Header logo is


2015


no image
Positive definite matrices and the S-divergence

Sra, S.

Proceedings of the American Mathematical Society, 2015, Published electronically: October 22, 2015 (article)

ei

DOI [BibTex]

2015


DOI [BibTex]


no image
Adaptive information-theoretic bounded rational decision-making with parametric priors

Grau-Moya, J, Braun, DA

pages: 1-4, NIPS Workshop on Bounded Optimality and Rational Metareasoning, December 2015 (conference)

Abstract
Deviations from rational decision-making due to limited computational resources have been studied in the field of bounded rationality, originally proposed by Herbert Simon. There have been a number of different approaches to model bounded rationality ranging from optimality principles to heuristics. Here we take an information-theoretic approach to bounded rationality, where information-processing costs are measured by the relative entropy between a posterior decision strategy and a given fixed prior strategy. In the case of multiple environments, it can be shown that there is an optimal prior rendering the bounded rationality problem equivalent to the rate distortion problem for lossy compression in information theory. Accordingly, the optimal prior and posterior strategies can be computed by the well-known Blahut-Arimoto algorithm which requires the computation of partition sums over all possible outcomes and cannot be applied straightforwardly to continuous problems. Here we derive a sampling-based alternative update rule for the adaptation of prior behaviors of decision-makers and we show convergence to the optimal prior predicted by rate distortion theory. Importantly, the update rule avoids typical infeasible operations such as the computation of partition sums. We show in simulations a proof of concept for discrete action and environment domains. This approach is not only interesting as a generic computational method, but might also provide a more realistic model of human decision-making processes occurring on a fast and a slow time scale.

ei

[BibTex]

[BibTex]


no image
Structural Intervention Distance (SID) for Evaluating Causal Graphs

Peters, J., Bühlmann, P.

Neural Computation , 27(3):771-799, 2015 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Likelihood and Consilience: On Forster’s Counterexamples to the Likelihood Theory of Evidence

Zhang, J., Zhang, K.

Philosophy of Science, Supplementary Volume 2015, 82(5):930-940, 2015 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Increasing the sensitivity of Kepler to Earth-like exoplanets

Foreman-Mackey, D., Hogg, D., Schölkopf, B., Wang, D.

Workshop: 225th American Astronomical Society Meeting 2015 , pages: 105.01D, 2015 (poster)

ei

Web link (url) [BibTex]

Web link (url) [BibTex]


no image
Information-Theoretic Implications of Classical and Quantum Causal Structures

Chaves, R., Majenz, C., Luft, L., Maciel, T., Janzing, D., Schölkopf, B., Gross, D.

18th Conference on Quantum Information Processing (QIP), 2015 (talk)

ei

Web link (url) [BibTex]

Web link (url) [BibTex]


no image
Crowdsourced analysis of clinical trial data to predict amyotrophic lateral sclerosis progression

Küffner, R., Zach, N., Norel, R., Hawe, J., Schoenfeld, D., Wang, L., Li, G., Fang, L., Mackey, L., Hardiman, O., Cudkowicz, M., Sherman, A., Ertaylan, G., Grosse-Wentrup, M., Hothorn, T., van Ligtenberg, J., Macke, J., Meyer, T., Schölkopf, B., Tran, L., Vaughan, R., Stolovitzky, G., Leitner, M.

Nature Biotechnology, 33, pages: 51-57, 2015 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Inference of Cause and Effect with Unsupervised Inverse Regression

Sgouritsa, E., Janzing, D., Hennig, P., Schölkopf, B.

In Proceedings of the 18th International Conference on Artificial Intelligence and Statistics, 38, pages: 847-855, JMLR Workshop and Conference Proceedings, (Editors: Lebanon, G. and Vishwanathan, S.V.N.), JMLR.org, AISTATS, 2015 (inproceedings)

ei pn

Web PDF [BibTex]

Web PDF [BibTex]


no image
Distinguishing Cause from Effect Based on Exogeneity

Zhang, K., Zhang, J., Schölkopf, B.

In Fifteenth Conference on Theoretical Aspects of Rationality and Knowledge, pages: 261-271, (Editors: Ramanujam, R.), TARK, 2015 (inproceedings)

ei

[BibTex]

[BibTex]


no image
Probabilistic Interpretation of Linear Solvers

Hennig, P.

SIAM Journal on Optimization, 25(1):234-260, 2015 (article)

ei pn

Web PDF link (url) DOI [BibTex]

Web PDF link (url) DOI [BibTex]


no image
Developing biorobotics for veterinary research into cat movements

Mariti, C., Muscolo, G., Peters, J., Puig, D., Recchiuto, C., Sighieri, C., Solanas, A., von Stryk, O.

Journal of Veterinary Behavior: Clinical Applications and Research, 10(3):248-254, 2015 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Identification of Time-Dependent Causal Model: A Gaussian Process Treatment

Huang, B., Zhang, K., Schölkopf, B.

In 24th International Joint Conference on Artificial Intelligence, Machine Learning Track, pages: 3561-3568, (Editors: Yang, Q. and Wooldridge, M.), AAAI Press, Palo Alto, California USA, IJCAI15, 2015 (inproceedings)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Spatial statistics and attentional dynamics in scene viewing

Engbert, R., Trukenbrod, H., Barthelmé, S., Wichmann, F.

Journal of Vision, 15(1):1-17, 2015 (article)

ei

Web PDF link (url) DOI [BibTex]

Web PDF link (url) DOI [BibTex]


no image
The Randomized Causation Coefficient

Lopez-Paz, D., Muandet, K., Recht, B.

Journal of Machine Learning, 16, pages: 2901-2907, 2015 (article)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Towards denoising XMCD movies of fast magnetization dynamics using extended Kalman filter

Kopp, M., Harmeling, S., Schütz, G., Schölkopf, B., Fähnle, M.

Ultramicroscopy, 148, pages: 115-122, 2015 (article)

Abstract
The Kalman filter is a well-established approach to get information on the time-dependent state of a system from noisy observations. It was developed in the context of the Apollo project to see the deviation of the true trajectory of a rocket from the desired trajectory. Afterwards it was applied to many different systems with small numbers of components of the respective state vector (typically about 10). In all cases the equation of motion for the state vector was known exactly. The fast dissipative magnetization dynamics is often investigated by x-ray magnetic circular dichroism movies (XMCD movies), which are often very noisy. In this situation the number of components of the state vector is extremely large (about 105), and the equation of motion for the dissipative magnetization dynamics (especially the values of the material parameters of this equation) is not well known. In the present paper it is shown by theoretical considerations that – nevertheless – there is no principle problem for the use of the Kalman filter to denoise XMCD movies of fast dissipative magnetization dynamics.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Multi-Source Domain Adaptation: A Causal View

Zhang, K., Gong, M., Schölkopf, B.

In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, pages: 3150-3157, AAAI Press, AAAI, 2015 (inproceedings)

ei

Web PDF link (url) [BibTex]

Web PDF link (url) [BibTex]


no image
Learning of Non-Parametric Control Policies with High-Dimensional State Features

van Hoof, H., Peters, J., Neumann, G.

In Proceedings of the 18th International Conference on Artificial Intelligence and Statistics, 38, pages: 995–1003, (Editors: Lebanon, G. and Vishwanathan, S.V.N. ), JMLR, AISTATS, 2015 (inproceedings)

am ei

link (url) [BibTex]

link (url) [BibTex]


no image
Artificial intelligence: Learning to see and act

Schölkopf, B.

Nature, News & Views, 518(7540):486-487, 2015 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Context affects lightness at the level of surfaces

Maertens, M., Wichmann, F., Shapley, R.

Journal of Vision, 15(1):1-15, 2015 (article)

ei

Web PDF link (url) DOI [BibTex]

Web PDF link (url) DOI [BibTex]


no image
Towards a Learning Theory of Cause-Effect Inference

Lopez-Paz, D., Muandet, K., Schölkopf, B., Tolstikhin, I.

In Proceedings of the 32nd International Conference on Machine Learning, 37, pages: 1452–1461, JMLR Workshop and Conference Proceedings, (Editors: F. Bach and D. Blei), JMLR, ICML, 2015 (inproceedings)

ei

Web [BibTex]

Web [BibTex]


no image
Calibrating the pixel-level Kepler imaging data with a causal data-driven model

Wang, D., Foreman-Mackey, D., Hogg, D., Schölkopf, B.

Workshop: 225th American Astronomical Society Meeting 2015 , pages: 258.08, 2015 (poster)

ei

Web link (url) [BibTex]

Web link (url) [BibTex]


no image
Genome-wide analysis of local chromatin packing in Arabidopsis thaliana

Wang, C., Liu, C., Roqueiro, D., Grimm, D., Schwab, R., Becker, C., Lanz, C., Weigel, D.

Genome Research, 25(2):246-256, 2015 (article)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
BundleMAP: Anatomically Localized Features from dMRI for Detection of Disease

Khatami, M., Schmidt-Wilcke, T., Sundgren, P., Abbasloo, A., Schölkopf, B., Schultz, T.

In 6th International Workshop on Machine Learning in Medical Imaging, 9352, pages: 52-60, Lecture Notes in Computer Science, (Editors: L. Zhou, L. Wang, Q. Wang and Y. Shi), Springer, MLMI, 2015 (inproceedings)

ei

DOI [BibTex]

DOI [BibTex]


no image
Data-Driven Online Decision Making for Autonomous Manipulation

Kappler, D., Pastor, P., Kalakrishnan, M., Wuthrich, M., Schaal, S.

In Proceedings of Robotics: Science and Systems, Rome, Italy, 2015 (inproceedings)

am

Project Page [BibTex]

Project Page [BibTex]


Thumb xl screenshot from 2015 09 14 11 58 36
Predicting Human Reaching Motion in Collaborative Tasks Using Inverse Optimal Control and Iterative Re-planning

Mainprice, J., Hayne, R., Berenson, D.

In Proceedings of the IEEE International Conference on Robotics and Automation, 2015 (inproceedings)

am

Project Page [BibTex]

Project Page [BibTex]


no image
Hierarchical Label Queries with Data-Dependent Partitions

Kpotufe, S., Urner, R., Ben-David, S.

In Proceedings of the 28th Conference on Learning Theory, 40, pages: 1176-1189, (Editors: Grünwald, P. and Hazan, E. and Kale, S. ), JMLR, COLT, 2015 (inproceedings)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Semi-Autonomous 3rd-Hand Robot

Lopes, M., Peters, J., Piater, J., Toussaint, M., Baisero, A., Busch, B., Erkent, O., Kroemer, O., Lioutikov, R., Maeda, G., Mollard, Y., Munzer, T., Shukla, D.

In Workshop on Cognitive Robotics in Future Manufacturing Scenarios, European Robotics Forum, 2015 (inproceedings)

am ei

link (url) [BibTex]

link (url) [BibTex]


no image
A Cognitive Brain-Computer Interface for Patients with Amyotrophic Lateral Sclerosis

Hohmann, M.

Graduate Training Centre of Neuroscience, University of Tübingen, Germany, 2015 (mastersthesis)

ei

[BibTex]

[BibTex]


Thumb xl flowcap im
FlowCap: 2D Human Pose from Optical Flow

Romero, J., Loper, M., Black, M. J.

In Pattern Recognition, Proc. 37th German Conference on Pattern Recognition (GCPR), LNCS 9358, pages: 412-423, Springer, GCPR, 2015 (inproceedings)

Abstract
We estimate 2D human pose from video using only optical flow. The key insight is that dense optical flow can provide information about 2D body pose. Like range data, flow is largely invariant to appearance but unlike depth it can be directly computed from monocular video. We demonstrate that body parts can be detected from dense flow using the same random forest approach used by the Microsoft Kinect. Unlike range data, however, when people stop moving, there is no optical flow and they effectively disappear. To address this, our FlowCap method uses a Kalman filter to propagate body part positions and ve- locities over time and a regression method to predict 2D body pose from part centers. No range sensor is required and FlowCap estimates 2D human pose from monocular video sources containing human motion. Such sources include hand-held phone cameras and archival television video. We demonstrate 2D body pose estimation in a range of scenarios and show that the method works with real-time optical flow. The results suggest that optical flow shares invariances with range data that, when complemented with tracking, make it valuable for pose estimation.

ps

video pdf preprint Project Page Project Page [BibTex]

video pdf preprint Project Page Project Page [BibTex]


no image
Segmentation-based attenuation correction in positron emission tomography/magnetic resonance: erroneous tissue identification and its impact on positron emission tomography interpretation

Brendle, C., Schmidt, H., Oergel, A., Bezrukov, I., Mueller, M., Schraml, C., Pfannenberg, C., la Fougère, C., Nikolaou, K., Schwenzer, N.

Investigative Radiology, 50(5):339-346, 2015 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Isosteric heat of hydrogen adsorption on MOFs: comparison between adsorption calorimetry, sorption isosteric metod, and analytical models

Kloutse, A. F., Zacharia, R., Cossement, D., Chahine, R., Balderas-Xicohténcatl, R., Oh, H., Streppel, B., Schlichtenmayer, M., Hirscher, M.

{Applied Physics A}, 121(4):1417-1424, Springer-Verlag Heidelberg, Heidelberg, 2015 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Neural Adaptive Sequential Monte Carlo

Gu, S., Ghahramani, Z., Turner, R. E.

Advances in Neural Information Processing Systems 28, pages: 2629-2637, (Editors: Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama, and Roman Garnett), 29th Annual Conference on Neural Information Processing Systems (NIPS), 2015 (conference)

ei

PDF Supplementary [BibTex]

PDF Supplementary [BibTex]


no image
Discovering Temporal Causal Relations from Subsampled Data

Gong, M., Zhang, K., Schölkopf, B., Tao, D., Geiger, P.

In Proceedings of the 32nd International Conference on Machine Learning, 37, pages: 1898–1906, JMLR Workshop and Conference Proceedings, (Editors: F. Bach and D. Blei), JMLR, ICML, 2015 (inproceedings)

ei

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Active Nearest Neighbors in Changing Environments

Berlind, C., Urner, R.

In Proceedings of the 32nd International Conference on Machine Learning, 37, pages: 1870-1879, JMLR Workshop and Conference Proceedings, (Editors: Bach, F. and Blei, D. ), JMLR, ICML, 2015 (inproceedings)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Active Reward Learning with a Novel Acquisition Function

Daniel, C., Kroemer, O., Viering, M., Metz, J., Peters, J.

Autonomous Robots, 39(3):389-405, 2015 (article)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Inverse Dynamics Models with Contacts

Calandra, R., Ivaldi, S., Deisenroth, M., Rückert, E., Peters, J.

In IEEE International Conference on Robotics and Automation, pages: 3186-3191, ICRA, 2015 (inproceedings)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
A Probabilistic Framework for Semi-Autonomous Robots Based on Interaction Primitives with Phase Estimation

Maeda, G., Neumann, G., Ewerton, M., Lioutikov, R., Peters, J.

In Proceedings of the International Symposium of Robotics Research, ISRR, 2015 (inproceedings)

am ei

link (url) [BibTex]

link (url) [BibTex]


Thumb xl 2016 peer grading
Peer grading in a course on algorithms and data structures

Sajjadi, M. S. M., Alamgir, M., von Luxburg, U.

Workshop on Machine Learning for Education (ML4Ed) at the 32th International Conference on Machine Learning (ICML), 2015 (conference)

ei

Arxiv [BibTex]

Arxiv [BibTex]


Thumb xl thumb teaser mrg
Metric Regression Forests for Correspondence Estimation

Pons-Moll, G., Taylor, J., Shotton, J., Hertzmann, A., Fitzgibbon, A.

International Journal of Computer Vision, pages: 1-13, 2015 (article)

ps

springer PDF Project Page [BibTex]

springer PDF Project Page [BibTex]


Thumb xl geiger
Joint 3D Object and Layout Inference from a single RGB-D Image

(Best Paper Award)

Geiger, A., Wang, C.

In German Conference on Pattern Recognition (GCPR), 9358, pages: 183-195, Lecture Notes in Computer Science, Springer International Publishing, 2015 (inproceedings)

Abstract
Inferring 3D objects and the layout of indoor scenes from a single RGB-D image captured with a Kinect camera is a challenging task. Towards this goal, we propose a high-order graphical model and jointly reason about the layout, objects and superpixels in the image. In contrast to existing holistic approaches, our model leverages detailed 3D geometry using inverse graphics and explicitly enforces occlusion and visibility constraints for respecting scene properties and projective geometry. We cast the task as MAP inference in a factor graph and solve it efficiently using message passing. We evaluate our method with respect to several baselines on the challenging NYUv2 indoor dataset using 21 object categories. Our experiments demonstrate that the proposed method is able to infer scenes with a large degree of clutter and occlusions.

avg ps

pdf suppmat video project DOI [BibTex]

pdf suppmat video project DOI [BibTex]


no image
Removing systematic errors for exoplanet search via latent causes

Schölkopf, B., Hogg, D., Wang, D., Foreman-Mackey, D., Janzing, D., Simon-Gabriel, C. J., Peters, J.

In Proceedings of The 32nd International Conference on Machine Learning, 37, pages: 2218–2226, JMLR Workshop and Conference Proceedings, (Editors: Bach, F. and Blei, D.), JMLR, ICML, 2015 (inproceedings)

ei

Extended version on arXiv link (url) [BibTex]

Extended version on arXiv link (url) [BibTex]


no image
A systematic search for transiting planets in the K2 data

Foreman-Mackey, D., Montet, B., Hogg, D., Morton, T., Wang, D., Schölkopf, B.

The Astrophysical Journal, 806(2), 2015 (article)

Abstract
Photometry of stars from the K2 extension of NASA’s Kepler mission is afflicted by systematic effects caused by small (few-pixel) drifts in the telescope pointing and other spacecraft issues. We present a method for searching K2 light curves for evidence of exoplanets by simultaneously fitting for these systematics and the transit signals of interest. This method is more computationally expensive than standard search algorithms but we demonstrate that it can be efficiently implemented and used to discover transit signals. We apply this method to the full Campaign 1 data set and report a list of 36 planet candidates transiting 31 stars, along with an analysis of the pipeline performance and detection efficiency based on artificial signal injections and recoveries. For all planet candidates, we present posterior distributions on the properties of each system based strictly on the transit observables.

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Causal Inference by Identification of Vector Autoregressive Processes with Hidden Components

Geiger, P., Zhang, K., Schölkopf, B., Gong, M., Janzing, D.

In Proceedings of the 32nd International Conference on Machine Learning, 37, pages: 1917–1925, JMLR Workshop and Conference Proceedings, (Editors: F. Bach and D. Blei), JMLR, ICML, 2015 (inproceedings)

ei

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Brain-Computer Interfacing in Amyotrophic Lateral Sclerosis: Implications of a Resting-State EEG Analysis

Jayaram, V., Widmann, N., Förster, C., Fomina, T., Hohmann, M. R., Müller vom Hagen, J., Synofzik, M., Schölkopf, B., Schöls, L., Grosse-Wentrup, M.

In Proceedings of the 37th IEEE Conference for Engineering in Medicine and Biology, pages: 6979-6982, EMBC, 2015 (inproceedings)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Identification of the Default Mode Network with Electroencephalography

Fomina, T., Hohmann, M. R., Schölkopf, B., Grosse-Wentrup, M.

In Proceedings of the 37th IEEE Conference for Engineering in Medicine and Biology, pages: 7566-7569, EMBC, 2015 (inproceedings)

ei

DOI [BibTex]

DOI [BibTex]


no image
Towards Cognitive Brain-Computer Interfaces for Patients with Amyotrophic Lateral Sclerosis

Fomina, T., Schölkopf, B., Grosse-Wentrup, M.

In 7th Computer Science and Electronic Engineering Conference, pages: 77-80, Curran Associates, Inc., CEEC, 2015 (inproceedings)

ei

DOI [BibTex]

DOI [BibTex]


no image
Learning Movement Primitive Attractor Goals and Sequential Skills from Kinesthetic Demonstrations

Manschitz, S., Kober, J., Gienger, M., Peters, J.

Robotics and Autonomous Systems, 74, Part A, pages: 97-107, 2015 (article)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]