Header logo is


2017


no image
Methods and measurements to compare men against machines

Wichmann, F. A., Janssen, D. H. J., Geirhos, R., Aguilar, G., Schütt, H. H., Maertens, M., Bethge, M.

Electronic Imaging, pages: 36-45(10), 2017 (article)

ei

DOI [BibTex]

2017


DOI [BibTex]


no image
Surface tension-driven self-alignment

Mastrangeli, M., Zhou, Q., Sariola, V., Lambert, P.

Soft Matter, 13, pages: 304-327, The Royal Society of Chemistry, 2017 (article)

Abstract
Surface tension-driven self-alignment is a passive and highly-accurate positioning mechanism that can significantly simplify and enhance the construction of advanced microsystems. After years of research{,} demonstrations and developments{,} the surface engineering and manufacturing technology enabling capillary self-alignment has achieved a degree of maturity conducive to a successful transfer to industrial practice. In view of this transition{,} a broad and accessible review of the physics{,} material science and applications of capillary self-alignment is presented. Statics and dynamics of the self-aligning action of deformed liquid bridges are explained through simple models and experiments{,} and all fundamental aspects of surface patterning and conditioning{,} of choice{,} deposition and confinement of liquids{,} and of component feeding and interconnection to substrates are illustrated through relevant applications in micro- and nanotechnology. A final outline addresses remaining challenges and additional extensions envisioned to further spread the use and fully exploit the potential of the technique.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl paraview preview
Design of a visualization scheme for functional connectivity data of Human Brain

Bramlage, L.

Hochschule Osnabrück - University of Applied Sciences, 2017 (thesis)

sf

Bramlage_BSc_2017.pdf [BibTex]


no image
A Comparison of Autoregressive Hidden Markov Models for Multimodal Manipulations With Variable Masses

Kroemer, O., Peters, J.

IEEE Robotics and Automation Letters, 2(2):1101-1108, 2017 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Phase Estimation for Fast Action Recognition and Trajectory Generation in Human-Robot Collaboration

Maeda, G., Ewerton, M., Neumann, G., Lioutikov, R., Peters, J.

International Journal of Robotics Research, 36(13-14):1579-1594, 2017, Special Issue on the Seventeenth International Symposium on Robotics Research (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
A Phase-coded Aperture Camera with Programmable Optics

Chen, J., Hirsch, M., Heintzmann, R., Eberhardt, B., Lensch, H. P. A.

Electronic Imaging, 2017(17):70-75, 2017 (article)

ei

DOI [BibTex]

DOI [BibTex]


Thumb xl passat small
Computer Vision for Autonomous Vehicles: Problems, Datasets and State-of-the-Art

Janai, J., Güney, F., Behl, A., Geiger, A.

Arxiv, 2017 (article)

Abstract
Recent years have witnessed amazing progress in AI related fields such as computer vision, machine learning and autonomous vehicles. As with any rapidly growing field, however, it becomes increasingly difficult to stay up-to-date or enter the field as a beginner. While several topic specific survey papers have been written, to date no general survey on problems, datasets and methods in computer vision for autonomous vehicles exists. This paper attempts to narrow this gap by providing a state-of-the-art survey on this topic. Our survey includes both the historically most relevant literature as well as the current state-of-the-art on several specific topics, including recognition, reconstruction, motion estimation, tracking, scene understanding and end-to-end learning. Towards this goal, we first provide a taxonomy to classify each approach and then analyze the performance of the state-of-the-art on several challenging benchmarking datasets including KITTI, ISPRS, MOT and Cityscapes. Besides, we discuss open problems and current research challenges. To ease accessibility and accommodate missing references, we will also provide an interactive platform which allows to navigate topics and methods, and provides additional information and project links for each paper.

avg

pdf Project Page Project Page [BibTex]


Thumb xl imagetoc
A Deep Learning Based 6 Degree-of-Freedom Localization Method for Endoscopic Capsule Robots

Turan, M., Almalioglu, Y., Konukoglu, E., Sitti, M.

arXiv preprint arXiv:1705.05435, 2017 (article)

Abstract
We present a robust deep learning based 6 degrees-of-freedom (DoF) localization system for endoscopic capsule robots. Our system mainly focuses on localization of endoscopic capsule robots inside the GI tract using only visual information captured by a mono camera integrated to the robot. The proposed system is a 23-layer deep convolutional neural network (CNN) that is capable to estimate the pose of the robot in real time using a standard CPU. The dataset for the evaluation of the system was recorded inside a surgical human stomach model with realistic surface texture, softness, and surface liquid properties so that the pre-trained CNN architecture can be transferred confidently into a real endoscopic scenario. An average error of 7.1% and 3.4% for translation and rotation has been obtained, respectively. The results accomplished from the experiments demonstrate that a CNN pre-trained with raw 2D endoscopic images performs accurately inside the GI tract and is robust to various challenges posed by reflection distortions, lens imperfections, vignetting, noise, motion blur, low resolution, and lack of unique landmarks to track.

pi

link (url) Project Page [BibTex]


no image
Efficiency of analytical and sampling-based uncertainty propagation in intensity-modulated proton therapy

Wahl, N., Hennig, P., Wieser, H. P., Bangert, M.

Physics in Medicine & Biology, 62(14):5790-5807, 2017 (article)

Abstract
The sensitivity of intensity-modulated proton therapy (IMPT) treatment plans to uncertainties can be quantified and mitigated with robust/min-max and stochastic/probabilistic treatment analysis and optimization techniques. Those methods usually rely on sparse random, importance, or worst-case sampling. Inevitably, this imposes a trade-off between computational speed and accuracy of the uncertainty propagation. Here, we investigate analytical probabilistic modeling (APM) as an alternative for uncertainty propagation and minimization in IMPT that does not rely on scenario sampling. APM propagates probability distributions over range and setup uncertainties via a Gaussian pencil-beam approximation into moments of the probability distributions over the resulting dose in closed form. It supports arbitrary correlation models and allows for efficient incorporation of fractionation effects regarding random and systematic errors. We evaluate the trade-off between run-time and accuracy of APM uncertainty computations on three patient datasets. Results are compared against reference computations facilitating importance and random sampling. Two approximation techniques to accelerate uncertainty propagation and minimization based on probabilistic treatment plan optimization are presented. Runtimes are measured on CPU and GPU platforms, dosimetric accuracy is quantified in comparison to a sampling-based benchmark (5000 random samples). APM accurately propagates range and setup uncertainties into dose uncertainties at competitive run-times (GPU ##IMG## [http://ej.iop.org/images/0031-9155/62/14/5790/pmbaa6ec5ieqn001.gif] {$\leqslant {5}$} min). The resulting standard deviation (expectation value) of dose show average global ##IMG## [http://ej.iop.org/images/0031-9155/62/14/5790/pmbaa6ec5ieqn002.gif] {$\gamma_{{3}\% / {3}~{\rm mm}}$} pass rates between 94.2% and 99.9% (98.4% and 100.0%). All investigated importance sampling strategies provided less accuracy at higher run-times considering only a single fraction. Considering fractionation, APM uncertainty propagation and treatment plan optimization was proven to be possible at constant time complexity, while run-times of sampling-based computations are linear in the number of fractions. Using sum sampling within APM, uncertainty propagation can only be accelerated at the cost of reduced accuracy in variance calculations. For probabilistic plan optimization, we were able to approximate the necessary pre-computations within seconds, yielding treatment plans of similar quality as gained from exact uncertainty propagation. APM is suited to enhance the trade-off between speed and accuracy in uncertainty propagation and probabilistic treatment plan optimization, especially in the context of fractionation. This brings fully-fledged APM computations within reach of clinical application.

pn

link (url) [BibTex]

link (url) [BibTex]


Thumb xl publications toc
Deep EndoVO: A Recurrent Convolutional Neural Network (RCNN) based Visual Odometry Approach for Endoscopic Capsule Robots

Turan, M., Almalioglu, Y., Araujo, H., Konukoglu, E., Sitti, M.

ArXiv e-prints, 2017 (article)

Abstract
Ingestible wireless capsule endoscopy is an emerging minimally invasive diagnostic technology for inspection of the GI tract and diagnosis of a wide range of diseases and pathologies. Medical device companies and many research groups have recently made substantial progresses in converting passive capsule endoscopes to active capsule robots, enabling more accurate, precise, and intuitive detection of the location and size of the diseased areas. Since a reliable real time pose estimation functionality is crucial for actively controlled endoscopic capsule robots, in this study, we propose a monocular visual odometry (VO) method for endoscopic capsule robot operations. Our method lies on the application of the deep Recurrent Convolutional Neural Networks (RCNNs) for the visual odometry task, where Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) are used for the feature extraction and inference of dynamics across the frames, respectively. Detailed analyses and evaluations made on a real pig stomach dataset proves that our system achieves high translational and rotational accuracies for different types of endoscopic capsule robot trajectories.

pi

link (url) Project Page [BibTex]


no image
Analytical probabilistic modeling of RBE-weighted dose for ion therapy

Wieser, H., Hennig, P., Wahl, N., Bangert, M.

Physics in Medicine and Biology (PMB), 62(23):8959-8982, 2017 (article)

pn

link (url) [BibTex]

link (url) [BibTex]


no image
On Maximum Entropy and Inference

Gresele, L., Marsili, M.

Entropy, 19(12):article no. 642, 2017 (article)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Towards Engagement Models that Consider Individual Factors in HRI: On the Relation of Extroversion and Negative Attitude Towards Robots to Gaze and Speech During a Human-Robot Assembly Task

Ivaldi, S., Lefort, S., Peters, J., Chetouani, M., Provasi, J., Zibetti, E.

International Journal of Social Robotics, 9(1):63-86, 2017 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Non-parametric Policy Search with Limited Information Loss

van Hoof, H., Neumann, G., Peters, J.

Journal of Machine Learning Research , 18(73):1-46, 2017 (article)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Stability of Controllers for Gaussian Process Dynamics

Vinogradska, J., Bischoff, B., Nguyen-Tuong, D., Peters, J.

Journal of Machine Learning Research, 18(100):1-37, 2017 (article)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
SUV-quantification of physiological lung tissue in an integrated PET/MR-system: Impact of lung density and bone tissue

Seith, F., Schmidt, H., Gatidis, S., Bezrukov, I., Schraml, C., Pfannenberg, C., la Fougère, C., Nikolaou, K., Schwenzer, N.

PLOS ONE, 12(5):1-13, 2017 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Corrosion-protected hybrid nanoparticles

Jeong, H., Alarcón-Correa, M., Mark, A. G., Son, K., Lee, T., Fischer, P.

{Advanced Science}, 4(12), Wiley-VCH, Weinheim, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Investigation of the Dzyaloshinskii-Moriya interaction and room temperature skyrmions in W/CoFeB/MgO thin films and microwires

Jaiswal, S., Litzius, K., Lemesh, I., Büttner, F., Finizio, S., Raabe, J., Weigand, M., Lee, K., Langer, J., Ocker, B., Jakob, G., Beach, G. S. D., Kläui, M.

{Applied Physics Letters}, 111(2), American Institute of Physics, Melville, NY, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Ultrafast demagnetization after femtosecond laser pulses: Transfer of angular momentum from the electronic system to magnetoelastic spin-phonon modes

Fähnle, M., Tsatsoulis, T., Illg, C., Haag, M., Müller, B. Y., Zhang, L.

{Journal of Superconductivity and Novel Magnetism}, 30(5):1381-1387, Springer Science + Business Media B.V., New York, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetic behavior of single chain magnets in metal organic frameworks CPO-27-Co

Son, K., Goering, E., Hirscher, M., Oh, H.

{Journal of Nanoscience and Nanotechnology}, 17(10):7541-7546, American Scientific Publishers, Stevenson Ranch, Calif., 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Switching by domain-wall automotion in asymmetric ferromagnetic rings

Mawass, M., Richter, K., Bisig, A., Reeve, R. M., Krüger, B., Weigand, M., Stoll, H., Krone, A., Kronast, F., Schütz, G., Kläui, M.

{Physical Review Applied}, 7(4), American Physical Society, College Park, Md. [u.a.], 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
A neutral atom moving in an external magnetic field does not feel a Lorentz force

Fähnle, M.

{American Journal of Modern Physics}, 6(6):153-155, Science Publishing Group, New York, NY, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Temperature-dependent first-order reversal curve measurements on unusually hard magnetic low-temperature phase of MnBi

Muralidhar, S., Gräfe, J., Chen, Y., Etter, M., Gregori, G., Ener, S., Sawatzki, S., Hono, K., Gutfleisch, O., Kronmüller, H., Schütz, G., Goering, E. J.

{Physical Review B}, 95(2), American Physical Society, Woodbury, NY, 2017 (article)

mms

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Smooth and rapid microwave synthesis of MIL-53(Fe) including superparamagnetic \textlessgamma\textgreater-Fe2O3 nanoparticles

Wengert, S., Albrecht, J., Ruoß, S., Stahl, C., Schütz, G., Schäfer, R.

{Journal of Magnetism and Magnetic Materials}, 444, pages: 168-172, NH, Elsevier, Amsterdam, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Characterization and differentiation of rock varnish types from different environments by microanalytical techniques

Macholdt, D. S., Jochum, K. P., Pöhlker, C., Arangio, A., Förster, J., Stoll, B., Weis, U., Weber, B., Müller, M., Kappl, M., Shiraiwa, M., Kilcoyne, A. L. D., Weigand, M., Scholz, D., Haug, G. H., Al-Amri, A., Andreae, M. O.

{Chemical Geology}, 459, pages: 91-118, Elsevier, Amsterdam, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy

Litzius, K., Lemesh, I., Krüger, B., Bassirian, P., Caretta, L., Richter, K., Büttner, F., Sato, K., Tretiakov, O. A., Förster, J., Reeve, R. M., Weigand, M., Bykova, I., Stoll, H., Schütz, G., Beach, G. S. D., Kläui, M.

{Nature Physics}, 13(2):170-175, Nature Pub. Group, London, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Comment on magnonic black holes

Fähnle, M., Schütz, G.

{Journal of Magnetism and Magnetic Materials}, 444, pages: 146-146, NH, Elsevier, Amsterdam, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Cr-Substitution in Ba2In2O5 \mbox⋅ (H2O)x (x \textequals 0.16, 0.74)

Yoon, S., Son, K., Hagemann, H., Widenmeyer, M., Weidenkaff, A.

{Solid State Sciences}, 73, pages: 1-6, Elsevier Masson SAS, Paris, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Exploiting diffusion barrier and chemical affinity of metal-organic frameworks for efficient hydrogen isotope separation

Kim, J. Y., Balderas-Xicohténcatl, R., Zhang, L., Kang, S. G., Hirscher, M., Oh, H., Moon, H. R.

{Journal of the American Chemical Society}, 139(42):15135-15141, American Chemical Society, Washington, DC, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Facile fabrication of mesoporous silica micro-jets with multi-functionalities

Vilela, D., Hortelao, A. C., Balderas-Xicohténcatl, R., Hirscher, M., Hahn, K., Ma, X., Sánchez, S.

{Nanoscale}, 9(37):13990-13997, Royal Society of Chemistry, Cambridge, UK, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Comment on half-integer quantum numbers for the total angular momentum of photons in light beams with finite lateral extensions

Fähnle, M.

{American Journal of Modern Physics}, 6(5):88-90, Science Publishing Group, New York, NY, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Selective hydrogen isotope separation via breathing transition in MIL-53(Al)

Kim, J. Y., Zhang, L., Balderas-Xicohténcatl, R., Park, J., Hirscher, M., Moon, H. R., Oh, H.

{Journal of the American Chemical Society}, 139(49):17743-17746, American Chemical Society, Washington, DC, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Advanced magneto-optical Kerr effect measurements of superconductors at low temperatures

Stahl, C., Gräfe, J., Ruoß, S., Zahn, P., Bayer, J., Simmendinger, J., Schütz, G., Albrecht, J.

{AIP Advances}, 7(10), 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Efficient synthesis for large-scale production and characterization for hydrogen storage of ligand exchanged MOF-74/174/184-M (M\textequalsMg2+, Ni2+)

Oh, H., Maurer, S., Balderas-Xicohténcatl, R., Arnold, L., Magdysyuk, O. V., Schütz, G., Müller, U., Hirscher, M.

{International Journal of Hydrogen Energy}, 42(2):1027-1035, Elsevier, Amsterdam, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Unifying ultrafast demagnetization and intrinsic Gilbert damping in Co/Ni bilayers with electronic relaxation near the Fermi surface

Zhang, W., He, W., Zhang, X.-Q., Cheng, Z.-H., Teng, J., Fähnle, M.

{Physical Review B}, 96(22), American Physical Society, Woodbury, NY, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Influence of the skin barrier on the penetration of topically-applied dexamethasone probed by soft X-ray spectromicroscopy

Yamamoto, K., Klossek, A., Flesch, R., Rancan, F., Weigand, M., Bykova, I., Bechtel, M., Ahlberg, S., Vogt, A., Blume-Peytavi, U., Schrade, P., Bachmann, S., Hedtrich, S., Schäfer-Korting, M., Rühl, E.

{European Journal of Pharmaceutics and Biopharmaceutics}, 118, pages: 30-37, Elsevier, Amsterdam, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Capture of heavy hydrogen isotopes in a metal-organic framework with active Cu(I) sites

Weinrauch, I., Savchenko, I., Denysenko, D., Souliou, S. M., Kim, H., Le Tacon, M., Daemen, L. L., Cheng, Y., Mavrandonakis, A., Ramirez-Cuesta, A. J., Volkmer, D., Schütz, G., Hirscher, M., Heine, T.

{Nature Communications}, 8, Nature Publishing Group, London, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Multiscale simulations of topological transformations in magnetic-skyrmion spin structures

De Lucia, A., Litzius, K., Krüger, B., Tretiakov, O. A., Kläui, M.

{Physical Review B}, 96(2), American Physical Society, Woodbury, NY, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Unexpectedly marginal effect of electronic correlations on ultrafast demagnetization after femtosecond laser-pulse excitation

Weng, W., Huang, Haonan, Briones Paz, J. Z., Teeny, N., Müller, B. Y., Haag, M., Kuhn, T., Fähnle, M.

{Physical Review B}, 95(22), American Physical Society, Woodbury, NY, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Black manganese-rich crusts on a Gothic cathedral

Macholdt, D. S., Herrmann, S., Jochum, K. P., Kilcoyne, A. L. D., Laubscher, T., Pfisterer, H. K., Pöhlker, C., Schwager, B., Weber, B., Weigand, M., Domke, K. F., Andreae, M. O.

{Atmospheric Environment}, 171, pages: 205-220, Elsevier, Amsterdam [u.a.], 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]

2012


no image
Jensen-Bregman LogDet Divergence with Application to Efficient Similarity Search for Covariance Matrices

Cherian, A., Sra, S., Banerjee, A., Papanikolopoulos, N.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(9):2161-2174, December 2012 (article)

ei

DOI [BibTex]

2012


DOI [BibTex]


no image
Hippocampal-Cortical Interaction during Periods of Subcortical Silence

Logothetis, N., Eschenko, O., Murayama, Y., Augath, M., Steudel, T., Evrard, H., Besserve, M., Oeltermann, A.

Nature, 491, pages: 547-553, November 2012 (article)

Abstract
Hippocampal ripples, episodic high-frequency field-potential oscillations primarily occurring during sleep and calmness, have been described in mice, rats, rabbits, monkeys and humans, and so far they have been associated with retention of previously acquired awake experience. Although hippocampal ripples have been studied in detail using neurophysiological methods, the global effects of ripples on the entire brain remain elusive, primarily owing to a lack of methodologies permitting concurrent hippocampal recordings and whole-brain activity mapping. By combining electrophysiological recordings in hippocampus with ripple-triggered functional magnetic resonance imaging, here we show that most of the cerebral cortex is selectively activated during the ripples, whereas most diencephalic, midbrain and brainstem regions are strongly and consistently inhibited. Analysis of regional temporal response patterns indicates that thalamic activity suppression precedes the hippocampal population burst, which itself is temporally bounded by massive activations of association and primary cortical areas. These findings suggest that during off-line memory consolidation, synergistic thalamocortical activity may be orchestrating a privileged interaction state between hippocampus and cortex by silencing the output of subcortical centres involved in sensory processing or potentially mediating procedural learning. Such a mechanism would cause minimal interference, enabling consolidation of hippocampus-dependent memory.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Thermodynamic limits of dynamic cooling

Allahverdyan, A., Hovhannisyan, K., Janzing, D., Mahler, G.

Physical Review E, 84(4):16, October 2012 (article)

Abstract
We study dynamic cooling, where an externally driven two-level system is cooled via reservoir, a quantum system with initial canonical equilibrium state. We obtain explicitly the minimal possible temperature Tmin>0 reachable for the two-level system. The minimization goes over all unitary dynamic processes operating on the system and reservoir and over the reservoir energy spectrum. The minimal work needed to reach Tmin grows as 1/Tmin. This work cost can be significantly reduced, though, if one is satisfied by temperatures slightly above Tmin. Our results on Tmin>0 prove unattainability of the absolute zero temperature without ambiguities that surround its derivation from the entropic version of the third law. We also study cooling via a reservoir consisting of N≫1 identical spins. Here we show that Tmin∝1/N and find the maximal cooling compatible with the minimal work determined by the free energy. Finally we discuss cooling by reservoir with an initially microcanonic state and show that although a purely microcanonic state can yield the zero temperature, the unattainability is recovered when taking into account imperfections in preparing the microcanonic state.

ei

Web DOI [BibTex]

Web DOI [BibTex]


Thumb xl posear
Coupled Action Recognition and Pose Estimation from Multiple Views

Yao, A., Gall, J., van Gool, L.

International Journal of Computer Vision, 100(1):16-37, October 2012 (article)

ps

publisher's site code pdf Project Page Project Page Project Page [BibTex]

publisher's site code pdf Project Page Project Page Project Page [BibTex]


no image
GLIDE: GPU-Based Linear Regression for Detection of Epistasis

Kam-Thong, T., Azencott, C., Cayton, L., Pütz, B., Altmann, A., Karbalai, N., Sämann, P., Schölkopf, B., Müller-Myhsok, B., Borgwardt, K.

Human Heredity, 73(4):220-236, September 2012 (article)

Abstract
Due to recent advances in genotyping technologies, mapping phenotypes to single loci in the genome has become a standard technique in statistical genetics. However, one-locus mapping fails to explain much of the phenotypic variance in complex traits. Here, we present GLIDE, which maps phenotypes to pairs of genetic loci and systematically searches for the epistatic interactions expected to reveal part of this missing heritability. GLIDE makes use of the computational power of consumer-grade graphics cards to detect such interactions via linear regression. This enabled us to conduct a systematic two-locus mapping study on seven disease data sets from the Wellcome Trust Case Control Consortium and on in-house hippocampal volume data in 6 h per data set, while current single CPU-based approaches require more than a year’s time to complete the same task.

ei

Web [BibTex]

Web [BibTex]


no image
Fast projection onto mixed-norm balls with applications

Sra, S.

Minining and Knowledge Discovery (DMKD), 25(2):358-377, September 2012 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Bayesian estimation of free energies from equilibrium simulations

Habeck, M.

Physical Review Letters, 109(10):5, September 2012 (article)

Abstract
Free energy calculations are an important tool in statistical physics and biomolecular simulation. This Letter outlines a Bayesian method to estimate free energies from equilibrium Monte Carlo simulations. A Gibbs sampler is developed that allows efficient sampling of free energies and the density of states. The Gibbs sampling output can be used to estimate expected free energy differences and their uncertainties. The probabilistic formulation offers a unifying framework for existing methods such as the weighted histogram analysis method and the multistate Bennett acceptance ratio; both are shown to be approximate versions of the full probabilistic treatment.

ei

Web DOI [BibTex]

Web DOI [BibTex]


Thumb xl representativecrop
DRAPE: DRessing Any PErson

Guan, P., Reiss, L., Hirshberg, D., Weiss, A., Black, M. J.

ACM Trans. on Graphics (Proc. SIGGRAPH), 31(4):35:1-35:10, July 2012 (article)

Abstract
We describe a complete system for animating realistic clothing on synthetic bodies of any shape and pose without manual intervention. The key component of the method is a model of clothing called DRAPE (DRessing Any PErson) that is learned from a physics-based simulation of clothing on bodies of different shapes and poses. The DRAPE model has the desirable property of "factoring" clothing deformations due to body shape from those due to pose variation. This factorization provides an approximation to the physical clothing deformation and greatly simplifies clothing synthesis. Given a parameterized model of the human body with known shape and pose parameters, we describe an algorithm that dresses the body with a garment that is customized to fit and possesses realistic wrinkles. DRAPE can be used to dress static bodies or animated sequences with a learned model of the cloth dynamics. Since the method is fully automated, it is appropriate for dressing large numbers of virtual characters of varying shape. The method is significantly more efficient than physical simulation.

ps

YouTube pdf talk Project Page Project Page [BibTex]

YouTube pdf talk Project Page Project Page [BibTex]