Header logo is


2005


no image
Timescale settling and nature of electron transport in magnetite - General considerations in view of new magnetic after-effect results on dilutely Ti4+-doped Fe3O4

Walz, F., Brabers, V. A. M., Brabers, J. H. V. J., Kronmüller, H.

{Journal of Physics: Condensed Matter}, 17(42):6763-6781, 2005 (article)

mms

[BibTex]

2005


[BibTex]


no image
Topological k-space refinement of the configurational energy of alloys

Shchyglo, O., Bugaev, V. N., Drautz, R., Udyansky, A., Reichert, H., Dosch, H.

{Physical Review B}, 72(14), 2005 (article)

mms

[BibTex]

[BibTex]


no image
Large surface area nanostructures for hydrogen storage

Hirscher, M., Panella, B.

{Annales de Chimie}, 30(5):519-529, 2005 (article)

mms

[BibTex]

[BibTex]


no image
Electronic and magnetic properties of ligand-free FePt nanoparticles

Boyen, H., Fauth, K., Stahl, B., Ziemann, P., Kästle, G., Weigl, F., Banhart, F., He\ssler, M., Schütz, G., Gajbhiye, N. S., Ellrich, J., Hahn, H., Büttner, M., Garnier, M. G., Oelhafen, P.

{Advanced Materials}, 17(5):574-578, 2005 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Identification of extrinsic Mn contributions in Ga1-xMnxAs by field-dependent magnetic circular X-ray dichroism

Rader, O., Fauth, K., Gould, C., Rüster, C., Schott, G. M., Schmidt, G., Brunner, K., Molenkamp, L. W., Schütz, G., Kronast, F., Dürr, H. A., Eberhardt, W., Gudat, W.

{Journal of Electron Spectroscopy and Related Phenomena}, 144(Sp. issue):789-792, 2005 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Fundamentals of interface phenomena in advanced bulk nanoscale materials

Baretzky, B., Baró, M. D., Grabovetskaya, G. P., Gubicza, J., Ivanov, M. B., Kolobov, Y. R., Langdon, T. G., Lendvai, J., Lipnitskii, A. G., Mazilkin, A. A., Nazarov, A. A., Nogués, J., Ovidko, I. A., Protasova, S. G., Raab, G. I., Révész, Á., Skiba, N. V., Sort, J., Starink, M. J., Straumal, B. B., Suriñach, S., Ungár, T., Zhilyaev, A. P.

{Reviews on Advanced Materials Science}, 9(1):45-108, 2005 (article)

mms

[BibTex]

[BibTex]


no image
Formation of nanostructure during high-pressure torsion of Al-Zn, Al-Mg and Al-Zn-Mg alloys

Mazilkin, A. A., Kogtenkova, O. A., Straumal, B. B., Ruslan, Z, Valiev, Z., Baretzky, B.

{Defect and Diffusion Forum}, 237-240, pages: 739-744, 2005 (article)

mms

[BibTex]

[BibTex]


no image
Micromagnetic simulation as a bridge between magnetic-force and magnetic-transmission X-ray microscopy

Bolte, M., Eiselt, R., Eimüller, T.

{Journal of Magnetism and Magnetic Materials}, 290, pages: 723-726, 2005 (article)

mms

[BibTex]

[BibTex]


no image
Grain-boundary melting phase transition in the Cu-Bi system

Divinski, S., Lohmann, M., Herzig, C., Straumal, B., Baretzky, B., Gust, W.

{Physical Review B}, 71, 2005 (article)

mms

[BibTex]

[BibTex]

1995


no image
A kendama learning robot based on a dynamic optimization theory

Miyamoto, H., Gandolfo, F., Gomi, H., Schaal, S., Koike, Y., Osu, R., Nakano, E., Kawato, M.

In Preceedings of the 4th IEEE International Workshop on Robot and Human Communication (RO-MAN’95), pages: 327-332, Tokyo, July 1995, clmc (inproceedings)

am

[BibTex]

1995


[BibTex]


no image
Visual tracking for moving multiple objects: an integration of vision and control

Sitti, M, Bozma, I, Denker, A

In Industrial Electronics, 1995. ISIE’95., Proceedings of the IEEE International Symposium on, 2, pages: 535-540, 1995 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Batting a ball: Dynamics of a rhythmic skill

Sternad, D., Schaal, S., Atkeson, C. G.

In Studies in Perception and Action, pages: 119-122, (Editors: Bardy, B.;Bostma, R.;Guiard, Y.), Erlbaum, Hillsdayle, NJ, 1995, clmc (inbook)

am

[BibTex]

[BibTex]


no image
Memory-based neural networks for robot learning

Atkeson, C. G., Schaal, S.

Neurocomputing, 9, pages: 1-27, 1995, clmc (article)

Abstract
This paper explores a memory-based approach to robot learning, using memory-based neural networks to learn models of the task to be performed. Steinbuch and Taylor presented neural network designs to explicitly store training data and do nearest neighbor lookup in the early 1960s. In this paper their nearest neighbor network is augmented with a local model network, which fits a local model to a set of nearest neighbors. This network design is equivalent to a statistical approach known as locally weighted regression, in which a local model is formed to answer each query, using a weighted regression in which nearby points (similar experiences) are weighted more than distant points (less relevant experiences). We illustrate this approach by describing how it has been used to enable a robot to learn a difficult juggling task. Keywords: memory-based, robot learning, locally weighted regression, nearest neighbor, local models.

am

link (url) [BibTex]

link (url) [BibTex]