Header logo is


2010


no image
Statistical image analysis and percolation theory

Langovoy, M., Wittich, O.

28th European Meeting of Statisticians (EMS), August 2010 (talk)

ei

PDF Web [BibTex]

2010


PDF Web [BibTex]


no image
Cooperative Cuts: Graph Cuts with Submodular Edge Weights

Jegelka, S., Bilmes, J.

24th European Conference on Operational Research (EURO XXIV), July 2010 (talk)

Abstract
We introduce cooperative cut, a minimum cut problem whose cost is a submodular function on sets of edges: the cost of an edge that is added to a cut set depends on the edges in the set. Applications are e.g. in probabilistic graphical models and image processing. We prove NP hardness and a polynomial lower bound on the approximation factor, and upper bounds via four approximation algorithms based on different techniques. Our additional heuristics have attractive practical properties, e.g., to rely only on standard min-cut. Both our algorithms and heuristics appear to do well in practice.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Solving Large-Scale Nonnegative Least Squares

Sra, S.

16th Conference of the International Linear Algebra Society (ILAS), June 2010 (talk)

Abstract
We study the fundamental problem of nonnegative least squares. This problem was apparently introduced by Lawson and Hanson [1] under the name NNLS. As is evident from its name, NNLS seeks least-squares solutions that are also nonnegative. Owing to its wide-applicability numerous algorithms have been derived for NNLS, beginning from the active-set approach of Lawson and Han- son [1] leading up to the sophisticated interior-point method of Bellavia et al. [2]. We present a new algorithm for NNLS that combines projected subgradients with the non-monotonic gradient descent idea of Barzilai and Borwein [3]. Our resulting algorithm is called BBSG, and we guarantee its convergence by ex- ploiting properties of NNLS in conjunction with projected subgradients. BBSG is surprisingly simple and scales well to large problems. We substantiate our claims by empirically evaluating BBSG and comparing it with established con- vex solvers and specialized NNLS algorithms. The numerical results suggest that BBSG is a practical method for solving large-scale NNLS problems.

ei

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Matrix Approximation Problems

Sra, S.

EU Regional School: Rheinisch-Westf{\"a}lische Technische Hochschule Aachen, May 2010 (talk)

ei

PDF AVI [BibTex]

PDF AVI [BibTex]


no image
BCI2000 and Python

Hill, NJ.

Invited lecture at the 7th International BCI2000 Workshop, Pacific Grove, CA, USA, May 2010 (talk)

Abstract
A tutorial, with exercises, on how to integrate your own Python code with the BCI2000 realtime software package.

ei

PDF [BibTex]

PDF [BibTex]


no image
Extending BCI2000 Functionality with Your Own C++ Code

Hill, NJ.

Invited lecture at the 7th International BCI2000 Workshop, Pacific Grove, CA, USA, May 2010 (talk)

Abstract
A tutorial, with exercises, on how to use BCI2000 C++ framework to write your own real-time signal-processing modules.

ei

[BibTex]

[BibTex]


no image
Machine-Learning Methods for Decoding Intentional Brain States

Hill, NJ.

Symposium "Non-Invasive Brain Computer Interfaces: Current Developments and Applications" (BIOMAG), March 2010 (talk)

Abstract
Brain-computer interfaces (BCI) work by making the user perform a specific mental task, such as imagining moving body parts or performing some other covert mental activity, or attending to a particular stimulus out of an array of options, in order to encode their intention into a measurable brain signal. Signal-processing and machine-learning techniques are then used to decode the measured signal to identify the encoded mental state and hence extract the user‘s initial intention. The high-noise high-dimensional nature of brain-signals make robust decoding techniques a necessity. Generally, the approach has been to use relatively simple feature extraction techniques, such as template matching and band-power estimation, coupled to simple linear classifiers. This has led to a prevailing view among applied BCI researchers that (sophisticated) machine-learning is irrelevant since “it doesn‘t matter what classifier you use once your features are extracted.” Using examples from our own MEG and EEG experiments, I‘ll demonstrate how machine-learning principles can be applied in order to improve BCI performance, if they are formulated in a domain-specific way. The result is a type of data-driven analysis that is more than “just” classification, and can be used to find better feature extractors.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
PAC-Bayesian Analysis in Unsupervised Learning

Seldin, Y.

Foundations and New Trends of PAC Bayesian Learning Workshop, March 2010 (talk)

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Learning Motor Primitives for Robotics

Kober, J., Peters, J.

EVENT Lab: Reinforcement Learning in Robotics and Virtual Reality, January 2010 (talk)

Abstract
The acquisition and self-improvement of novel motor skills is among the most important problems in robotics. Motor primitives offer one of the most promising frameworks for the application of machine learning techniques in this context. Employing the Dynamic Systems Motor primitives originally introduced by Ijspeert et al. (2003), appropriate learning algorithms for a concerted approach of both imitation and reinforcement learning are presented. Using these algorithms new motor skills, i.e., Ball-in-a-Cup, Ball-Paddling and Dart-Throwing, are learned.

ei

[BibTex]

[BibTex]


no image
From Motor Learning to Interaction Learning in Robots

Sigaud, O., Peters, J.

pages: 538, Studies in Computational Intelligence ; 264, (Editors: O Sigaud, J Peters), Springer, Berlin, Germany, January 2010 (book)

Abstract
From an engineering standpoint, the increasing complexity of robotic systems and the increasing demand for more autonomously learning robots, has become essential. This book is largely based on the successful workshop "From motor to interaction learning in robots" held at the IEEE/RSJ International Conference on Intelligent Robot Systems. The major aim of the book is to give students interested the topics described above a chance to get started faster and researchers a helpful compandium.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Handbook of Hydrogen Storage

Hirscher, M.

pages: 353 p., Wiley-VCH, Weinheim, 2010 (book)

mms

[BibTex]

[BibTex]

2009


no image
Machine Learning for Brain-Computer Interfaces

Hill, NJ.

Mini-Symposia on Assistive Machine Learning for People with Disabilities at NIPS (AMD), December 2009 (talk)

Abstract
Brain-computer interfaces (BCI) aim to be the ultimate in assistive technology: decoding a user‘s intentions directly from brain signals without involving any muscles or peripheral nerves. Thus, some classes of BCI potentially offer hope for users with even the most extreme cases of paralysis, such as in late-stage Amyotrophic Lateral Sclerosis, where nothing else currently allows communication of any kind. Other lines in BCI research aim to restore lost motor function in as natural a way as possible, reconnecting and in some cases re-training motor-cortical areas to control prosthetic, or previously paretic, limbs. Research and development are progressing on both invasive and non-invasive fronts, although BCI has yet to make a breakthrough to widespread clinical application. The high-noise high-dimensional nature of brain-signals, particularly in non-invasive approaches and in patient populations, make robust decoding techniques a necessity. Generally, the approach has been to use relatively simple feature extraction techniques, such as template matching and band-power estimation, coupled to simple linear classifiers. This has led to a prevailing view among applied BCI researchers that (sophisticated) machine-learning is irrelevant since "it doesn‘t matter what classifier you use once you‘ve done your preprocessing right and extracted the right features." I shall show a few examples of how this runs counter to both the empirical reality and the spirit of what needs to be done to bring BCI into clinical application. Along the way I‘ll highlight some of the interesting problems that remain open for machine-learners.

ei

PDF Web Web [BibTex]

2009


PDF Web Web [BibTex]


no image
PAC-Bayesian Approach to Formulation of Clustering Objectives

Seldin, Y.

NIPS Workshop on "Clustering: Science or Art? Towards Principled Approaches", December 2009 (talk)

Abstract
Clustering is a widely used tool for exploratory data analysis. However, the theoretical understanding of clustering is very limited. We still do not have a well-founded answer to the seemingly simple question of "how many clusters are present in the data?", and furthermore a formal comparison of clusterings based on different optimization objectives is far beyond our abilities. The lack of good theoretical support gives rise to multiple heuristics that confuse the practitioners and stall development of the field. We suggest that the ill-posed nature of clustering problems is caused by the fact that clustering is often taken out of its subsequent application context. We argue that one does not cluster the data just for the sake of clustering it, but rather to facilitate the solution of some higher level task. By evaluation of the clustering‘s contribution to the solution of the higher level task it is possible to compare different clusterings, even those obtained by different optimization objectives. In the preceding work it was shown that such an approach can be applied to evaluation and design of co-clustering solutions. Here we suggest that this approach can be extended to other settings, where clustering is applied.

ei

PDF Web Web [BibTex]

PDF Web Web [BibTex]


no image
Semi-supervised Kernel Canonical Correlation Analysis of Human Functional Magnetic Resonance Imaging Data

Shelton, JA.

Women in Machine Learning Workshop (WiML), December 2009 (talk)

Abstract
Kernel Canonical Correlation Analysis (KCCA) is a general technique for subspace learning that incorporates principal components analysis (PCA) and Fisher linear discriminant analysis (LDA) as special cases. By finding directions that maximize correlation, KCCA learns representations tied more closely to underlying process generating the the data and can ignore high-variance noise directions. However, for data where acquisition in a given modality is expensive or otherwise limited, KCCA may suffer from small sample effects. We propose to use semi-supervised Laplacian regularization to utilize data that are present in only one modality. This manifold learning approach is able to find highly correlated directions that also lie along the data manifold, resulting in a more robust estimate of correlated subspaces. Functional magnetic resonance imaging (fMRI) acquired data are naturally amenable to subspace techniques as data are well aligned and such data of the human brain are a particularly interesting candidate. In this study we implemented various supervised and semi-supervised versions of KCCA on human fMRI data, with regression to single and multivariate labels (corresponding to video content subjects viewed during the image acquisition). In each variate condition, Laplacian regularization improved performance whereas the semi-supervised variants of KCCA yielded the best performance. We additionally analyze the weights learned by the regression in order to infer brain regions that are important during different types of visual processing.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Event-Related Potentials in Brain-Computer Interfacing

Hill, NJ.

Invited lecture on the bachelor & masters course "Introduction to Brain-Computer Interfacing", October 2009 (talk)

Abstract
An introduction to event-related potentials with specific reference to their use in brain-computer interfacing applications and research.

ei

PDF [BibTex]

PDF [BibTex]


no image
BCI2000 and Python

Hill, NJ.

Invited lecture at the 5th International BCI2000 Workshop, October 2009 (talk)

Abstract
A tutorial, with exercises, on how to integrate your own Python code with the BCI2000 software package.

ei

PDF [BibTex]

PDF [BibTex]


no image
Implementing a Signal Processing Filter in BCI2000 Using C++

Hill, NJ., Mellinger, J.

Invited lecture at the 5th International BCI2000 Workshop, October 2009 (talk)

Abstract
This tutorial shows how the functionality of the BCI2000 software package can be extended with one‘s own code, using BCI2000‘s C++ API.

ei

PDF [BibTex]

PDF [BibTex]


no image
Learning Motor Primitives for Robotics

Kober, J., Peters, J., Oztop, E.

Advanced Telecommunications Research Center ATR, June 2009 (talk)

Abstract
The acquisition and self-improvement of novel motor skills is among the most important problems in robotics. Motor primitives offer one of the most promising frameworks for the application of machine learning techniques in this context. Employing the Dynamic Systems Motor primitives originally introduced by Ijspeert et al. (2003), appropriate learning algorithms for a concerted approach of both imitation and reinforcement learning are presented. Using these algorithms new motor skills, i.e., Ball-in-a-Cup, Ball-Paddling and Dart-Throwing, are learned.

ei

[BibTex]

[BibTex]


no image
Learning To Detect Unseen Object Classes by Between-Class Attribute Transfer

Lampert, C.

IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), June 2009 (talk)

ei

Web [BibTex]

Web [BibTex]

2008


no image
BCPy2000

Hill, N., Schreiner, T., Puzicha, C., Farquhar, J.

Workshop "Machine Learning Open-Source Software" at NIPS, December 2008 (talk)

ei

Web [BibTex]

2008


Web [BibTex]


no image
Logistic Regression for Graph Classification

Shervashidze, N., Tsuda, K.

NIPS Workshop on "Structured Input - Structured Output" (NIPS SISO), December 2008 (talk)

Abstract
In this paper we deal with graph classification. We propose a new algorithm for performing sparse logistic regression for graphs, which is comparable in accuracy with other methods of graph classification and produces probabilistic output in addition. Sparsity is required for the reason of interpretability, which is often necessary in domains such as bioinformatics or chemoinformatics.

ei

Web [BibTex]

Web [BibTex]


no image
New Projected Quasi-Newton Methods with Applications

Sra, S.

Microsoft Research Tech-talk, December 2008 (talk)

Abstract
Box-constrained convex optimization problems are central to several applications in a variety of fields such as statistics, psychometrics, signal processing, medical imaging, and machine learning. Two fundamental examples are the non-negative least squares (NNLS) problem and the non-negative Kullback-Leibler (NNKL) divergence minimization problem. The non-negativity constraints are usually based on an underlying physical restriction, for e.g., when dealing with applications in astronomy, tomography, statistical estimation, or image restoration, the underlying parameters represent physical quantities such as concentration, weight, intensity, or frequency counts and are therefore only interpretable with non-negative values. Several modern optimization methods can be inefficient for simple problems such as NNLS and NNKL as they are really designed to handle far more general and complex problems. In this work we develop two simple quasi-Newton methods for solving box-constrained (differentiable) convex optimization problems that utilize the well-known BFGS and limited memory BFGS updates. We position our method between projected gradient (Rosen, 1960) and projected Newton (Bertsekas, 1982) methods, and prove its convergence under a simple Armijo step-size rule. We illustrate our method by showing applications to: Image deblurring, Positron Emission Tomography (PET) image reconstruction, and Non-negative Matrix Approximation (NMA). On medium sized data we observe performance competitive to established procedures, while for larger data the results are even better.

ei

PDF [BibTex]

PDF [BibTex]


no image
MR-Based PET Attenuation Correction: Initial Results for Whole Body

Hofmann, M., Steinke, F., Aschoff, P., Lichy, M., Brady, M., Schölkopf, B., Pichler, B.

Medical Imaging Conference, October 2008 (talk)

ei

[BibTex]

[BibTex]


no image
Nonparametric Indepedence Tests: Space Partitioning and Kernel Approaches

Gretton, A., Györfi, L.

19th International Conference on Algorithmic Learning Theory (ALT08), October 2008 (talk)

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
mGene: A Novel Discriminative Gene Finder

Schweikert, G., Zeller, G., Zien, A., Behr, J., Sonnenburg, S., Philips, P., Ong, C., Rätsch, G.

Worm Genomics and Systems Biology meeting, July 2008 (talk)

ei

[BibTex]

[BibTex]


no image
Discovering Common Sequence Variation in Arabidopsis thaliana

Rätsch, G., Clark, R., Schweikert, G., Toomajian, C., Ossowski, S., Zeller, G., Shinn, P., Warthman, N., Hu, T., Fu, G., Hinds, D., Cheng, H., Frazer, K., Huson, D., Schölkopf, B., Nordborg, M., Ecker, J., Weigel, D., Schneeberger, K., Bohlen, A.

16th Annual International Conference Intelligent Systems for Molecular Biology (ISMB), July 2008 (talk)

ei

Web [BibTex]

Web [BibTex]


no image
Coding Theory in Brain-Computer Interfaces

Martens, SMM.

Soria Summerschool on Computational Mathematics "Algebraic Coding Theory" (S3CM), July 2008 (talk)

ei

Web [BibTex]

Web [BibTex]


no image
Motor Skill Learning for Cognitive Robotics

Peters, J.

6th International Cognitive Robotics Workshop (CogRob), July 2008 (talk)

Abstract
Autonomous robots that can assist humans in situations of daily life have been a long standing vision of robotics, artificial intelligence, and cognitive sciences. A first step towards this goal is to create robots that can learn tasks triggered by environmental context or higher level instruction. However, learning techniques have yet to live up to this promise as only few methods manage to scale to high-dimensional manipulator or humanoid robots. In this tutorial, we give a general overview on motor skill learning for cognitive robotics using research at ATR, USC, CMU and Max-Planck in order to illustrate the problems in motor skill learning. For doing so, we discuss task-appropriate representations and algorithms for learning robot motor skills. Among the topics are the learning basic movements or motor primitives by imitation and reinforcement learning, learning rhytmic and discrete movements, fast regression methods for learning inverse dynamics and setups for learning task-space policies. Examples on various robots, e.g., SARCOS DB, the SARCOS Master Arm, BDI Little Dog and a Barrett WAM, are shown and include Ball-in-a-Cup, T-Ball, Juggling, Devil-Sticking, Operational Space Control and many others.

ei

Web [BibTex]

Web [BibTex]


no image
Painless Embeddings of Distributions: the Function Space View (Part 1)

Fukumizu, K., Gretton, A., Smola, A.

25th International Conference on Machine Learning (ICML), July 2008 (talk)

Abstract
This tutorial will give an introduction to the recent understanding and methodology of the kernel method: dealing with higher order statistics by embedding painlessly random variables/probability distributions. In the early days of kernel machines research, the "kernel trick" was considered a useful way of constructing nonlinear algorithms from linear ones. More recently, however, it has become clear that a potentially more far reaching use of kernels is as a linear way of dealing with higher order statistics by embedding distributions in a suitable reproducing kernel Hilbert space (RKHS). Notably, unlike the straightforward expansion of higher order moments or conventional characteristic function approach, the use of kernels or RKHS provides a painless, tractable way of embedding distributions. This line of reasoning leads naturally to the questions: what does it mean to embed a distribution in an RKHS? when is this embedding injective (and thus, when do different distributions have unique mappings)? what implications are there for learning algorithms that make use of these embeddings? This tutorial aims at answering these questions. There are a great variety of applications in machine learning and computer science, which require distribution estimation and/or comparison.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Reinforcement Learning for Robotics

Peters, J.

8th European Workshop on Reinforcement Learning for Robotics (EWRL), July 2008 (talk)

ei

Web [BibTex]

Web [BibTex]


no image
Thin-Plate Splines Between Riemannian Manifolds

Steinke, F., Hein, M., Schölkopf, B.

Workshop on Geometry and Statistics of Shapes, June 2008 (talk)

Abstract
With the help of differential geometry we describe a framework to define a thin-plate spline like energy for maps between arbitrary Riemannian manifolds. The so-called Eells energy only depends on the intrinsic geometry of the input and output manifold, but not on their respective representation. The energy can then be used for regression between manifolds, we present results for cases where the outputs are rotations, sets of angles, or points on 3D surfaces. In the future we plan to also target regression where the output is an element of "shape space", understood as a Riemannian manifold. One could also further explore the meaning of the Eells energy when applied to diffeomorphisms between shapes, especially with regard to its potential use as a distance measure between shapes that does not depend on the embedding or the parametrisation of the shapes.

ei

Web [BibTex]

Web [BibTex]


no image
Learning resolved velocity control

Peters, J.

2008 IEEE International Conference on Robotics and Automation (ICRA), May 2008 (talk)

ei

Web [BibTex]

Web [BibTex]


no image
Bayesian methods for protein structure determination

Habeck, M.

Machine Learning in Structural Bioinformatics, April 2008 (talk)

ei

Web [BibTex]

Web [BibTex]

2007


no image
Reaction graph kernels for discovering missing enzymes in the plant secondary metabolism

Saigo, H., Hattori, M., Tsuda, K.

NIPS Workshop on Machine Learning in Computational Biology, December 2007 (talk)

Abstract
Secondary metabolic pathway in plant is important for finding druggable candidate enzymes. However, there are many enzymes whose functions are still undiscovered especially in organism-specific metabolic pathways. We propose reaction graph kernels for automatically assigning the EC numbers to unknown enzymatic reactions in a metabolic network. Experiments are carried out on KEGG/REACTION database and our method successfully predicted the first three digits of the EC number with 83% accuracy.We also exhaustively predicted missing enzymatic functions in the plant secondary metabolism pathways, and evaluated our results in biochemical validity.

ei

Web [BibTex]

2007


Web [BibTex]


no image
Positional Oligomer Importance Matrices

Sonnenburg, S., Zien, A., Philips, P., Rätsch, G.

NIPS Workshop on Machine Learning in Computational Biology, December 2007 (talk)

Abstract
At the heart of many important bioinformatics problems, such as gene finding and function prediction, is the classification of biological sequences, above all of DNA and proteins. In many cases, the most accurate classifiers are obtained by training SVMs with complex sequence kernels, for instance for transcription starts or splice sites. However, an often criticized downside of SVMs with complex kernels is that it is very hard for humans to understand the learned decision rules and to derive biological insights from them. To close this gap, we introduce the concept of positional oligomer importance matrices (POIMs) and develop an efficient algorithm for their computation. We demonstrate how they overcome the limitations of sequence logos, and how they can be used to find relevant motifs for different biological phenomena in a straight-forward way. Note that the concept of POIMs is not limited to interpreting SVMs, but is applicable to general k−mer based scoring systems.

ei

Web [BibTex]

Web [BibTex]


no image
Machine Learning Algorithms for Polymorphism Detection

Schweikert, G., Zeller, G., Weigel, D., Schölkopf, B., Rätsch, G.

NIPS Workshop on Machine Learning in Computational Biology, December 2007 (talk)

ei

Web [BibTex]

Web [BibTex]


no image
An Automated Combination of Kernels for Predicting Protein Subcellular Localization

Zien, A., Ong, C.

NIPS Workshop on Machine Learning in Computational Biology, December 2007 (talk)

Abstract
Protein subcellular localization is a crucial ingredient to many important inferences about cellular processes, including prediction of protein function and protein interactions.We propose a new class of protein sequence kernels which considers all motifs including motifs with gaps. This class of kernels allows the inclusion of pairwise amino acid distances into their computation. We utilize an extension of the multiclass support vector machine (SVM)method which directly solves protein subcellular localization without resorting to the common approach of splitting the problem into several binary classification problems. To automatically search over families of possible amino acid motifs, we optimize over multiple kernels at the same time. We compare our automated approach to four other predictors on three different datasets, and show that we perform better than the current state of the art. Furthermore, our method provides some insights as to which features are most useful for determining subcellular localization, which are in agreement with biological reasoning.

ei

Web [BibTex]

Web [BibTex]


no image
Challenges in Brain-Computer Interface Development: Induction, Measurement, Decoding, Integration

Hill, NJ.

Invited keynote talk at the launch of BrainGain, the Dutch BCI research consortium, November 2007 (talk)

Abstract
I‘ll present a perspective on Brain-Computer Interface development from T{\"u}bingen. Some of the benefits promised by BCI technology lie in the near foreseeable future, and some further away. Our motivation is to make BCI technology feasible for the people who could benefit from what it has to offer soon: namely, people in the "completely locked-in" state. I‘ll mention some of the challenges of working with this user group, and explain the specific directions they have motivated us to take in developing experimental methods, algorithms, and software.

ei

[BibTex]

[BibTex]


no image
Policy Learning for Robotics

Peters, J.

14th International Conference on Neural Information Processing (ICONIP), November 2007 (talk)

ei

Web [BibTex]

Web [BibTex]


no image
Hilbert Space Representations of Probability Distributions

Gretton, A.

2nd Workshop on Machine Learning and Optimization at the ISM, October 2007 (talk)

Abstract
Many problems in unsupervised learning require the analysis of features of probability distributions. At the most fundamental level, we might wish to determine whether two distributions are the same, based on samples from each - this is known as the two-sample or homogeneity problem. We use kernel methods to address this problem, by mapping probability distributions to elements in a reproducing kernel Hilbert space (RKHS). Given a sufficiently rich RKHS, these representations are unique: thus comparing feature space representations allows us to compare distributions without ambiguity. Applications include testing whether cancer subtypes are distinguishable on the basis of DNA microarray data, and whether low frequency oscillations measured at an electrode in the cortex have a different distribution during a neural spike. A more difficult problem is to discover whether two random variables drawn from a joint distribution are independent. It turns out that any dependence between pairs of random variables can be encoded in a cross-covariance operator between appropriate RKHS representations of the variables, and we may test independence by looking at a norm of the operator. We demonstrate this independence test by establishing dependence between an English text and its French translation, as opposed to French text on the same topic but otherwise unrelated. Finally, we show that this operator norm is itself a difference in feature means.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Regression with Intervals

Kashima, H., Yamazaki, K., Saigo, H., Inokuchi, A.

International Workshop on Data-Mining and Statistical Science (DMSS2007), October 2007, JSAI Incentive Award. Talk was given by Hisashi Kashima. (talk)

ei

Web [BibTex]

Web [BibTex]


no image
MR-Based PET Attenuation Correction: Method and Validation

Hofmann, M., Steinke, F., Scheel, V., Brady, M., Schölkopf, B., Pichler, B.

Joint Molecular Imaging Conference, September 2007 (talk)

Abstract
PET/MR combines the high soft tissue contrast of Magnetic Resonance Imaging (MRI) and the functional information of Positron Emission Tomography (PET). For quantitative PET information, correction of tissue photon attenuation is mandatory. Usually in conventional PET, the attenuation map is obtained from a transmission scan, which uses a rotating source, or from the CT scan in case of combined PET/CT. In the case of a PET/MR scanner, there is insufficient space for the rotating source and ideally one would want to calculate the attenuation map from the MR image instead. Since MR images provide information about proton density of the different tissue types, it is not trivial to use this data for PET attenuation correction. We present a method for predicting the PET attenuation map from a given the MR image, using a combination of atlas-registration and recognition of local patterns. Using "leave one out cross validation" we show on a database of 16 MR-CT image pairs that our method reliably allows estimating the CT image from the MR image. Subsequently, as in PET/CT, the PET attenuation map can be predicted from the CT image. On an additional dataset of MR/CT/PET triplets we quantitatively validate that our approach allows PET quantification with an error that is smaller than what would be clinically significant. We demonstrate our approach on T1-weighted human brain scans. However, the presented methods are more general and current research focuses on applying the established methods to human whole body PET/MRI applications.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Predicting Structured Data

Bakir, G., Hofmann, T., Schölkopf, B., Smola, A., Taskar, B., Vishwanathan, S.

pages: 360, Advances in neural information processing systems, MIT Press, Cambridge, MA, USA, September 2007 (book)

Abstract
Machine learning develops intelligent computer systems that are able to generalize from previously seen examples. A new domain of machine learning, in which the prediction must satisfy the additional constraints found in structured data, poses one of machine learning’s greatest challenges: learning functional dependencies between arbitrary input and output domains. This volume presents and analyzes the state of the art in machine learning algorithms and theory in this novel field. The contributors discuss applications as diverse as machine translation, document markup, computational biology, and information extraction, among others, providing a timely overview of an exciting field.

ei

Web [BibTex]

Web [BibTex]


no image
Bayesian methods for NMR structure determination

Habeck, M.

29th Annual Discussion Meeting: Magnetic Resonance in Biophysical Chemistry, September 2007 (talk)

ei

Web [BibTex]

Web [BibTex]


no image
Thinking Out Loud: Research and Development of Brain Computer Interfaces

Hill, NJ.

Invited keynote talk at the Max Planck Society‘s PhDNet Workshop., July 2007 (talk)

Abstract
My principal interest is in applying machine-learning methods to the development of Brain-Computer Interfaces (BCI). This involves the classification of a user‘s intentions or mental states, or regression against some continuous intentional control signal, using brain signals obtained for example by EEG, ECoG or MEG. The long-term aim is to develop systems that a completely paralysed person (such as someone suffering from advanced Amyotrophic Lateral Sclerosis) could use to communicate. Such systems have the potential to improve the lives of many people who would be otherwise completely unable to communicate, but they are still very much in the research and development stages.

ei

PDF [BibTex]

PDF [BibTex]


no image
Dirichlet Process Mixtures of Factor Analysers

Görür, D., Rasmussen, C.

Fifth Workshop on Bayesian Inference in Stochastic Processes (BSP5), June 2007 (talk)

Abstract
Mixture of factor analysers (MFA) is a well-known model that combines the dimensionality reduction technique of Factor Analysis (FA) with mixture modeling. The key issue in MFA is deciding on the latent dimension and the number of mixture components to be used. The Bayesian treatment of MFA has been considered by Beal and Ghahramani (2000) using variational approximation and by Fokoué and Titterington (2003) using birth-and –death Markov chain Monte Carlo (MCMC). Here, we present the nonparametric MFA model utilizing a Dirichlet process (DP) prior on the component parameters (that is, the factor loading matrix and the mean vector of each component) and describe an MCMC scheme for inference. The clustering property of the DP provides automatic selection of the number of mixture components. The latent dimensionality of each component is inferred by automatic relevance determination (ARD). Identifying the action potentials of individual neurons from extracellular recordings, known as spike sorting, is a challenging clustering problem. We apply our model for clustering the waveforms recorded from the cortex of a macaque monkey.

ei

Web [BibTex]

Web [BibTex]


no image
New BCI approaches: Selective Attention to Auditory and Tactile Stimulus Streams

Hill, N., Raths, C.

Invited talk at the PASCAL Workshop on Methods of Data Analysis in Computational Neuroscience and Brain Computer Interfaces, June 2007 (talk)

Abstract
When considering Brain-Computer Interface (BCI) development for patients in the most severely paralysed states, there is considerable motivation to move away from BCI systems based on either motor cortex activity, or on visual stimuli. Together these account for most of current BCI research. I present the results of our recent exploration of new auditory- and tactile-stimulus-driven BCIs. The talk includes a tutorial on the construction and interpretation of classifiers which extract spatio-temporal features from event-related potential data. The effects and implications of whitening are discussed, and preliminary results on the effectiveness of a low-rank constraint (Tomioka and Aihara 2007) are shown.

ei

PDF Web [BibTex]

PDF Web [BibTex]