3242 results (BibTeX)

2016


Predictive and Self Triggering for Event-based State Estimation

Trimpe, S.

In Proceedings of the 55th IEEE Conference on Decision and Control, pages: 3098-3105, Las Vegas, NV, USA, December 2016 (inproceedings)

am

arXiv PDF DOI [BibTex]

2016


arXiv PDF DOI [BibTex]


Event-based Sampling for Reducing Communication Load in Realtime Human Motion Analysis by Wireless Inertial Sensor Networks

Laidig, D., Trimpe, S., Seel, T.

In Current Directions in Biomedical Engineering, 2(1), 2016 (inproceedings)

am

PDF DOI [BibTex]

PDF DOI [BibTex]


Minimax Estimation of Maximum Mean Discrepancy with Radial Kernels

Tolstikhin, I., Sriperumbudur, B., Schölkopf, B.

Advances in Neural Information Processing Systems 29, 30th Annual Conference on Neural Information Processing Systems (NIPS), 2016 (conference) Accepted

ei

[BibTex]

[BibTex]


Consistent Kernel Mean Estimation for Functions of Random Variables

Scibior, A., Simon-Gabriel, C., Tolstikhin, I., Schölkopf, B.

Advances in Neural Information Processing Systems 29, pages: 1732-1740, (Editors: D. D. Lee and M. Sugiyama and U. V. Luxburg and I. Guyon and R. Garnett), 30th Annual Conference on Neural Information Processing Systems (NIPS), 2016 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


End-to-End Learning for Image Burst Deblurring

Wieschollek, P., Schölkopf, B., Lensch, H., Hirsch, M.

Computer Vision - ACCV 2016 - 13th Asian Conference on Computer Vision, 2016 (conference) Accepted

ei

[BibTex]

[BibTex]


The population of long-period transiting exoplanets

Foreman-Mackey, D., Morton, T., Hogg, D., Agol, E., Schölkopf, B.

The Astrophysical Journal, 2016 (article) Accepted

ei

[BibTex]

[BibTex]


Multi-task logistic regression in brain-computer interfaces

Fiebig, K., Jayaram, V., Peters, J., Grosse-Wentrup, M.

Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC 2016), IEEE, 2016 (conference) To be published

ei

link (url) [BibTex]

link (url) [BibTex]


Locally Weighted Regression for Control

Ting, J., Meier, F., Vijayakumar, S., Schaal, S.

In Encyclopedia of Machine Learning and Data Mining, pages: 1-14, Springer US, Boston, MA, 2016 (inbook)

am

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb md nao
Ensuring Ethical Behavior from Autonomous Systems

Anderson, M., Anderson, S., Berenz, V.

In Artificial Intelligence Applied to Assistive Technologies and Smart Environments, Papers from the 2016 AAAI Workshop, Phoenix, Arizona, USA, February 12, 2016, 2016 (inproceedings)

am

link (url) [BibTex]

link (url) [BibTex]


Jointly Learning Trajectory Generation and Hitting Point Prediction in Robot Table Tennis

Huang, Y., Büchler, D., Koc, O., Schölkopf, B., Peters, J.

16th IEEE-RAS International Conference on Humanoid Robots, Humanoids, 2016 (conference) Accepted

am ei

[BibTex]

[BibTex]


Using Probabilistic Movement Primitives for Striking Movements

Gomez-Gonzalez, S., Neumann, G., Schölkopf, B., Peters, J.

16th IEEE-RAS International Conference on Humanoid Robots, Humanoids, 2016 (conference) Accepted

am ei

[BibTex]

[BibTex]


Thumb md weak supervision
Weak Supervision for Detecting Object Classes from Activities

Srikantha, A., Gall, J.

Computer Vision and Image Understanding (CVIU), Elsevier, 2016 (article) In press

elsevier preprint link (url) DOI [BibTex]

elsevier preprint link (url) DOI [BibTex]


Thumb md thumb
Barrista - Caffe Well-Served

Lassner, C., Kappler, D., Kiefel, M., Gehler, P.

ACM Multimedia Open Source Software Competition, ACM OSSC16, October 2016 (proceedings) Accepted

Abstract
The caffe framework is one of the leading deep learning toolboxes in the machine learning and computer vision community. While it offers efficiency and configurability, it falls short of a full interface to Python. With increasingly involved procedures for training deep networks and reaching depths of hundreds of layers, creating configuration files and keeping them consistent becomes an error prone process. We introduce the barrista framework, offering full, pythonic control over caffe. It separates responsibilities and offers code to solve frequently occurring tasks for pre-processing, training and model inspection. It is compatible to all caffe versions since mid 2015 and can import and export .prototxt files. Examples are included, e.g., a deep residual network implemented in only 172 lines (for arbitrary depths), comparing to 2320 lines in the official implementation for the equivalent model.

am ps

pdf link (url) DOI [BibTex]

pdf link (url) DOI [BibTex]


Thumb md teaser
Deep Discrete Flow

Güney, F., Geiger, A.

Asian Conference on Computer Vision (ACCV), 2016 (conference) Accepted

avg ps

pdf suppmat [BibTex]

pdf suppmat [BibTex]


Thumb md 2016 lightfield depth
Depth Estimation Through a Generative Model of Light Field Synthesis

Sajjadi, M., Köhler, R., Schölkopf, B., Hirsch, M.

Pattern Recognition: 38th German Conference, GCPR 2016, Hannover, Germany, September 12-15, 2016, Proceedings, 9796, pages: 426-438, Lecture Notes in Computer Science, (Editors: Rosenhahn, B. and Andres, B.), Springer International Publishing, 2016 (conference)

ei

Arxiv link (url) DOI [BibTex]

Arxiv link (url) DOI [BibTex]


Thumb md website thumbnail
Reconstructing Articulated Rigged Models from RGB-D Videos

Tzionas, D., Gall, J.

European Conference on Computer Vision Workshops 2016 (ECCVW’16) - Workshop on Recovering 6D Object Pose (R6D’16), 2016 (proceedings)

Abstract
Although commercial and open-source software exist to reconstruct a static object from a sequence recorded with an RGB-D sensor, there is a lack of tools that build rigged models of articulated objects that deform realistically and can be used for tracking or animation. In this work, we fill this gap and propose a method that creates a fully rigged model of an articulated object from depth data of a single sensor. To this end, we combine deformable mesh tracking, motion segmentation based on spectral clustering and skeletonization based on mean curvature flow. The fully rigged model then consists of a watertight mesh, embedded skeleton, and skinning weights.

ps

pdf suppl Project's Website YouTube link (url) [BibTex]

pdf suppl Project's Website YouTube link (url) [BibTex]


A New Trajectory Generation Framework in Robotic Table Tennis

Koc, O., Maeda, G., Peters, J.

Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, IROS, 2016 (conference) Accepted

am ei

[BibTex]

[BibTex]


Thumb md oxfordlight
Parameter Learning for Improving Binary Descriptor Matching

Sankaran, B., Ramalingam, S., Taguchi, Y.

Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, IEEE, IROS, October 2016 (conference) Accepted

Abstract
Binary descriptors allow fast detection and matching algorithms in computer vision problems. Though binary descriptors can be computed at almost two orders of magnitude faster than traditional gradient based descriptors, they suffer from poor matching accuracy in challenging conditions. In this paper we propose three improvements for binary descriptors in their computation and matching that enhance their performance in comparison to traditional binary and non-binary descriptors without compromising their speed. This is achieved by learning some weights and threshold parameters that allow customized matching under some variations such as lighting and viewpoint. Our suggested improvements can be easily applied to any binary descriptor. We demonstrate our approach on the ORB (Oriented FAST and Rotated BRIEF) descriptor and compare its performance with the traditional ORB and SIFT descriptors on a wide variety of datasets. In all instances, our enhancements outperform standard ORB and is comparable to SIFT.

am

[BibTex]

[BibTex]


Probabilistic Inference for Determining Options in Reinforcement Learning

Daniel, C., van Hoof, H., Peters, J., Neumann, G.

Machine Learning, Special Issue, 104(2):337-357, (Editors: Gärtner, T., Nanni, M., Passerini, A. and Robardet, C.), European Conference on Machine Learning im Machine Learning, Journal Track, 2016, Best Student Paper Award of ECMLPKDD 2016 (article)

am ei

DOI [BibTex]

DOI [BibTex]


Active Nearest-Neighbor Learning in Metric Spaces

Kontorovich, A., Sabato, S., Urner, R.

Advances in Neural Information Processing Systems 29, 30th Annual Conference on Neural Information Processing Systems (NIPS), 2016 (conference) Accepted

ei

[BibTex]

[BibTex]


Lifelong Learning with Weighted Majority Votes

Pentina, A., Urner, R.

Advances in Neural Information Processing Systems 29, 30th Annual Conference on Neural Information Processing Systems (NIPS), 2016 (conference) Accepted

ei

[BibTex]

[BibTex]


Unsupervised clustering of EOG as a viable substitute for optical eye-tracking

Flad, N., Fomina, T., Bülthoff, H., Chuang, L.

First Workshop on Eye Tracking and Visualization (ETVIS 2015), (Editors: Weiskopf, D., Burch, M., Chuang, L., Fischer, B., and Schmidt, A.), Springer, 2016 (conference) In press

ei

[BibTex]

[BibTex]


DOOMED: Direct Online Optimization of Modeling Errors in Dynamics

Ratliff, N., Meier, F., Kappler, D., Schaal, S.

arXiv preprint arXiv:1608.00309, August 2016 (article)

am

[BibTex]


Towards Robust Online Inverse Dynamics Learning

Meier, F., Kappler, D., Ratliff, N., Schaal, S.

Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, IEEE, IROS, 2016 (conference) Accepted

am

fmeier_iros_2016 [BibTex]

fmeier_iros_2016 [BibTex]


Thumb md img
Learning Where to Search Using Visual Attention

Kloss, A., Kappler, D., Lensch, H., Butz, M., Schaal, S., Bohg, J.

Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, IEEE, IROS, October 2016 (conference)

Abstract
One of the central tasks for a household robot is searching for specific objects. It does not only require localizing the target object but also identifying promising search locations in the scene if the target is not immediately visible. As computation time and hardware resources are usually limited in robotics, it is desirable to avoid expensive visual processing steps that are exhaustively applied over the entire image. The human visual system can quickly select those image locations that have to be processed in detail for a given task. This allows us to cope with huge amounts of information and to efficiently deploy the limited capacities of our visual system. In this paper, we therefore propose to use human fixation data to train a top-down saliency model that predicts relevant image locations when searching for specific objects. We show that the learned model can successfully prune bounding box proposals without rejecting the ground truth object locations. In this aspect, the proposed model outperforms a model that is trained only on the ground truth segmentations of the target object instead of fixation data.

am

Project Page [BibTex]

PDF Project Page [BibTex]


A Causal, Data-driven Approach to Modeling the Kepler Data

Wang, D., Hogg, D., Foreman-Mackey, D., Schölkopf, B.

Publications of the Astronomical Society of the Pacific, 128(967):094503, 2016 (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


The Arrow of Time in Multivariate Time Serie

Bauer, S., Schölkopf, B., Peters, J.

Proceedings of the 33rd International Conference on Machine Learning, 48, pages: 2043-2051, JMLR Workshop and Conference Proceedings, (Editors: Balcan, M. F. and Weinberger, K. Q.), JMLR, ICML, 2016 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


Thumb md gadde
Superpixel Convolutional Networks using Bilateral Inceptions

Gadde, R., Jampani, V., Kiefel, M., Kappler, D., Gehler, P.

In European Conference on Computer Vision (ECCV), Lecture Notes in Computer Science, Springer, 14th European Conference on Computer Vision, October 2016 (inproceedings)

Abstract
In this paper we propose a CNN architecture for semantic image segmentation. We introduce a new “bilateral inception” module that can be inserted in existing CNN architectures and performs bilateral filtering, at multiple feature-scales, between superpixels in an image. The feature spaces for bilateral filtering and other parameters of the module are learned end-to-end using standard backpropagation techniques. The bilateral inception module addresses two issues that arise with general CNN segmentation architectures. First, this module propagates information between (super) pixels while respecting image edges, thus using the structured information of the problem for improved results. Second, the layer recovers a full resolution segmentation result from the lower resolution solution of a CNN. In the experiments, we modify several existing CNN architectures by inserting our inception modules between the last CNN (1 × 1 convolution) layers. Empirical results on three different datasets show reliable improvements not only in comparison to the baseline networks, but also in comparison to several dense-pixel prediction techniques such as CRFs, while being competitive in time.

am ps

pdf supplementary poster [BibTex]

pdf supplementary poster [BibTex]


Thumb md smplify
Keep it SMPL: Automatic Estimation of 3D Human Pose and Shape from a Single Image

Bogo, F., Kanazawa, A., Lassner, C., Gehler, P., Romero, J., Black, M. J.

In Computer Vision – ECCV 2016, Lecture Notes in Computer Science, Springer International Publishing, 14th European Conference on Computer Vision, October 2016 (inproceedings)

Abstract
We describe the first method to automatically estimate the 3D pose of the human body as well as its 3D shape from a single unconstrained image. We estimate a full 3D mesh and show that 2D joints alone carry a surprising amount of information about body shape. The problem is challenging because of the complexity of the human body, articulation, occlusion, clothing, lighting, and the inherent ambiguity in inferring 3D from 2D. To solve this, we fi rst use a recently published CNN-based method, DeepCut, to predict (bottom-up) the 2D body joint locations. We then fit (top-down) a recently published statistical body shape model, called SMPL, to the 2D joints. We do so by minimizing an objective function that penalizes the error between the projected 3D model joints and detected 2D joints. Because SMPL captures correlations in human shape across the population, we are able to robustly fi t it to very little data. We further leverage the 3D model to prevent solutions that cause interpenetration. We evaluate our method, SMPLify, on the Leeds Sports, HumanEva, and Human3.6M datasets, showing superior pose accuracy with respect to the state of the art.

ps

pdf Video Sup Mat video Code Project [BibTex]

pdf Video Sup Mat video Code Project [BibTex]


Thumb md screen shot 2016 07 25 at 13.52.05
Non-parametric Models for Structured Data and Applications to Human Bodies and Natural Scenes

Lehrmann, A.

ETH Zurich, July 2016 (phdthesis)

Abstract
The purpose of this thesis is the study of non-parametric models for structured data and their fields of application in computer vision. We aim at the development of context-sensitive architectures which are both expressive and efficient. Our focus is on directed graphical models, in particular Bayesian networks, where we combine the flexibility of non-parametric local distributions with the efficiency of a global topology with bounded treewidth. A bound on the treewidth is obtained by either constraining the maximum indegree of the underlying graph structure or by introducing determinism. The non-parametric distributions in the nodes of the graph are given by decision trees or kernel density estimators. The information flow implied by specific network topologies, especially the resultant (conditional) independencies, allows for a natural integration and control of contextual information. We distinguish between three different types of context: static, dynamic, and semantic. In four different approaches we propose models which exhibit varying combinations of these contextual properties and allow modeling of structured data in space, time, and hierarchies derived thereof. The generative character of the presented models enables a direct synthesis of plausible hypotheses. Extensive experiments validate the developed models in two application scenarios which are of particular interest in computer vision: human bodies and natural scenes. In the practical sections of this work we discuss both areas from different angles and show applications of our models to human pose, motion, and segmentation as well as object categorization and localization. Here, we benefit from the availability of modern datasets of unprecedented size and diversity. Comparisons to traditional approaches and state-of-the-art research on the basis of well-established evaluation criteria allows the objective assessment of our contributions.

ps

pdf [BibTex]


Batch Bayesian Optimization via Local Penalization

González, J., Dai, Z., Hennig, P., Lawrence, N.

Proceedings of the 19th International Conference on Artificial Intelligence and Statistics (AISTATS 2016), 51, pages: 648-657, JMLR Workshop and Conference Proceedings, (Editors: Gretton, A. and Robert, C. C.), 2016 (conference)

ei pn

link (url) [BibTex]

link (url) [BibTex]


Active Uncertainty Calibration in Bayesian ODE Solvers

Kersting, H., Hennig, P.

Proceedings of the 32nd Conference on Uncertainty in Artificial Intelligence (UAI 2016), pages: 309-318, (Editors: Ihler, A. and Janzing, D.), AUAI Press, 2016 (conference)

ei pn

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


Thumb md psychscience
Creating body shapes from verbal descriptions by linking similarity spaces

Hill, M., Streuber, S., Hahn, C., Black, M. J., O’Toole, A.

Psychological Science, 27(11):1486-1497, November 2016, (article)

Abstract
Brief verbal descriptions of bodies (e.g. curvy, long-legged) can elicit vivid mental images. The ease with which we create these mental images belies the complexity of three-dimensional body shapes. We explored the relationship between body shapes and body descriptions and show that a small number of words can be used to generate categorically accurate representations of three-dimensional bodies. The dimensions of body shape variation that emerged in a language-based similarity space were related to major dimensions of variation computed directly from three-dimensional laser scans of 2094 bodies. This allowed us to generate three-dimensional models of people in the shape space using only their coordinates on analogous dimensions in the language-based description space. Human descriptions of photographed bodies and their corresponding models matched closely. The natural mapping between the spaces illustrates the role of language as a concise code for body shape, capturing perceptually salient global and local body features.

ps

pdf Project Page [BibTex]

pdf Project Page [BibTex]


On Version Space Compression

Ben-David, S., Urner, R.

Algorithmic Learning Theory - 27th International Conference (ALT 2016), 2016 (conference) Accepted

ei

[BibTex]

[BibTex]


Communication Rate Analysis for Event-based State Estimation

(Best student paper finalist)

Ebner, S., Trimpe, S.

In Proceedings of the 13th International Workshop on Discrete Event Systems, May 2016 (inproceedings)

am

PDF DOI [BibTex]

PDF DOI [BibTex]


Thumb md screen shot 2016 06 27 at 09.38.59
Implications of Action-Oriented Paradigm Shifts in Cognitive Science

Dominey, P., Prescott, T., Bohg, J., Engel, A., Gallagher, S., Heed, T., Hoffmann, M., Knoblich, G., Prinz, W., Schwartz, A.

In The Pragmatic Turn - Toward Action-Oriented Views in Cognitive Science, 18, pages: 333-356, 20, Strüngmann Forum Reports, vol. 18, J. Lupp, series editor, (Editors: Andreas K. Engel and Karl J. Friston and Danica Kragic), The MIT Press, 18th Ernst Strüngmann Forum, May 2016 (incollection) In press

Abstract
An action-oriented perspective changes the role of an individual from a passive observer to an actively engaged agent interacting in a closed loop with the world as well as with others. Cognition exists to serve action within a landscape that contains both. This chapter surveys this landscape and addresses the status of the pragmatic turn. Its potential influence on science and the study of cognition are considered (including perception, social cognition, social interaction, sensorimotor entrainment, and language acquisition) and its impact on how neuroscience is studied is also investigated (with the notion that brains do not passively build models, but instead support the guidance of action). A review of its implications in robotics and engineering includes a discussion of the application of enactive control principles to couple action and perception in robotics as well as the conceptualization of system design in a more holistic, less modular manner. Practical applications that can impact the human condition are reviewed (e.g. educational applications, treatment possibilities for developmental and psychopathological disorders, the development of neural prostheses). All of this foreshadows the potential societal implications of the pragmatic turn. The chapter concludes that an action-oriented approach emphasizes a continuum of interaction between technical aspects of cognitive systems and robotics, biology, psychology, the social sciences, and the humanities, where the individual is part of a grounded cultural system.

am

The Pragmatic Turn - Toward Action-Oriented Views in Cognitive Science 18th Ernst Strüngmann Forum Bibliography Chapter link (url) [BibTex]

The Pragmatic Turn - Toward Action-Oriented Views in Cognitive Science 18th Ernst Strüngmann Forum Bibliography Chapter link (url) [BibTex]


Thumb md looplearning
Learning Action-Perception Cycles in Robotics: A Question of Representations and Embodiment

Bohg, J., Kragic, D.

In The Pragmatic Turn - Toward Action-Oriented Views in Cognitive Science, 18, pages: 309-320, 18, Strüngmann Forum Reports, vol. 18, J. Lupp, series editor, (Editors: Andreas K. Engel and Karl J. Friston and Danica Kragic), The MIT Press, 18th Ernst Strüngmann Forum, May 2016 (incollection) In press

Abstract
Since the 1950s, robotics research has sought to build a general-purpose agent capable of autonomous, open-ended interaction with realistic, unconstrained environments. Cognition is perceived to be at the core of this process, yet understanding has been challenged because cognition is referred to differently within and across research areas, and is not clearly defined. The classic robotics approach is decomposition into functional modules which perform planning, reasoning, and problem-solving or provide input to these mechanisms. Although advancements have been made and numerous success stories reported in specific niches, this systems-engineering approach has not succeeded in building such a cognitive agent. The emergence of an action-oriented paradigm offers a new approach: action and perception are no longer separable into functional modules but must be considered in a complete loop. This chapter reviews work on different mechanisms for action- perception learning and discusses the role of embodiment in the design of the underlying representations and learning. It discusses the evaluation of agents and suggests the development of a new embodied Turing Test. Appropriate scenarios need to be devised in addition to current competitions, so that abilities can be tested over long time periods.

am

18th Ernst Strüngmann Forum The Pragmatic Turn- Toward Action-Oriented Views in Cognitive Science Bibliography Chapter link (url) [BibTex]

18th Ernst Strüngmann Forum The Pragmatic Turn- Toward Action-Oriented Views in Cognitive Science Bibliography Chapter link (url) [BibTex]


Thumb md untitled
Probabilistic Approximate Least-Squares

Bartels, S., Hennig, P.

Proceedings of the 19th International Conference on Artificial Intelligence and Statistics (AISTATS 2016), 51, pages: 676-684, JMLR Workshop and Conference Proceedings, (Editors: Gretton, A. and Robert, C. C. ), 2016 (conference)

Abstract
Least-squares and kernel-ridge / Gaussian process regression are among the foundational algorithms of statistics and machine learning. Famously, the worst-case cost of exact nonparametric regression grows cubically with the data-set size; but a growing number of approximations have been developed that estimate good solutions at lower cost. These algorithms typically return point estimators, without measures of uncertainty. Leveraging recent results casting elementary linear algebra operations as probabilistic inference, we propose a new approximate method for nonparametric least-squares that affords a probabilistic uncertainty estimate over the error between the approximate and exact least-squares solution (this is not the same as the posterior variance of the associated Gaussian process regressor). This allows estimating the error of the least-squares solution on a subset of the data relative to the full-data solution. The uncertainty can be used to control the computational effort invested in the approximation. Our algorithm has linear cost in the data-set size, and a simple formal form, so that it can be implemented with a few lines of code in programming languages with linear algebra functionality.

ei pn

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


Thumb md siyong
Shape estimation of subcutaneous adipose tissue using an articulated statistical shape model

Yeo, S., Romero, J., Loper, M., Machann, J., Black, M. J.

Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 0(0):1-8, 2016 (article)

ps

publisher website preprint pdf link (url) DOI [BibTex]

publisher website preprint pdf link (url) DOI [BibTex]


Thumb md iros2016 teaser
Structured contact force optimization for kino-dynamic motion generation

Herzog, A., Schaal, S., Righetti, L.

In International Conference on Intelligent Robots and Systems (IROS) 2016, pages: 2703-2710, IEEE/RSJ International Conference on Intelligent Robots and Systems, 2016 (inproceedings)

am

video pdf link (url) [BibTex]

video pdf link (url) [BibTex]


Distinct adaptation to abrupt and gradual torque perturbations with a multi-joint exoskeleton robot

Oh, Y., Sutanto, G., Mistry, M., Schweighofer, N., Schaal, S.

Abstracts of Neural Control of Movement Conference (NCM 2016), Montego Bay, Jamaica, April 2016 (poster)

am

[BibTex]

[BibTex]


On the Identifiability and Estimation of Functional Causal Models in the Presence of Outcome-Dependent Selection

Zhang, K., Zhang, J., Huang, B., Schölkopf, B., Glymour, C.

Proceedings of the 32nd Conference on Uncertainty in Artificial Intelligence (UAI 2016), pages: 825-834, (Editors: Ihler, A. and Janzing, D.), AUAI Press, 2016, plenary presentation (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


Learning Causal Interaction Network of Multivariate Hawkes Processes

Etesami, S., Kiyavash, N., Zhang, K., Singhal, K.

Proceedings of the 32nd Conference on Uncertainty in Artificial Intelligence (UAI 2016), 2016, poster presentation (conference)

ei

[BibTex]

[BibTex]


Causal discovery and inference: concepts and recent methodological advances

Spirtes, P., Zhang, K.

Applied Informatics, 3(3):1-28, 2016 (article)

ei

DOI [BibTex]

DOI [BibTex]


Recovery of non-linear cause-effect relationships from linearly mixed neuroimaging data

Weichwald, S., Gretton, A., Schölkopf, B., Grosse-Wentrup, M.

Proceedings of the 6th International Workshop on Pattern Recognition in NeuroImaging (PRNI 2016), 2016 (conference)

ei

PDF Arxiv Code DOI [BibTex]

PDF Arxiv Code DOI [BibTex]


Pymanopt: A Python Toolbox for Optimization on Manifolds using Automatic Differentiation

Townsend, J., Koep, N., Weichwald, S.

Journal of Machine Learning Research, 17(137):1-5, 2016 (article)

ei

PDF Arxiv Code Project page link (url) [BibTex]

PDF Arxiv Code Project page link (url) [BibTex]