3341 results (BibTeX)

2017


Thumb xl cover
Path Integral Guided Policy Search

Chebotar, Y., Kalakrishnan, M., Yahya, A., Li, A., Schaal, S., Levine, S.

Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), April 2017 (conference)

am

pdf video [BibTex]

2017


pdf video [BibTex]


no image
DeepCoder: Learning to Write Programs

Balog, M., Gaunt, A. L., Brockschmidt, M., Nowozin, S., Tarlow, D.

5th International Conference on Learning Representations (ICLR 2017), 2017 (conference) Accepted

ei

Arxiv [BibTex]

Arxiv [BibTex]


no image
Multi-frame blind image deconvolution through split frequency - phase recovery

Gauci, A., Abela, J., Cachia, E., Hirsch, M., ZarbAdami, K.

Proc. SPIE 10225, Eighth International Conference on Graphic and Image Processing (ICGIP 2016), pages: 1022511, (Editors: Yulin Wang, Tuan D. Pham, Vit Vozenilek, David Zhang, Yi Xie), 2017 (conference)

ei

DOI [BibTex]

DOI [BibTex]


Thumb xl web teaser eg
Sparse Inertial Poser: Automatic 3D Human Pose Estimation from Sparse IMUs

(Best Paper, Eurographics 2017)

Marcard, T. V., Rosenhahn, B., Black, M., Pons-Moll, G.

Computer Graphics Forum 36(2), Proceedings of the 38th Annual Conference of the European Association for Computer Graphics (Eurographics), 2017 (article)

Abstract
We address the problem of making human motion capture in the wild more practical by using a small set of inertial sensors attached to the body. Since the problem is heavily under-constrained, previous methods either use a large number of sensors, which is intrusive, or they require additional video input. We take a different approach and constrain the problem by: (i) making use of a realistic statistical body model that includes anthropometric constraints and (ii) using a joint optimization framework to fit the model to orientation and acceleration measurements over multiple frames. The resulting tracker Sparse Inertial Poser (SIP) enables motion capture using only 6 sensors (attached to the wrists, lower legs, back and head) and works for arbitrary human motions. Experiments on the recently released TNT15 dataset show that, using the same number of sensors, SIP achieves higher accuracy than the dataset baseline without using any video data. We further demonstrate the effectiveness of SIP on newly recorded challenging motions in outdoor scenarios such as climbing or jumping over a wall

ps

video pdf [BibTex]

video pdf [BibTex]


Thumb xl coverhand wilson
Capturing Hand-Object Interaction and Reconstruction of Manipulated Objects

Tzionas, D.

University of Bonn, 2017 (phdthesis)

Abstract
Hand motion capture with an RGB-D sensor gained recently a lot of research attention, however, even most recent approaches focus on the case of a single isolated hand. We focus instead on hands that interact with other hands or with a rigid or articulated object. Our framework successfully captures motion in such scenarios by combining a generative model with discriminatively trained salient points, collision detection and physics simulation to achieve a low tracking error with physically plausible poses. All components are unified in a single objective function that can be optimized with standard optimization techniques. We initially assume a-priori knowledge of the object's shape and skeleton. In case of unknown object shape there are existing 3d reconstruction methods that capitalize on distinctive geometric or texture features. These methods though fail for textureless and highly symmetric objects like household articles, mechanical parts or toys. We show that extracting 3d hand motion for in-hand scanning effectively facilitates the reconstruction of such objects and we fuse the rich additional information of hands into a 3d reconstruction pipeline. Finally, although shape reconstruction is enough for rigid objects, there is a lack of tools that build rigged models of articulated objects that deform realistically using RGB-D data. We propose a method that creates a fully rigged model consisting of a watertight mesh, embedded skeleton and skinning weights by employing a combination of deformable mesh tracking, motion segmentation based on spectral clustering and skeletonization based on mean curvature flow.

ps

Thesis link (url) Project Page [BibTex]


Thumb xl screen shot 2017 07 20 at 12.31.00 pm
Fast Bayesian Optimization of Machine Learning Hyperparameters on Large Datasets

Klein, A., Falkner, S., Bartels, S., Hennig, P., Hutter, F.

Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS 2017), 54, pages: 528-536, Proceedings of Machine Learning Research, (Editors: Sign, Aarti and Zhu, Jerry), PMLR, April 2017 (conference)

pn

pdf link (url) [BibTex]

pdf link (url) [BibTex]


Thumb xl img03
OctNet: Learning Deep 3D Representations at High Resolutions

Riegler, G., Ulusoy, O., Geiger, A.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), July 2017 (inproceedings)

Abstract
We present OctNet, a representation for deep learning with sparse 3D data. In contrast to existing models, our representation enables 3D convolutional networks which are both deep and high resolution. Towards this goal, we exploit the sparsity in the input data to hierarchically partition the space using a set of unbalanced octrees where each leaf node stores a pooled feature representation. This allows to focus memory allocation and computation to the relevant dense regions and enables deeper networks without compromising resolution. We demonstrate the utility of our OctNet representation by analyzing the impact of resolution on several 3D tasks including 3D object classification, orientation estimation and point cloud labeling.

avg ps

pdf suppmat Project Page Video [BibTex]

pdf suppmat Project Page Video [BibTex]


Thumb xl img01
Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks

Mescheder, L., Nowozin, S., Geiger, A.

In International Conference on Machine Learning (ICML) 2017, International Conference on Machine Learning (ICML), August 2017 (inproceedings)

Abstract
Variational Autoencoders (VAEs) are expressive latent variable models that can be used to learn complex probability distributions from training data. However, the quality of the resulting model crucially relies on the expressiveness of the inference model. We introduce Adversarial Variational Bayes (AVB), a technique for training Variational Autoencoders with arbitrarily expressive inference models. We achieve this by introducing an auxiliary discriminative network that allows to rephrase the maximum-likelihood-problem as a two-player game, hence establishing a principled connection between VAEs and Generative Adversarial Networks (GANs). We show that in the nonparametric limit our method yields an exact maximum-likelihood assignment for the parameters of the generative model, as well as the exact posterior distribution over the latent variables given an observation. Contrary to competing approaches which combine VAEs with GANs, our approach has a clear theoretical justification, retains most advantages of standard Variational Autoencoders and is easy to implement.

avg

pdf suppmat Project Page arxiv-version [BibTex]

pdf suppmat Project Page arxiv-version [BibTex]


Thumb xl this one
Virtual vs. Real: Trading Off Simulations and Physical Experiments in Reinforcement Learning with Bayesian Optimization

Marco, A., Berkenkamp, F., Hennig, P., Schoellig, A. P., Krause, A., Schaal, S., Trimpe, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 1557-1563, IEEE International Conference on Robotics and Automation, May 2017 (inproceedings)

am pn

PDF arXiv ICRA 2017 Spotlight presentation DOI Project Page [BibTex]

PDF arXiv ICRA 2017 Spotlight presentation DOI Project Page [BibTex]


Thumb xl apollo system2 croped
Model-Based Policy Search for Automatic Tuning of Multivariate PID Controllers

Doerr, A., Nguyen-Tuong, D., Marco, A., Schaal, S., Trimpe, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 5295-5301, 2017 IEEE International Conference on Robotics and Automation, May 2017 (inproceedings)

am

PDF arXiv DOI [BibTex]

PDF arXiv DOI [BibTex]


Thumb xl 2016 enhancenet
EnhanceNet: Single Image Super-Resolution through Automated Texture Synthesis

Sajjadi, M. S. M., Schölkopf, B., Hirsch, M.

arXiv:1612.07919, IEEE International Conference on Computer Vision (ICCV 2017), 2017 (talk) Accepted

ei

Arxiv Project [BibTex]

Arxiv Project [BibTex]


no image
Event-based State Estimation: An Emulation-based Approach

Trimpe, S.

IET Control Theory & Applications, 11(11):1684-1693, July 2017 (article)

Abstract
An event-based state estimation approach for reducing communication in a networked control system is proposed. Multiple distributed sensor agents observe a dynamic process and sporadically transmit their measurements to estimator agents over a shared bus network. Local event-triggering protocols ensure that data is transmitted only when necessary to meet a desired estimation accuracy. The event-based design is shown to emulate the performance of a centralised state observer design up to guaranteed bounds, but with reduced communication. The stability results for state estimation are extended to the distributed control system that results when the local estimates are used for feedback control. Results from numerical simulations and hardware experiments illustrate the effectiveness of the proposed approach in reducing network communication.

am

arXiv Supplementary material PDF DOI [BibTex]

arXiv Supplementary material PDF DOI [BibTex]


Thumb xl reliability icon
Distilling Information Reliability and Source Trustworthiness from Digital Traces

Tabibian, B., Valera, I., Farajtabar, M., Song, L., Schölkopf, B., Gomez Rodriguez, M.

Proceedings of the 26th International Conference on World Wide Web (WWW 2017), pages: 847-855, (Editors: Barrett, R., Cummings, R., Agichtein, E. and Gabrilovich, E. ), ACM, 2017 (conference)

ei

Project DOI [BibTex]

Project DOI [BibTex]


Thumb xl teaser
Coupling Adaptive Batch Sizes with Learning Rates

Balles, L., Romero, J., Hennig, P.

In Proceedings of the Thirty-Third Conference on Uncertainty in Artificial Intelligence (UAI), pages: 410-419, (Editors: Gal Elidan and Kristian Kersting), 2017 (inproceedings)

Abstract
Mini-batch stochastic gradient descent and variants thereof have become standard for large-scale empirical risk minimization like the training of neural networks. These methods are usually used with a constant batch size chosen by simple empirical inspection. The batch size significantly influences the behavior of the stochastic optimization algorithm, though, since it determines the variance of the gradient estimates. This variance also changes over the optimization process; when using a constant batch size, stability and convergence is thus often enforced by means of a (manually tuned) decreasing learning rate schedule. We propose a practical method for dynamic batch size adaptation. It estimates the variance of the stochastic gradients and adapts the batch size to decrease the variance proportionally to the value of the objective function, removing the need for the aforementioned learning rate decrease. In contrast to recent related work, our algorithm couples the batch size to the learning rate, directly reflecting the known relationship between the two. On three image classification benchmarks, our batch size adaptation yields faster optimization convergence, while simultaneously simplifying learning rate tuning. A TensorFlow implementation is available.

ps pn

Code link (url) Project Page [BibTex]

Code link (url) Project Page [BibTex]


no image
DiSMEC – Distributed Sparse Machines for Extreme Multi-label Classification

Babbar, R., Schölkopf, B.

Proceedings of the Tenth ACM International Conference on Web Search and Data Mining (WSDM 2017), pages: 721-729, 2017 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
BundleMAP: Anatomically Localized Classification, Regression, and Hypothesis Testing in Diffusion MRI

Khatami, M., Schmidt-Wilcke, T., Sundgren, P. C., Abbasloo, A., Schölkopf, B., Schultz, T.

Pattern Recognition, 63, pages: 593-600, 2017 (article)

ei

DOI [BibTex]

DOI [BibTex]


Thumb xl fig  quali  arm
Probabilistic Articulated Real-Time Tracking for Robot Manipulation

(Finalist of Best Robotic Vision Paper Award of ICRA 2017)

Garcia Cifuentes, C., Issac, J., Wüthrich, M., Schaal, S., Bohg, J.

IEEE Robotics and Automation Letters (RA-L), 2(2):577-584, April 2017 (article)

Abstract
We propose a probabilistic filtering method which fuses joint measurements with depth images to yield a precise, real-time estimate of the end-effector pose in the camera frame. This avoids the need for frame transformations when using it in combination with visual object tracking methods. Precision is achieved by modeling and correcting biases in the joint measurements as well as inaccuracies in the robot model, such as poor extrinsic camera calibration. We make our method computationally efficient through a principled combination of Kalman filtering of the joint measurements and asynchronous depth-image updates based on the Coordinate Particle Filter. We quantitatively evaluate our approach on a dataset recorded from a real robotic platform, annotated with ground truth from a motion capture system. We show that our approach is robust and accurate even under challenging conditions such as fast motion, significant and long-term occlusions, and time-varying biases. We release the dataset along with open-source code of our approach to allow for quantitative comparison with alternative approaches.

am

arXiv video code and dataset video PDF DOI Project Page [BibTex]


no image
End-to-End Learning for Image Burst Deblurring

Wieschollek, P., Schölkopf, B., Lensch, H. P. A., Hirsch, M.

Computer Vision - ACCV 2016 - 13th Asian Conference on Computer Vision, 10114, pages: 35-51, Image Processing, Computer Vision, Pattern Recognition, and Graphics, (Editors: Lai, S.-H., Lepetit, V., Nishino, K., and Sato, Y. ), Springer, 2017 (conference)

ei

[BibTex]

[BibTex]


no image
Unsupervised clustering of EOG as a viable substitute for optical eye-tracking

Flad, N., Fomina, T., Bülthoff, H. H., Chuang, L. L.

In First Workshop on Eye Tracking and Visualization (ETVIS 2015), pages: 151-167, Mathematics and Visualization, (Editors: Burch, M., Chuang, L., Fisher, B., Schmidt, A., and Weiskopf, D.), Springer, 2017 (inbook)

ei

DOI [BibTex]

DOI [BibTex]


Thumb xl robot legos
Interactive Perception: Leveraging Action in Perception and Perception in Action

Bohg, J., Hausman, K., Sankaran, B., Brock, O., Kragic, D., Schaal, S., Sukhatme, G.

IEEE Transactions on Robotics, June 2017 (article) Accepted

Abstract
Recent approaches in robotics follow the insight that perception is facilitated by interactivity with the environment. These approaches are subsumed under the term of Interactive Perception (IP). We argue that IP provides the following benefits: (i) any type of forceful interaction with the environment creates a new type of informative sensory signal that would otherwise not be present and (ii) any prior knowledge about the nature of the interaction supports the interpretation of the signal. This is facilitated by knowledge of the regularity in the combined space of sensory information and action parameters. The goal of this survey is to postulate this as a principle and collect evidence in support by analyzing and categorizing existing work in this area. We also provide an overview of the most important applications of Interactive Perception. We close this survey by discussing the remaining open questions. Thereby, we hope to define a field and inspire future work.

am

Version on arXiv Project Page [BibTex]

Version on arXiv Project Page [BibTex]


no image
Model Selection for Gaussian Mixture Models

Huang, T., Peng, H., Zhang, K.

Statistica Sinica, 27(1):147-169, 2017 (article)

ei

link (url) [BibTex]

link (url) [BibTex]


Thumb xl mosh heroes icon
Method for providing a three dimensional body model

Loper, M., Mahmood, N., Black, M.

U.S. Patent 9,710,964 B2., July 2017 (patent)

Abstract
A method for providing a three-dimensional body model which may be applied for an animation, based on a moving body, wherein the method comprises providing a parametric three-dimensional body model, which allows shape and pose variations; applying a standard set of body markers; optimizing the set of body markers by generating an additional set of body markers and applying the same for providing 3D coordinate marker signals for capturing shape and pose of the body and dynamics of soft tissue; and automatically providing an animation by processing the 3D coordinate marker signals in order to provide a personalized three-dimensional body model, based on estimated shape and an estimated pose of the body by means of predicted marker locations.

ps

Google Patents MoSh Project [BibTex]


no image
Model-based Contextual Policy Search for Data-Efficient Generalization of Robot Skills

Kupcsik, A., Deisenroth, M., Peters, J., Ai Poh, L., Vadakkepat, V., Neumann, G.

Artificial Intelligence, 247, pages: 415-439, 2017, Special Issue on AI and Robotics (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl dapepatent
System and method for simulating realistic clothing

Black, M. J., Guan, P.

US Patent No. US 9,679,409 B2, June 2017 (patent)

Abstract
Systems, methods, and computer-readable storage media for simulating realistic clothing. The system generates a clothing deformation model for a clothing type, wherein the clothing deformation model factors a change of clothing shape due to rigid limb rotation, pose-independent body shape, and pose-dependent deformations. Next, the system generates a custom-shaped garment for a given body by mapping, via the clothing deformation model, body shape parameters to clothing shape parameters. The system then automatically dresses the given body with the custom- shaped garment.

ps

Google Patents pdf [BibTex]


no image
Anticipatory Action Selection for Human-Robot Table Tennis

Wang, Z., Boularias, A., Mülling, K., Schölkopf, B., Peters, J.

Artificial Intelligence, 247, pages: 399-414, 2017, Special Issue on AI and Robotics (article)

Abstract
Abstract Anticipation can enhance the capability of a robot in its interaction with humans, where the robot predicts the humans' intention for selecting its own action. We present a novel framework of anticipatory action selection for human-robot interaction, which is capable to handle nonlinear and stochastic human behaviors such as table tennis strokes and allows the robot to choose the optimal action based on prediction of the human partner's intention with uncertainty. The presented framework is generic and can be used in many human-robot interaction scenarios, for example, in navigation and human-robot co-manipulation. In this article, we conduct a case study on human-robot table tennis. Due to the limited amount of time for executing hitting movements, a robot usually needs to initiate its hitting movement before the opponent hits the ball, which requires the robot to be anticipatory based on visual observation of the opponent's movement. Previous work on Intention-Driven Dynamics Models (IDDM) allowed the robot to predict the intended target of the opponent. In this article, we address the problem of action selection and optimal timing for initiating a chosen action by formulating the anticipatory action selection as a Partially Observable Markov Decision Process (POMDP), where the transition and observation are modeled by the \{IDDM\} framework. We present two approaches to anticipatory action selection based on the \{POMDP\} formulation, i.e., a model-free policy learning method based on Least-Squares Policy Iteration (LSPI) that employs the \{IDDM\} for belief updates, and a model-based Monte-Carlo Planning (MCP) method, which benefits from the transition and observation model by the IDDM. Experimental results using real data in a simulated environment show the importance of anticipatory action selection, and that \{POMDPs\} are suitable to formulate the anticipatory action selection problem by taking into account the uncertainties in prediction. We also show that existing algorithms for POMDPs, such as \{LSPI\} and MCP, can be applied to substantially improve the robot's performance in its interaction with humans.

am ei

DOI [BibTex]

DOI [BibTex]

2016


no image
Annales des Concours 2016 MP Mathématiques, Informatique

Batog, G., Dumont, J., Puyhaubert, V.

In corrigés des problèmes posés aux concours CCP, Centrale/Supélec, Mines/Ponts, X/ENS, 2016 (inbook)

slt

H&K Éditions [BibTex]

2016


H&K Éditions [BibTex]


no image
Consistent change-point detection with kernels

Garreau, D., Arlot, S.

December 2016, (Submitted on 14 Dec 2016 (v1), last revised 29 Jun 2017 (this version, v3)) (article)

Abstract
In this paper we study the kernel change-point algorithm (KCP) proposed by Arlot, Celisse and Harchaoui (2012), which aims at locating an unknown number of change-points in the distribution of a sequence of independent data taking values in an arbitrary set. The change-points are selected by model selection with a penalized kernel empirical criterion. We provide a non-asymptotic result showing that, with high probability, the KCP procedure retrieves the correct number of change-points, provided that the constant in the penalty is well-chosen; in addition, KCP estimates the change-points location at the optimal rate. As a consequence, when using a characteristic kernel, KCP detects all kinds of change in the distribution (not only changes in the mean or the variance), and it is able to do so for complex structured data (not necessarily in ℝd). Most of the analysis is conducted assuming that the kernel is bounded; part of the results can be extended when we only assume a finite second-order moment.

slt

arXiv:1612.04740 [BibTex]

arXiv:1612.04740 [BibTex]


no image
MuProp: Unbiased Backpropagation for Stochastic Neural Networks

Gu, S., Levine, S., Sutskever, I., Mnih, A.

4th International Conference on Learning Representations (ICLR 2016), 2016 (conference)

ei

Arxiv [BibTex]

Arxiv [BibTex]


no image
Continuous Deep Q-Learning with Model-based Acceleration

Gu, S., Lillicrap, T., Sutskever, I., Levine, S.

Proceedings of the 33nd International Conference on Machine Learning (ICML 2016), 48, pages: 2829-2838, JMLR Workshop and Conference Proceedings, (Editors: Maria-Florina Balcan and Kilian Q. Weinberger), JMLR.org, 2016 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Hydrodynamic simulations of the interaction between giant stars and planets

Staff, J., De Marco, O., Wood, P., Galaviz, P., Passy, J.

Monthly Notices of the Royal Astronomical Society, 458, pages: 832-844, 2016 (article)

DOI [BibTex]

DOI [BibTex]


no image
Hydrodynamic simulations of the interaction between an AGB star and a main-sequence companion in eccentric orbits

Staff, J., De Marco, O., Macdonald, D., Galaviz, P., Passy, J., Iaconi, R., Low, M.

Monthly Notices of the Royal Astronomical Society, 455, pages: 3511-3525, 2016 (article)

DOI [BibTex]

DOI [BibTex]


no image
Confronting uncertainties in stellar physics. II. Exploring differences in main-sequence stellar evolution tracks

Stancliffe, R., Fossati, L., Passy, J., Schneider, F.

Astronomy and Astrophysics , 586, pages: A119, 2016 (article)

DOI [BibTex]

DOI [BibTex]


no image
Fabular: Regression Formulas As Probabilistic Programming

Borgström, J., Gordon, A. D., Ouyang, L., Russo, C., Ścibior, A., Szymczak, M.

Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages: 271-283, POPL ’16, ACM, 2016 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
From Deterministic ODEs to Dynamic Structural Causal Models

Rubenstein, P. K., Bongers, S., Mooij, J. M., Schölkopf, B.

2016 (conference) Submitted

ei

Arxiv [BibTex]


no image
A Kernel Test for Three-Variable Interactions with Random Processes

Rubenstein, P. K., Chwialkowski, K. P., Gretton, A.

Proceedings of the Thirty-Second Conference on Uncertainty in Artificial Intelligence (UAI), (Editors: Ihler, Alexander T. and Janzing, Dominik), 2016 (conference)

ei

PDF Supplement Arxiv [BibTex]

PDF Supplement Arxiv [BibTex]


no image
Testing models of peripheral encoding using metamerism in an oddity paradigm

Wallis, T. S. A., Bethge, M., Wichmann, F. A.

Journal of Vision, 16(2), 2016 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Painfree and accurate Bayesian estimation of psychometric functions for (potentially) overdispersed data

Schütt, H. H., Harmeling, S., Macke, J. H., Wichmann, F. A.

Vision Research, 122, pages: 105-123, 2016 (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Influence of initial fixation position in scene viewing

Rothkegel, L. O. M., Trukenbrod, H. A., Schütt, H. H., Wichmann, F. A., Engbert, R.

Vision Research, 129, pages: 33-49, 2016 (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
BOiS—Berlin Object in Scene Database: Controlled Photographic Images for Visual Search Experiments with Quantified Contextual Priors

Mohr, J., Seyfarth, J., Lueschow, A., Weber, J. E., Wichmann, F. A., Obermayer, K.

Frontiers in Psychology, 2016 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
An overview of quantitative approaches in Gestalt perception

Jäkel, F., Singh, M., Wichmann, F. A., Herzog, M. H.

Vision Research, 126, pages: 3-8, 2016 (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Understanding Probabilistic Sparse Gaussian Process Approximations

Bauer, M., van der Wilk, M., Rasmussen, C. E.

Advances in Neural Information Processing Systems 29, pages: 1533-1541, (Editors: D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett), Curran Associates, Inc., 30th Annual Conference on Neural Information Processing Systems (NIPS), 2016 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Extrapolation and learning equations

Martius, G., Lampert, C. H.

2016, arXiv preprint \url{https://arxiv.org/abs/1610.02995} (misc)

al

[BibTex]

[BibTex]


no image
Dynamical self-consistency leads to behavioral development and emergent social interactions in robots.

Der, R., Martius, G.

In Proc. IEEE Int. Conf. on Development and Learning and Epigenetic Robotics, 2016, in press (inproceedings)

al

[BibTex]

[BibTex]


no image
Compliant control for soft robots: emergent behavior of a tendon driven anthropomorphic arm.

Martius, G., Hostettler, R., Knoll, A., Der, R.

In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 767-773, 2016 (inproceedings)

al

DOI [BibTex]

DOI [BibTex]


no image
Unsupervised Domain Adaptation in the Wild : Dealing with Asymmetric Label Set

Mittal, A., Raj, A., Namboodiri, V. P., Tuytelaars, T.

2016 (misc)

ei

Arxiv [BibTex]

Arxiv [BibTex]


no image
Screening Rules for Convex Problems

Raj, A., Olbrich, J., Gärtner, B., Schölkopf, B., Jaggi, M.

2016 (article) Submitted

ei

[BibTex]

[BibTex]


no image
PGO wave-triggered functional MRI: mapping the networks underlying synaptic consolidation

Logothetis, N. K., Murayama, Y., Ramirez-Villegas, J. F., Besserve, M., Evrard, H.

47th Annual Meeting of the Society for Neuroscience (Neuroscience), 2016 (poster)

ei

[BibTex]

[BibTex]


no image
Hippocampal neural events predict ongoing brain-wide BOLD activity

Besserve, M., Logothetis, N. K.

47th Annual Meeting of the Society for Neuroscience (Neuroscience), 2016 (poster)

ei

[BibTex]

[BibTex]


no image
Statistical source separation of rhythmic LFP patterns during sharp wave ripples in the macaque hippocampus

Ramirez-Villegas, J. F., Logothetis, N. K., Besserve, M.

47th Annual Meeting of the Society for Neuroscience (Neuroscience), 2016 (poster)

ei

[BibTex]

[BibTex]


Thumb xl qualitative topic 1
Fast Supervised LDA for Discovering Micro-Events in Large-Scale Video Datasets

Katharopoulos, A., Paschalidou, D., Diou, C., Delopoulos, A.

In Proceedings of the 2016 ACM on Multimedia Conference, pages: 332,336, ACM Multimedia Conference, October 2016 (inproceedings)

Abstract
This paper introduces fsLDA, a fast variational inference method for supervised LDA, which overcomes the computational limitations of the original supervised LDA and enables its application in large-scale video datasets. In addition to its scalability, our method also overcomes the drawbacks of standard, unsupervised LDA for video, including its focus on dominant but often irrelevant video information (e.g. background, camera motion). As a result, experiments in the UCF11 and UCF101 datasets show that our method consistently outperforms unsupervised LDA in every metric. Furthermore, analysis shows that class-relevant topics of fsLDA lead to sparse video representations and encapsulate high-level information corresponding to parts of video events, which we denote "micro-events".

pdf Project page code poster link (url) DOI [BibTex]

pdf Project page code poster link (url) DOI [BibTex]