of the 22nd International Conference on Machine Learning, pages: 996-1003, (Editors: L De Raedt and S Wrobel ), ACM, New York, NY, USA, ICML , August 2005 (inproceedings)

Abstract
This paper presents an approach to build Sparse Large Margin Classifiers (SLMC) by adding one more constraint to the standard Support Vector Machine (SVM) training problem. The added constraint explicitly controls the sparseness of the classifier and an approach is provided to solve the formulated problem. When considering the dual of this problem, it can be seen that building an SLMC is equivalent to constructing an SVM with a modified kernel function. Further analysis of this kernel function indicates that the proposed approach essentially finds a discriminating subspace that can be spanned by a small number of vectors, and in this subspace different classes of data are linearly well separated. Experimental results over several classification benchmarks show that in most cases the proposed approach outperforms the state-of-art sparse learning algorithms.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
A unifying methodology for the control of robotic systems

Peters, J., Mistry, M., Udwadia, F., Cory, R., Nakanishi, J., Schaal, S.

In Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2005), pages: 1824-1831, IEEE Operations Center, Piscataway, NJ, USA, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), August 2005 (inproceedings)

Abstract
Recently, R. E. Udwadia (2003) suggested to derive tracking controllers for mechanical systems using a generalization of Gauss‘ principle of least constraint. This method allows us to reformulate control problems as a special class of optimal control. We take this line of reasoning one step further and demonstrate that well-known and also several novel nonlinear robot control laws can be derived from this generic methodology. We show experimental verifications on a Sarcos Master Arm robot for some of the derived controllers. We believe that the suggested approach offers a promising unification and simplification of nonlinear control law design for robots obeying rigid body dynamics equations, both with or without external constraints, with over-actuation or underactuation, as well as open-chain and closed-chain kinematics.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Learning from Labeled and Unlabeled Data on a Directed Graph

Zhou, D., Huang, J., Schölkopf, B.

In Proceedings of the 22nd International Conference on Machine Learning, pages: 1041 -1048, (Editors: L De Raedt and S Wrobel), ACM, New York, NY, USA, ICML, August 2005 (inproceedings)

Abstract
We propose a general framework for learning from labeled and unlabeled data on a directed graph in which the structure of the graph including the directionality of the edges is considered. The time complexity of the algorithm derived from this framework is nearly linear due to recently developed numerical techniques. In the absence of labeled instances, this framework can be utilized as a spectral clustering method for directed graphs, which generalizes the spectral clustering approach for undirected graphs. We have applied our framework to real-world web classification problems and obtained encouraging results.

ei

PostScript PDF [BibTex]

PostScript PDF [BibTex]


no image
Regularization on Discrete Spaces

Zhou, D., Schölkopf, B.

In Pattern Recognition, Lecture Notes in Computer Science, Vol. 3663, pages: 361-368, (Editors: WG Kropatsch and R Sablatnig and A Hanbury), Springer, Berlin, Germany, 27th DAGM Symposium, August 2005 (inproceedings)

Abstract
We consider the classification problem on a finite set of objects. Some of them are labeled, and the task is to predict the labels of the remaining unlabeled ones. Such an estimation problem is generally referred to as transductive inference. It is well-known that many meaningful inductive or supervised methods can be derived from a regularization framework, which minimizes a loss function plus a regularization term. In the same spirit, we propose a general discrete regularization framework defined on finite object sets, which can be thought of as the discrete analogue of classical regularization theory. A family of transductive inference schemes is then systemically derived from the framework, including our earlier algorithm for transductive inference, with which we obtained encouraging results on many practical classification problems. The discrete regularization framework is built on the discrete analysis and geometry developed by ourselves, in which a number of discrete differential operators of various orders are constructed, which can be thought of as the discrete analogue of their counterparts in the continuous case.

ei

PDF PostScript DOI [BibTex]

PDF PostScript DOI [BibTex]


no image
Large Margin Non-Linear Embedding

Zien, A., Candela, J.

In ICML 2005, pages: 1065-1072, (Editors: De Raedt, L. , S. Wrobel), ACM Press, New York, NY, USA, 22nd International Conference on Machine Learning, August 2005 (inproceedings)

Abstract
It is common in classification methods to first place data in a vector space and then learn decision boundaries. We propose reversing that process: for fixed decision boundaries, we ``learn‘‘ the location of the data. This way we (i) do not need a metric (or even stronger structure) -- pairwise dissimilarities suffice; and additionally (ii) produce low-dimensional embeddings that can be analyzed visually. We achieve this by combining an entropy-based embedding method with an entropy-based version of semi-supervised logistic regression. We present results for clustering and semi-supervised classification.

ei

PDF PostScript Web DOI [BibTex]

PDF PostScript Web DOI [BibTex]


no image
Triangle Fixing Algorithms for the Metric Nearness Problem

Dhillon, I., Sra, S., Tropp, J.

In Advances in Neural Information Processing Systems 17, pages: 361-368, (Editors: Saul, L.K. , Y. Weiss, L. Bottou), MIT Press, Cambridge, MA, USA, Eighteenth Annual Conference on Neural Information Processing Systems (NIPS), July 2005 (inproceedings)

Abstract
Various problems in machine learning, databases, and statistics involve pairwise distances among a set of objects. It is often desirable for these distances to satisfy the properties of a metric, especially the triangle inequality. Applications where metric data is useful include clustering, classification, metric-based indexing, and approximation algorithms for various graph problems. This paper presents the Metric Nearness Problem: Given a dissimilarity matrix, find the "nearest" matrix of distances that satisfy the triangle inequalities. For lp nearness measures, this paper develops efficient triangle fixing algorithms that compute globally optimal solutions by exploiting the inherent structure of the problem. Empirically, the algorithms have time and storage costs that are linear in the number of triangle constraints. The methods can also be easily parallelized for additional speed.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Face Detection: Efficient and Rank Deficient

Kienzle, W., BakIr, G., Franz, M., Schölkopf, B.

In Advances in Neural Information Processing Systems 17, pages: 673-680, (Editors: LK Saul and Y Weiss and L Bottou), MIT Press, Cambridge, MA, USA, 18th Annual Conference on Neural Information Processing Systems (NIPS), July 2005 (inproceedings)

Abstract
This paper proposes a method for computing fast approximations to support vector decision functions in the field of object detection. In the present approach we are building on an existing algorithm where the set of support vectors is replaced by a smaller, so-called reduced set of synthesized input space points. In contrast to the existing method that finds the reduced set via unconstrained optimization, we impose a structural constraint on the synthetic points such that the resulting approximations can be evaluated via separable filters. For applications that require scanning an entire image, this decreases the computational complexity of a scan by a significant amount. We present experimental results on a standard face detection database.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Methods Towards Invasive Human Brain Computer Interfaces

Lal, T., Hinterberger, T., Widman, G., Schröder, M., Hill, J., Rosenstiel, W., Elger, C., Schölkopf, B., Birbaumer, N.

In Advances in Neural Information Processing Systems 17, pages: 737-744, (Editors: LK Saul and Y Weiss and L Bottou), MIT Press, Cambridge, MA, USA, 18th Annual Conference on Neural Information Processing Systems (NIPS), July 2005 (inproceedings)

Abstract
During the last ten years there has been growing interest in the development of Brain Computer Interfaces (BCIs). The field has mainly been driven by the needs of completely paralyzed patients to communicate. With a few exceptions, most human BCIs are based on extracranial electroencephalography (EEG). However, reported bit rates are still low. One reason for this is the low signal-to-noise ratio of the EEG. We are currently investigating if BCIs based on electrocorticography (ECoG) are a viable alternative. In this paper we present the method and examples of intracranial EEG recordings of three epilepsy patients with electrode grids placed on the motor cortex. The patients were asked to repeatedly imagine movements of two kinds, e.g., tongue or finger movements. We analyze the classifiability of the data using Support Vector Machines (SVMs) and Recursive Channel Elimination (RCE).

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
A Machine Learning Approach to Conjoint Analysis

Chapelle, O., Harchaoui, Z.

In Advances in Neural Information Processing Systems 17, pages: 257-264, (Editors: Saul, L.K. , Y. Weiss, L. Bottou), MIT Press, Cambridge, MA, USA, Eighteenth Annual Conference on Neural Information Processing Systems (NIPS), July 2005 (inproceedings)

Abstract
Choice-based conjoint analysis builds models of consumers preferences over products with answers gathered in questionnaires. Our main goal is to bring tools from the machine learning community to solve more efficiently this problem. Thus, we propose two algorithms to estimate quickly and accurately consumer preferences.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
An Auditory Paradigm for Brain-Computer Interfaces

Hill, N., Lal, T., Bierig, K., Birbaumer, N., Schölkopf, B.

In Advances in Neural Information Processing Systems 17, pages: 569-576, (Editors: LK Saul and Y Weiss and L Bottou), MIT Press, Cambridge, MA, USA, 18th Annual Conference on Neural Information Processing Systems (NIPS), July 2005 (inproceedings)

Abstract
Motivated by the particular problems involved in communicating with "locked-in" paralysed patients, we aim to develop a brain-computer interface that uses auditory stimuli. We describe a paradigm that allows a user to make a binary decision by focusing attention on one of two concurrent auditory stimulus sequences. Using Support Vector Machine classification and Recursive Channel Elimination on the independent components of averaged event-related potentials, we show that an untrained user's EEG data can be classified with an encouragingly high level of accuracy. This suggests that it is possible for users to modulate EEG signals in a single trial by the conscious direction of attention, well enough to be useful in BCI.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Matrix Exponential Gradient Updates for On-line Learning and Bregman Projection

Tsuda, K., Rätsch, G., Warmuth, M.

In Advances in Neural Information Processing Systems 17, pages: 1425-1432, (Editors: Saul, L.K. , Y. Weiss, L. Bottou), MIT Press, Cambridge, MA, USA, Eighteenth Annual Conference on Neural Information Processing Systems (NIPS), July 2005 (inproceedings)

Abstract
We address the problem of learning a symmetric positive definite matrix. The central issue is to design parameter updates that preserve positive definiteness. Our updates are motivated with the von Neumann divergence. Rather than treating the most general case, we focus on two key applications that exemplify our methods: On-line learning with a simple square loss and finding a symmetric positive definite matrix subject to symmetric linear constraints. The updates generalize the Exponentiated Gradient (EG) update and AdaBoost, respectively: the parameter is now a symmetric positive definite matrix of trace one instead of a probability vector (which in this context is a diagonal positive definite matrix with trace one). The generalized updates use matrix logarithms and exponentials to preserve positive definiteness. Most importantly, we show how the analysis of each algorithm generalizes to the non-diagonal case. We apply both new algorithms, called the Matrix Exponentiated Gradient (MEG) update and DefiniteBoost, to learn a kernel matrix from distance measurements.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Machine Learning Applied to Perception: Decision Images for Classification

Wichmann, F., Graf, A., Simoncelli, E., Bülthoff, H., Schölkopf, B.

In Advances in Neural Information Processing Systems 17, pages: 1489-1496, (Editors: LK, Saul and Y, Weiss and L, Bottou), MIT Press, Cambridge, MA, USA, 18th Annual Conference on Neural Information Processing Systems (NIPS), July 2005 (inproceedings)

Abstract
We study gender discrimination of human faces using a combination of psychophysical classification and discrimination experiments together with methods from machine learning. We reduce the dimensionality of a set of face images using principal component analysis, and then train a set of linear classifiers on this reduced representation (linear support vector machines (SVMs), relevance vector machines (RVMs), Fisher linear discriminant (FLD), and prototype (prot) classifiers) using human classification data. Because we combine a linear preprocessor with linear classifiers, the entire system acts as a linear classifier, allowing us to visualise the decision-image corresponding to the normal vector of the separating hyperplanes (SH) of each classifier. We predict that the female-to-maleness transition along the normal vector for classifiers closely mimicking human classification (SVM and RVM 1) should be faster than the transition along any other direction. A psychophysical discrimination experiment using the decision images as stimuli is consistent with this prediction.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Breaking SVM Complexity with Cross-Training

Bakir, G., Bottou, L., Weston, J.

In Advances in Neural Information Processing Systems 17, pages: 81-88, (Editors: Saul, L.K. , Y. Weiss, L. Bottou), MIT Press, Cambridge, MA, USA, Eighteenth Annual Conference on Neural Information Processing Systems (NIPS), July 2005 (inproceedings)

Abstract
We propose an algorithm for selectively removing examples from the training set using probabilistic estimates related to editing algorithms (Devijver and Kittler82). The procedure creates a separable distribution of training examples with minimal impact on the decision boundary position. It breaks the linear dependency between the number of SVs and the number of training examples, and sharply reduces the complexity of SVMs during both the training and prediction stages.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Implicit Wiener series for higher-order image analysis

Franz, M., Schölkopf, B.

In Advances in Neural Information Processing Systems 17, pages: 465-472, (Editors: LK Saul and Y Weiss and L Bottou), MIT Press, Cambridge, MA, USA, 18th Annual Conference on Neural Information Processing Systems (NIPS), July 2005 (inproceedings)

Abstract
The computation of classical higher-order statistics such as higher-order moments or spectra is difficult for images due to the huge number of terms to be estimated and interpreted. We propose an alternative approach in which multiplicative pixel interactions are described by a series of Wiener functionals. Since the functionals are estimated implicitly via polynomial kernels, the combinatorial explosion associated with the classical higher-order statistics is avoided. First results show that image structures such as lines or corners can be predicted correctly, and that pixel interactions up to the order of five play an important role in natural images.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Limits of Spectral Clustering

von Luxburg, U., Bousquet, O., Belkin, M.

In Advances in Neural Information Processing Systems 17, pages: 857-864, (Editors: Saul, L. K., Y. Weiss, L. Bottou), MIT Press, Cambridge, MA, USA, Eighteenth Annual Conference on Neural Information Processing Systems (NIPS), July 2005 (inproceedings)

Abstract
An important aspect of clustering algorithms is whether the partitions constructed on finite samples converge to a useful clustering of the whole data space as the sample size increases. This paper investigates this question for normalized and unnormalized versions of the popular spectral clustering algorithm. Surprisingly, the convergence of unnormalized spectral clustering is more difficult to handle than the normalized case. Even though recently some first results on the convergence of normalized spectral clustering have been obtained, for the unnormalized case we have to develop a completely new approach combining tools from numerical integration, spectral and perturbation theory, and probability. It turns out that while in the normalized case, spectral clustering usually converges to a nice partition of the data space, in the unnormalized case the same only holds under strong additional assumptions which are not always satisfied. We conclude that our analysis gives strong evidence for the superiority of normalized spectral clustering. It also provides a basis for future exploration of other Laplacian-based methods.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Semi-supervised Learning on Directed Graphs

Zhou, D., Schölkopf, B., Hofmann, T.

In Advances in Neural Information Processing Systems 17, pages: 1633-1640, (Editors: LK Saul and Y Weiss and L Bottou), MIT Press, Cambridge, MA, USA, 18th Annual Conference on Neural Information Processing Systems (NIPS), July 2005 (inproceedings)

Abstract
Given a directed graph in which some of the nodes are labeled, we investigate the question of how to exploit the link structure of the graph to infer the labels of the remaining unlabeled nodes. To that extent we propose a regularization framework for functions defined over nodes of a directed graph that forces the classification function to change slowly on densely linked subgraphs. A powerful, yet computationally simple classification algorithm is derived within the proposed framework. The experimental evaluation on real-world Web classification problems demonstrates encouraging results that validate our approach.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Splines with non positive kernels

Canu, S., Ong, CS., Mary, X.

In 5th International ISAAC Congress, pages: 1-10, (Editors: Begehr, H. G.W., F. Nicolosi), World Scientific, Singapore, 5th International ISAAC Congress, July 2005 (inproceedings)

Abstract
Non parametric regressions methods can be presented in two main clusters. The one of smoothing splines methods requiring positive kernels and the other one known as Nonparametric Kernel Regression allowing the use of non positive kernels such as the Epanechnikov kernel. We propose a generalization of the smoothing spline method to include kernels which are still symmetric but not positive semi definite (they are called indefinite). The general relationship between smoothing spline, Reproducing Kernel Hilbert Spaces and positive kernels no longer exists with indefinite kernel. Instead they are associated with functional spaces called Reproducing Kernel Krein Spaces (RKKS) embedded with an indefinite inner product and thus not directly associated with a norm. Smothing splines in RKKS have many of the interesting properties of splines in RKHS, such as orthogon ality, projection, representer theorem and generalization bounds. We show that smoothing splines can be defined in RKKS as the regularized solution of the interpolation problem. Since no norm is available in a RKKS, Tikhonov regularization cannot be defined. Instead, we proposed to use iterative methods of conjugate gradient type with early stopping as regularization mechanism. Several iterative algorithms were collected which can be used to solve the optimization problems associated with learning in indefinite spaces. Some preliminary experiments with indefinite kernels for spline smoothing are reported revealing the computational efficiency of the approach.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Kernel Methods for Implicit Surface Modeling

Schölkopf, B., Giesen, J., Spalinger, S.

In Advances in Neural Information Processing Systems 17, pages: 1193-1200, (Editors: LK Saul and Y Weiss and L Bottou), MIT Press, Cambridge, MA, USA, 18th Annual Conference on Neural Information Processing Systems (NIPS), July 2005 (inproceedings)

Abstract
We describe methods for computing an implicit model of a hypersurface that is given only by a finite sampling. The methods work by mapping the sample points into a reproducing kernel Hilbert space and then determining regions in terms of hyperplanes.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Combining Local and Global Image Features for Object Class Recognition

Lisin, DA., Mattar, MA., Blaschko, MB., Benfield, MC., Learned-Miller, EG.

In CVPR, pages: 47-47, CVPR, June 2005 (inproceedings)

ei

[BibTex]

[BibTex]


Thumb xl cvpr2005
Fields of Experts: A framework for learning image priors

Roth, S., Black, M. J.

In IEEE Conf. on Computer Vision and Pattern Recognition, 2, pages: 860-867, June 2005 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


no image
To apply score function difference based ICA algorithms to high-dimensional data

Zhang, K., Chan, L.

In Proceedings of the 13th European Symposium on Artificial Neural Networks (ESANN 2005), pages: 291-297, 13th European Symposium on Artificial Neural Networks (ESANN), April 2005 (inproceedings)

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Joint Regularization

Borgwardt, KM., Guttman, O., Vishwanathan, SVN., Smola, AJ.

In pages: 455-460, (Editors: Verleysen, M.), d-side, Evere, Belgium, 13th European Symposium on Artificial Neural Networks (ESANN), April 2005 (inproceedings)

Abstract
We present a principled method to combine kernels under joint regularization constraints. Central to our method is an extension of the representer theorem for handling multiple joint regularization constraints. Experimental evidence shows the feasibility of our approach.

ei

PDF Web [BibTex]

PDF Web [BibTex]