Header logo is


2017


no image
Proton Pack: Visuo-Haptic Surface Data Recording

Burka, A., Kuchenbecker, K. J.

Hands-on demonstration presented at the IEEE World Haptics Conference (WHC), Munich, Germany, June 2017 (misc)

hi

Project Page [BibTex]

2017


Project Page [BibTex]


no image
Teaching a Robot to Collaborate with a Human Via Haptic Teleoperation

Hu, S., Kuchenbecker, K. J.

Work-in-progress paper (2 pages) presented at the IEEE World Haptics Conference (WHC), Munich, Germany, June 2017 (misc)

hi

Project Page [BibTex]

Project Page [BibTex]


no image
State-Regularized Policy Search for Linearized Dynamical Systems

Abdulsamad, H., Arenz, O., Peters, J., Neumann, G.

Proceedings of the Twenty-Seventh International Conference on Automated Planning and Scheduling, (ICAPS), pages: 419-424, (Editors: Laura Barbulescu, Jeremy Frank, Mausam and Stephen F. Smith), AAAI Press, June 2017 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


Thumb xl full outfit
How Should Robots Hug?

Block, A. E., Kuchenbecker, K. J.

Work-in-progress paper (2 pages) presented at the IEEE World Haptics Conference (WHC), Munich, Germany, June 2017 (misc)

hi

Project Page [BibTex]

Project Page [BibTex]


Thumb xl apollo system2 croped
Model-Based Policy Search for Automatic Tuning of Multivariate PID Controllers

Doerr, A., Nguyen-Tuong, D., Marco, A., Schaal, S., Trimpe, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 5295-5301, IEEE, Piscataway, NJ, USA, IEEE International Conference on Robotics and Automation (ICRA), May 2017 (inproceedings)

am ics

PDF arXiv DOI Project Page [BibTex]

PDF arXiv DOI Project Page [BibTex]


Thumb xl learning ct block diagram v2
Learning Feedback Terms for Reactive Planning and Control

Rai, A., Sutanto, G., Schaal, S., Meier, F.

Proceedings 2017 IEEE International Conference on Robotics and Automation (ICRA), IEEE, Piscataway, NJ, USA, IEEE International Conference on Robotics and Automation (ICRA), May 2017 (conference)

am

pdf video [BibTex]

pdf video [BibTex]


Thumb xl this one
Virtual vs. Real: Trading Off Simulations and Physical Experiments in Reinforcement Learning with Bayesian Optimization

Marco, A., Berkenkamp, F., Hennig, P., Schoellig, A. P., Krause, A., Schaal, S., Trimpe, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 1557-1563, IEEE, Piscataway, NJ, USA, IEEE International Conference on Robotics and Automation (ICRA), May 2017 (inproceedings)

am ics pn

PDF arXiv ICRA 2017 Spotlight presentation Virtual vs. Real - Video explanation DOI Project Page [BibTex]

PDF arXiv ICRA 2017 Spotlight presentation Virtual vs. Real - Video explanation DOI Project Page [BibTex]


Thumb xl screen shot 2017 06 14 at 2.38.22 pm
Scalable Pneumatic and Tendon Driven Robotic Joint Inspired by Jumping Spiders

Sproewitz, A., Göttler, C., Sinha, A., Caer, C., Öztekin, M. U., Petersen, K., Sitti, M.

In Proceedings 2017 IEEE International Conference on Robotics and Automation (ICRA), pages: 64-70, IEEE, Piscataway, NJ, USA, IEEE International Conference on Robotics and Automation (ICRA), May 2017 (inproceedings)

dlg

Video link (url) DOI Project Page [BibTex]

Video link (url) DOI Project Page [BibTex]


Thumb xl publications toc
Design and actuation of a magnetic millirobot under a constant unidirectional magnetic field

Erin, O., Giltinan, J., Tsai, L., Sitti, M.

In Proceedings 2017 IEEE International Conference on Robotics and Automation (ICRA), pages: 3404-3410, IEEE, Piscataway, NJ, USA, IEEE International Conference on Robotics and Automation (ICRA), May 2017 (inproceedings)

Abstract
Magnetic untethered millirobots, which are actuated and controlled by remote magnetic fields, have been proposed for medical applications due to their ability to safely pass through tissues at long ranges. For example, magnetic resonance imaging (MRI) systems with a 3-7 T constant unidirectional magnetic field and 3D gradient coils have been used to actuate magnetic robots. Such magnetically constrained systems place limits on the degrees of freedom that can be actuated for untethered devices. This paper presents a design and actuation methodology for a magnetic millirobot that exhibits both position and orientation control in 2D under a magnetic field, dominated by a constant unidirectional magnetic field as found in MRI systems. Placing a spherical permanent magnet, which is free to rotate inside the millirobot and located away from the center of mass, allows the generation of net forces and torques with applied 3D magnetic field gradients. We model this system in a 3D planar case and experimentally demonstrate open-loop control of both position and orientation by the applied 2D field gradients. The actuation performance is characterized across the most important design variables, and we experimentally demonstrate that the proposed approach is feasible.

pi

DOI [BibTex]

DOI [BibTex]


no image
Deep Reinforcement Learning for Robotic Manipulation with Asynchronous Off-Policy Updates

Gu*, S., Holly*, E., Lillicrap, T., Levine, S.

Proceedings 2017 IEEE International Conference on Robotics and Automation (ICRA), IEEE, Piscataway, NJ, USA, IEEE International Conference on Robotics and Automation (ICRA), May 2017, *equal contribution (conference)

ei

Arxiv Project Page [BibTex]

Arxiv Project Page [BibTex]


Thumb xl publications toc
Magnetically actuated soft capsule endoscope for fine-needle aspiration biopsy

Son, D., Dogan, M. D., Sitti, M.

In Proceedings 2017 IEEE International Conference on Robotics and Automation (ICRA), pages: 1132-1139, IEEE, Piscataway, NJ, USA, IEEE International Conference on Robotics and Automation (ICRA), May 2017 (inproceedings)

Abstract
This paper presents a magnetically actuated soft capsule endoscope for fine-needle aspiration biopsy (B-MASCE) in the upper gastrointestinal tract. A thin and hollow needle is attached to the capsule, which can penetrate deeply into tissues to obtain subsurface biopsy sample. The design utilizes a soft elastomer body as a compliant mechanism to guide the needle. An internal permanent magnet provides a means for both actuation and tracking. The capsule is designed to roll towards its target and then deploy the biopsy needle in a precise location selected as the target area. B-MASCE is controlled by multiple custom-designed electromagnets while its position and orientation are tracked by a magnetic sensor array. In in vitro trials, B-MASCE demonstrated rolling locomotion and biopsy of a swine tissue model positioned inside an anatomical human stomach model. It was confirmed after the experiment that a tissue sample was retained inside the needle.

pi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Proton 2: Increasing the Sensitivity and Portability of a Visuo-haptic Surface Interaction Recorder

Burka, A., Rajvanshi, A., Allen, S., Kuchenbecker, K. J.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 439-445, Singapore, May 2017 (inproceedings)

Abstract
The Portable Robotic Optical/Tactile ObservatioN PACKage (PROTONPACK, or Proton for short) is a new handheld visuo-haptic sensing system that records surface interactions. We previously demonstrated system calibration and a classification task using external motion tracking. This paper details improvements in surface classification performance and removal of the dependence on external motion tracking, necessary before embarking on our goal of gathering a vast surface interaction dataset. Two experiments were performed to refine data collection parameters. After adjusting the placement and filtering of the Proton's high-bandwidth accelerometers, we recorded interactions between two differently-sized steel tooling ball end-effectors (diameter 6.35 and 9.525 mm) and five surfaces. Using features based on normal force, tangential force, end-effector speed, and contact vibration, we trained multi-class SVMs to classify the surfaces using 50 ms chunks of data from each end-effector. Classification accuracies of 84.5% and 91.5% respectively were achieved on unseen test data, an improvement over prior results. In parallel, we pursued on-board motion tracking, using the Proton's camera and fiducial markers. Motion tracks from the external and onboard trackers agree within 2 mm and 0.01 rad RMS, and the accuracy decreases only slightly to 87.7% when using onboard tracking for the 9.525 mm end-effector. These experiments indicate that the Proton 2 is ready for portable data collection.

hi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Context-Driven Movement Primitive Adaptation

Wilbers, D., Lioutikov, R., Peters, J.

IEEE International Conference on Robotics and Automation (ICRA), pages: 3469-3475, IEEE, May 2017 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
A Learning-based Shared Control Architecture for Interactive Task Execution

Farraj, F. B., Osa, T., Pedemonte, N., Peters, J., Neumann, G., Giordano, P.

IEEE International Conference on Robotics and Automation (ICRA), pages: 329-335, IEEE, May 2017 (conference)

ei

DOI Project Page Project Page [BibTex]

DOI Project Page Project Page [BibTex]


no image
Frequency Peak Features for Low-Channel Classification in Motor Imagery Paradigms

Jayaram, V., Schölkopf, B., Grosse-Wentrup, M.

Proceedings of the 8th International IEEE/EMBS Conference on Neural Engineering (NER), pages: 321-324, May 2017 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
Empowered skills

Gabriel, A., Akrour, R., Peters, J., Neumann, G.

IEEE International Conference on Robotics and Automation (ICRA), pages: 6435-6441, IEEE, May 2017 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
An Interactive Augmented-Reality Video Training Platform for the da Vinci Surgical System

Carlson, J., Kuchenbecker, K. J.

Workshop paper (3 pages) presented at the ICRA Workshop on C4 Surgical Robots, Singapore, May 2017 (misc)

Abstract
Teleoperated surgical robots such as the Intuitive da Vinci Surgical System facilitate minimally invasive surgeries, which decrease risk to patients. However, these systems can be difficult to learn, and existing training curricula on surgical simulators do not offer students the realistic experience of a full operation. This paper presents an augmented-reality video training platform for the da Vinci that will allow trainees to rehearse any surgery recorded by an expert. While the trainee operates a da Vinci in free space, they see their own instruments overlaid on the expert video. Tools are identified in the source videos via color segmentation and kernelized correlation filter tracking, and their depth is calculated from the da Vinci’s stereoscopic video feed. The user tries to follow the expert’s movements, and if any of their tools venture too far away, the system provides instantaneous visual feedback and pauses to allow the user to correct their motion. The trainee can also rewind the expert video by bringing either da Vinci tool very close to the camera. This combined and augmented video provides the user with an immersive and interactive training experience.

hi

[BibTex]

[BibTex]


no image
Layered direct policy search for learning hierarchical skills

End, F., Akrour, R., Peters, J., Neumann, G.

IEEE International Conference on Robotics and Automation (ICRA), pages: 6442-6448, IEEE, May 2017 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Q-Prop: Sample-Efficient Policy Gradient with An Off-Policy Critic

Gu, S., Lillicrap, T., Ghahramani, Z., Turner, R. E., Levine, S.

Proceedings International Conference on Learning Representations (ICLR), OpenReviews.net, International Conference on Learning Representations, April 2017 (conference)

ei

PDF link (url) Project Page [BibTex]

PDF link (url) Project Page [BibTex]


no image
Categorical Reparametrization with Gumbel-Softmax

Jang, E., Gu, S., Poole, B.

Proceedings International Conference on Learning Representations 2017, OpenReviews.net, International Conference on Learning Representations, April 2017 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
DeepCoder: Learning to Write Programs

Balog, M., Gaunt, A. L., Brockschmidt, M., Nowozin, S., Tarlow, D.

Proceedings International Conference on Learning Representations 2017, OpenReviews.net, International Conference on Learning Representations, April 2017 (conference)

ei

Arxiv link (url) Project Page [BibTex]

Arxiv link (url) Project Page [BibTex]


Thumb xl reliability icon
Distilling Information Reliability and Source Trustworthiness from Digital Traces

Tabibian, B., Valera, I., Farajtabar, M., Song, L., Schölkopf, B., Gomez Rodriguez, M.

Proceedings of the 26th International Conference on World Wide Web (WWW), pages: 847-855, (Editors: Barrett, R., Cummings, R., Agichtein, E. and Gabrilovich, E. ), ACM, April 2017 (conference)

ei

Project DOI Project Page Project Page [BibTex]

Project DOI Project Page Project Page [BibTex]


no image
Local Group Invariant Representations via Orbit Embeddings

Raj, A., Kumar, A., Mroueh, Y., Fletcher, T., Schölkopf, B.

Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS), 54, pages: 1225-1235, Proceedings of Machine Learning Research, (Editors: Aarti Singh and Jerry Zhu), April 2017 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


Thumb xl screen shot 2017 07 20 at 12.31.00 pm
Fast Bayesian Optimization of Machine Learning Hyperparameters on Large Datasets

Klein, A., Falkner, S., Bartels, S., Hennig, P., Hutter, F.

Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS 2017), 54, pages: 528-536, Proceedings of Machine Learning Research, (Editors: Sign, Aarti and Zhu, Jerry), PMLR, April 2017 (conference)

pn

pdf link (url) Project Page [BibTex]

pdf link (url) Project Page [BibTex]


no image
Pre-Movement Contralateral EEG Low Beta Power Is Modulated with Motor Adaptation Learning

Ozdenizci, O., Yalcin, M., Erdogan, A., Patoglu, V., Grosse-Wentrup, M., Cetin, M.

International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages: 934-938, March 2017 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
Hand-Clapping Games with a Baxter Robot

Fitter, N. T., Kuchenbecker, K. J.

Hands-on demonstration presented at ACM/IEEE International Conference on Human-Robot Interaction (HRI), Vienna, Austria, March 2017 (misc)

Abstract
Robots that work alongside humans might be more effective if they could forge a strong social bond with their human partners. Hand-clapping games and other forms of rhythmic social-physical interaction may foster human-robot teamwork, but the design of such interactions has scarcely been explored. At the HRI 2017 conference, we will showcase several such interactions taken from our recent work with the Rethink Robotics Baxter Research Robot, including tempo-matching, Simon says, and Pat-a-cake-like games. We believe conference attendees will be both entertained and intrigued by this novel demonstration of social-physical HRI.

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Automatic OSATS Rating of Trainee Skill at a Pediatric Laparoscopic Suturing Task

Oquendo, Y. A., Riddle, E. W., Hiller, D., Blinman, T. A., Kuchenbecker, K. J.

Surgical Endoscopy, 31(Supplement 1):S28, Extended abstract presented as a podium presentation at the Annual Meeting of the Society of American Gastrointestinal and Endoscopic Surgeons (SAGES), Springer, Houston, USA, March 2017 (misc)

Abstract
Introduction: Minimally invasive surgery has revolutionized surgical practice, but challenges remain. Trainees must acquire complex technical skills while minimizing patient risk, and surgeons must maintain their skills for rare procedures. These challenges are magnified in pediatric surgery due to the smaller spaces, finer tissue, and relative dearth of both inanimate and virtual simulators. To build technical expertise, trainees need opportunities for deliberate practice with specific performance feedback, which is typically provided via tedious human grading. This study aimed to validate a novel motion-tracking system and machine learning algorithm for automatically evaluating trainee performance on a pediatric laparoscopic suturing task using a 1–5 OSATS Overall Skill rating. Methods: Subjects (n=14) ranging from medical students to fellows per- formed one or two trials of an intracorporeal suturing task in a custom pediatric laparoscopy training box (Fig. 1) after watching a video of ideal performance by an expert. The position and orientation of the tools and endoscope were recorded over time using Ascension trakSTAR magnetic motion-tracking sensors, and both instrument grasp angles were recorded over time using flex sensors on the handles. The 27 trials were video-recorded and scored on the OSATS scale by a senior fellow; ratings ranged from 1 to 4. The raw motion data from each trial was processed to calculate over 200 preliminary motion parameters. Regularized least-squares regression (LASSO) was used to identify the most predictive parameters for inclusion in a regression tree. Model performance was evaluated by leave-one-subject-out cross validation, wherein the automatic scores given to each subject’s trials (by a model trained on all other data) are compared to the corresponding human rater scores. Results: The best-performing LASSO algorithm identified 14 predictive parameters for inclusion in the regression tree, including completion time, linear path length, angular path length, angular acceleration, grasp velocity, and grasp acceleration. The final model’s raw output showed a strong positive correlation of 0.87 with the reviewer-generated scores, and rounding the output to the nearest integer yielded a leave-one-subject-out cross-validation accuracy of 77.8%. Results are summarized in the confusion matrix (Table 1). Conclusions: Our novel motion-tracking system and regression model automatically gave previously unseen trials overall skill scores that closely match scores from an expert human rater. With additional data and further development, this system may enable creation of a motion-based training platform for pediatric laparoscopic surgery and could yield insights into the fundamental components of surgical skill.

hi

[BibTex]

[BibTex]


no image
Automatic detection of motion artifacts in MR images using CNNs

Meding, K., Loktyushin, A., Hirsch, M.

42nd IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages: 811-815, March 2017 (conference)

ei

DOI [BibTex]

DOI [BibTex]


Thumb xl eururol2017
Wireless micro-robots for endoscopic applications in urology

Adams, F., Qiu, T., Mark, A. G., Melde, K., Palagi, S., Miernik, A., Fischer, P.

In Eur Urol Suppl, 16(3):e1914, March 2017 (inproceedings)

Abstract
Endoscopy is an essential and common method for both diagnostics and therapy in Urology. Current flexible endoscope is normally cable-driven, thus it is hard to be miniaturized and its reachability is restricted as only one bending section near the tip with one degree of freedom (DoF) is allowed. Recent progresses in micro-robotics offer a unique opportunity for medical inspections in minimally invasive surgery. Micro-robots are active devices that has a feature size smaller than one millimeter and can normally be actuated and controlled wirelessly. Magnetically actuated micro-robots have been demonstrated to propel through biological fluids.Here, we report a novel micro robotic arm, which is actuated wirelessly by ultrasound. It works as a miniaturized endoscope with a side length of ~1 mm, which fits through the 3 Fr. tool channel of a cystoscope, and successfully performs an active cystoscopy in a rabbit bladder.

pf

link (url) DOI [BibTex]


no image
How Much Haptic Surface Data is Enough?

Burka, A., Kuchenbecker, K. J.

Workshop paper (5 pages) presented at the AAAI Spring Symposium on Interactive Multi-Sensory Object Perception for Embodied Agents, Stanford, USA, March 2017 (misc)

Abstract
The Proton Pack is a portable visuo-haptic surface interaction recording device that will be used to collect a vast multimodal dataset, intended for robots to use as part of an approach to understanding the world around them. In order to collect a useful dataset, we want to pick a suitable interaction duration for each surface, noting the tradeoff between data collection resources and completeness of data. One interesting approach frames the data collection process as an online learning problem, building an incremental surface model and using that model to decide when there is enough data. Here we examine how to do such online surface modeling and when to stop collecting data, using kinetic friction as a first domain in which to apply online modeling.

hi

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Catching heuristics are optimal control policies

Belousov, B., Neumann, G., Rothkopf, C., Peters, J.

Proceedings of the Thirteenth Karniel Computational Motor Control Workshop, March 2017 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


Thumb xl image toc
The use of clamping grips and friction pads by tree frogs for climbing curved surfaces

Endlein, T., Ji, A., Yuan, S., Hill, I., Wang, H., Barnes, W. J. P., Dai, Z., Sitti, M.

In Proc. R. Soc. B, 284(1849):20162867, Febuary 2017 (inproceedings)

Abstract
Most studies on the adhesive mechanisms of climbing animals have addressed attachment against flat surfaces, yet many animals can climb highly curved surfaces, like twigs and small branches. Here we investigated whether tree frogs use a clamping grip by recording the ground reaction forces on a cylindrical object with either a smooth or anti-adhesive, rough surface. Furthermore, we measured the contact area of fore and hindlimbs against differently sized transparent cylinders and the forces of individual pads and subarticular tubercles in restrained animals. Our study revealed that frogs use friction and normal forces of roughly a similar magnitude for holding on to cylindrical objects. When challenged with climbing a non-adhesive surface, the compressive forces between opposite legs nearly doubled, indicating a stronger clamping grip. In contrast to climbing flat surfaces, frogs increased the contact area on all limbs by engaging not just adhesive pads but also subarticular tubercles on curved surfaces. Our force measurements showed that tubercles can withstand larger shear stresses than pads. SEM images of tubercles revealed a similar structure to that of toe pads including the presence of nanopillars, though channels surrounding epithelial cells were less pronounced. The tubercles' smaller size, proximal location on the toes and shallow cells make them probably less prone to buckling and thus ideal for gripping curved surfaces.

pi

DOI [BibTex]

DOI [BibTex]


no image
DiSMEC – Distributed Sparse Machines for Extreme Multi-label Classification

Babbar, R., Schölkopf, B.

Proceedings of the Tenth ACM International Conference on Web Search and Data Mining (WSDM), pages: 721-729, Febuary 2017 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Policy Search with High-Dimensional Context Variables

Tangkaratt, V., van Hoof, H., Parisi, S., Neumann, G., Peters, J., Sugiyama, M.

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI), pages: 2632-2638, (Editors: Satinder P. Singh and Shaul Markovitch), AAAI Press, Febuary 2017 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Iterative Feedback-basierte Korrekturstrategien beim Bewegungslernen von Mensch-Roboter-Dyaden

Ewerton, M., Kollegger, G., Maeda, G., Wiemeyer, J., Peters, J.

In DVS Sportmotorik 2017, 2017 (inproceedings)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
BIMROB - Bidirectional Interaction between human and robot for the learning of movements - Robot trains human - Human trains robot

Kollegger, G., Wiemeyer, J., Ewerton, M., Peters, J.

In Inovation & Technologie im Sport - 23. Sportwissenschaftlicher Hochschultag der deutschen Vereinigung für Sportwissenschaft, pages: 179, (Editors: A. Schwirtz, F. Mess, Y. Demetriou & V. Senner ), Czwalina-Feldhaus, 2017 (inproceedings)

ei

[BibTex]

[BibTex]


no image
BIMROB – Bidirektionale Interaktion von Mensch und Roboter beim Bewegungslernen

Wiemeyer, J., Peters, J., Kollegger, G., Ewerton, M.

DVS Sportmotorik 2017, 2017 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Comparison-based nearest neighbor search

Haghiri, S., Ghoshdastidar, D., von Luxburg, U.

In Artificial Intelligence and Statistics, Artificial Intelligence and Statistics (AISTATS), 2017 (inproceedings)

slt

Project Page [BibTex]

Project Page [BibTex]


Thumb xl screen shot 2018 02 08 at 12.58.55 pm
Linking Mechanics and Learning

Heim, S., Grimminger, F., Özge, D., Spröwitz, A.

In Proceedings of Dynamic Walking 2017, 2017 (inproceedings)

dlg

[BibTex]

[BibTex]


no image
Kernel functions based on triplet comparisons

Kleindessner, M., von Luxburg, U.

In Proceedings Neural Information Processing Systems, Neural Information Processing Systems (NIPS), 2017 (inproceedings)

slt

Project Page [BibTex]

Project Page [BibTex]


Thumb xl publications toc
Planning spin-walking locomotion for automatic grasping of microobjects by an untethered magnetic microgripper

Dong, X., Sitti, M.

In 2017 IEEE International Conference on Robotics and Automation (ICRA), pages: 6612-6618, 2017 (inproceedings)

Abstract
Most demonstrated mobile microrobot tasks so far have been achieved via pick-and-placing and dynamic trapping with teleoperation or simple path following algorithms. In our previous work, an untethered magnetic microgripper has been developed which has advanced functions, such as gripping objects. Both teleoperated manipulation in 2D and 3D have been demonstrated. However, it is challenging to control the magnetic microgripper to carry out manipulation tasks, because the grasping of objects so far in the literature relies heavily on teleoperation, which takes several minutes with even a skilled human expert. Here, we propose a new spin-walking locomotion and an automated 2D grasping motion planner for the microgripper, which enables time-efficient automatic grasping of microobjects that has not been achieved yet for untethered microrobots. In its locomotion, the microgripper repeatedly rotates about two principal axes to regulate its pose and move precisely on a surface. The motion planner could plan different motion primitives for grasping and compensate the uncertainties in the motion by learning the uncertainties and planning accordingly. We experimentally demonstrated that, using the proposed method, the microgripper could align to the target pose with error less than 0.1 body length and grip the objects within 40 seconds. Our method could significantly improve the time efficiency of micro-scale manipulation and have potential applications in microassembly and biomedical engineering.

pi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Die Bedeutung der Beobachtungsperspektive beim Bewegungslernen von Mensch-Roboter-Dyaden

Kollegger, G., Reinhardt, N., Ewerton, M., Peters, J., Wiemeyer, J.

DVS Sportmotorik 2017, 2017 (conference)

link (url) [BibTex]

link (url) [BibTex]


Thumb xl muvs
Towards Accurate Marker-less Human Shape and Pose Estimation over Time

Huang, Y., Bogo, F., Lassner, C., Kanazawa, A., Gehler, P. V., Romero, J., Akhter, I., Black, M. J.

In International Conference on 3D Vision (3DV), pages: 421-430, 2017 (inproceedings)

Abstract
Existing markerless motion capture methods often assume known backgrounds, static cameras, and sequence specific motion priors, limiting their application scenarios. Here we present a fully automatic method that, given multiview videos, estimates 3D human pose and body shape. We take the recently proposed SMPLify method [12] as the base method and extend it in several ways. First we fit a 3D human body model to 2D features detected in multi-view images. Second, we use a CNN method to segment the person in each image and fit the 3D body model to the contours, further improving accuracy. Third we utilize a generic and robust DCT temporal prior to handle the left and right side swapping issue sometimes introduced by the 2D pose estimator. Validation on standard benchmarks shows our results are comparable to the state of the art and also provide a realistic 3D shape avatar. We also demonstrate accurate results on HumanEva and on challenging monocular sequences of dancing from YouTube.

ps

Code pdf DOI Project Page [BibTex]


Thumb xl screen shot 2018 02 08 at 12.58.55 pm
Is Growing Good for Learning?

Heim, S., Spröwitz, A.

Proceedings of the 8th International Symposium on Adaptive Motion of Animals and Machines AMAM2017, 2017 (conference)

dlg

[BibTex]

[BibTex]


Thumb xl paraview preview
Design of a visualization scheme for functional connectivity data of Human Brain

Bramlage, L.

Hochschule Osnabrück - University of Applied Sciences, 2017 (thesis)

sf

Bramlage_BSc_2017.pdf [BibTex]


no image
Two-sample tests for large random graphs using network statistics

Ghoshdastidar, D., Gutzeit, M., Carpentier, A., von Luxburg, U.

In Conference on Computational Learning Theory (COLT), Conference on Computational Learning Theory (COLT), 2017 (inproceedings)

slt

Project Page [BibTex]

Project Page [BibTex]


no image
Pattern Generation for Walking on Slippery Terrains

Khadiv, M., Moosavian, S. A. A., Herzog, A., Righetti, L.

In 2017 5th International Conference on Robotics and Mechatronics (ICROM), Iran, August 2017 (inproceedings)

Abstract
In this paper, we extend state of the art Model Predictive Control (MPC) approaches to generate safe bipedal walking on slippery surfaces. In this setting, we formulate walking as a trade off between realizing a desired walking velocity and preserving robust foot-ground contact. Exploiting this for- mulation inside MPC, we show that safe walking on various flat terrains can be achieved by compromising three main attributes, i. e. walking velocity tracking, the Zero Moment Point (ZMP) modulation, and the Required Coefficient of Friction (RCoF) regulation. Simulation results show that increasing the walking velocity increases the possibility of slippage, while reducing the slippage possibility conflicts with reducing the tip-over possibility of the contact and vice versa.

mg

link (url) [BibTex]

link (url) [BibTex]


no image
Is Growing Good for Learning?

Heim, Steve, Spröwitz, Alexander

In Proceedings of the 8th International Symposium on Adaptive Motion of Animals and Machines AMAM2017, Hokkaido, Japan, 2017 (inproceedings)

[BibTex]

[BibTex]