Header logo is


2015


Thumb xl 2016 peer grading
Peer grading in a course on algorithms and data structures

Sajjadi, M. S. M., Alamgir, M., von Luxburg, U.

Workshop on Machine Learning for Education (ML4Ed) at the 32th International Conference on Machine Learning (ICML), 2015 (conference)

ei

Arxiv [BibTex]

2015


Arxiv [BibTex]


Thumb xl geiger
Joint 3D Object and Layout Inference from a single RGB-D Image

(Best Paper Award)

Geiger, A., Wang, C.

In German Conference on Pattern Recognition (GCPR), 9358, pages: 183-195, Lecture Notes in Computer Science, Springer International Publishing, 2015 (inproceedings)

Abstract
Inferring 3D objects and the layout of indoor scenes from a single RGB-D image captured with a Kinect camera is a challenging task. Towards this goal, we propose a high-order graphical model and jointly reason about the layout, objects and superpixels in the image. In contrast to existing holistic approaches, our model leverages detailed 3D geometry using inverse graphics and explicitly enforces occlusion and visibility constraints for respecting scene properties and projective geometry. We cast the task as MAP inference in a factor graph and solve it efficiently using message passing. We evaluate our method with respect to several baselines on the challenging NYUv2 indoor dataset using 21 object categories. Our experiments demonstrate that the proposed method is able to infer scenes with a large degree of clutter and occlusions.

avg ps

pdf suppmat video project DOI [BibTex]

pdf suppmat video project DOI [BibTex]


no image
Removing systematic errors for exoplanet search via latent causes

Schölkopf, B., Hogg, D., Wang, D., Foreman-Mackey, D., Janzing, D., Simon-Gabriel, C. J., Peters, J.

In Proceedings of The 32nd International Conference on Machine Learning, 37, pages: 2218–2226, JMLR Workshop and Conference Proceedings, (Editors: Bach, F. and Blei, D.), JMLR, ICML, 2015 (inproceedings)

ei

Extended version on arXiv link (url) [BibTex]

Extended version on arXiv link (url) [BibTex]


no image
Causal Inference by Identification of Vector Autoregressive Processes with Hidden Components

Geiger, P., Zhang, K., Schölkopf, B., Gong, M., Janzing, D.

In Proceedings of the 32nd International Conference on Machine Learning, 37, pages: 1917–1925, JMLR Workshop and Conference Proceedings, (Editors: F. Bach and D. Blei), JMLR, ICML, 2015 (inproceedings)

ei

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Brain-Computer Interfacing in Amyotrophic Lateral Sclerosis: Implications of a Resting-State EEG Analysis

Jayaram, V., Widmann, N., Förster, C., Fomina, T., Hohmann, M. R., Müller vom Hagen, J., Synofzik, M., Schölkopf, B., Schöls, L., Grosse-Wentrup, M.

In Proceedings of the 37th IEEE Conference for Engineering in Medicine and Biology, pages: 6979-6982, EMBC, 2015 (inproceedings)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Identification of the Default Mode Network with Electroencephalography

Fomina, T., Hohmann, M. R., Schölkopf, B., Grosse-Wentrup, M.

In Proceedings of the 37th IEEE Conference for Engineering in Medicine and Biology, pages: 7566-7569, EMBC, 2015 (inproceedings)

ei

DOI [BibTex]

DOI [BibTex]


no image
Towards Cognitive Brain-Computer Interfaces for Patients with Amyotrophic Lateral Sclerosis

Fomina, T., Schölkopf, B., Grosse-Wentrup, M.

In 7th Computer Science and Electronic Engineering Conference, pages: 77-80, Curran Associates, Inc., CEEC, 2015 (inproceedings)

ei

DOI [BibTex]

DOI [BibTex]


no image
Towards Learning Hierarchical Skills for Multi-Phase Manipulation Tasks

Kroemer, O., Daniel, C., Neumann, G., van Hoof, H., Peters, J.

In IEEE International Conference on Robotics and Automation, pages: 1503 - 1510, ICRA, 2015 (inproceedings)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl maren ls
Probabilistic Line Searches for Stochastic Optimization

Mahsereci, M., Hennig, P.

In Advances in Neural Information Processing Systems 28, pages: 181-189, (Editors: C. Cortes, N.D. Lawrence, D.D. Lee, M. Sugiyama and R. Garnett), Curran Associates, Inc., 29th Annual Conference on Neural Information Processing Systems (NIPS), 2015 (inproceedings)

Abstract
In deterministic optimization, line searches are a standard tool ensuring stability and efficiency. Where only stochastic gradients are available, no direct equivalent has so far been formulated, because uncertain gradients do not allow for a strict sequence of decisions collapsing the search space. We construct a probabilistic line search by combining the structure of existing deterministic methods with notions from Bayesian optimization. Our method retains a Gaussian process surrogate of the univariate optimization objective, and uses a probabilistic belief over the Wolfe conditions to monitor the descent. The algorithm has very low computational cost, and no user-controlled parameters. Experiments show that it effectively removes the need to define a learning rate for stochastic gradient descent. [You can find the matlab research code under `attachments' below. The zip-file contains a minimal working example. The docstring in probLineSearch.m contains additional information. A more polished implementation in C++ will be published here at a later point. For comments and questions about the code please write to mmahsereci@tue.mpg.de.]

ei pn

Matlab research code link (url) [BibTex]

Matlab research code link (url) [BibTex]


Thumb xl rsz slip objects
Force estimation and slip detection/classification for grip control using a biomimetic tactile sensor

Su, Z., Hausman, K., Chebotar, Y., Molchanov, A., Loeb, G. E., Sukhatme, G. S., Schaal, S.

In IEEE-RAS International Conference on Humanoid Robots (Humanoids), pages: 297-303, 2015 (inproceedings)

am

link (url) [BibTex]

link (url) [BibTex]


no image
BACKSHIFT: Learning causal cyclic graphs from unknown shift interventions

Rothenhäusler, D., Heinze, C., Peters, J., Meinshausen, N.

Advances in Neural Information Processing Systems 28, pages: 1513-1521, (Editors: C. Cortes, N.D. Lawrence, D.D. Lee, M. Sugiyama and R. Garnett), Curran Associates, Inc., 29th Annual Conference on Neural Information Processing Systems (NIPS), 2015 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Particle Gibbs for Infinite Hidden Markov Models

Tripuraneni*, N., Gu*, S., Ge, H., Ghahramani, Z.

Advances in Neural Information Processing Systems 28, pages: 2395-2403, (Editors: Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama, and Roman Garnett), 29th Annual Conference on Neural Information Processing Systems (NIPS), 2015, *equal contribution (conference)

ei

PDF [BibTex]

PDF [BibTex]


Thumb xl 2016 peer grading
Peer grading in a course on algorithms and data structures

Sajjadi, M. S. M., Alamgir, M., von Luxburg, U.

Workshop on Crowdsourcing and Machine Learning (CrowdML) Workshop on Machine Learning for Education (ML4Ed) at at the 32th International Conference on Machine Learning (ICML), 2015 (conference)

ei

Arxiv [BibTex]

Arxiv [BibTex]


Thumb xl screen shot 2015 05 07 at 11.56.54
3D Object Class Detection in the Wild

Pepik, B., Stark, M., Gehler, P., Ritschel, T., Schiele, B.

In Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), IEEE, Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2015 (inproceedings)

ps

Project Page [BibTex]

Project Page [BibTex]


Thumb xl menze
Discrete Optimization for Optical Flow

Menze, M., Heipke, C., Geiger, A.

In German Conference on Pattern Recognition (GCPR), 9358, pages: 16-28, Springer International Publishing, 2015 (inproceedings)

Abstract
We propose to look at large-displacement optical flow from a discrete point of view. Motivated by the observation that sub-pixel accuracy is easily obtained given pixel-accurate optical flow, we conjecture that computing the integral part is the hardest piece of the problem. Consequently, we formulate optical flow estimation as a discrete inference problem in a conditional random field, followed by sub-pixel refinement. Naive discretization of the 2D flow space, however, is intractable due to the resulting size of the label set. In this paper, we therefore investigate three different strategies, each able to reduce computation and memory demands by several orders of magnitude. Their combination allows us to estimate large-displacement optical flow both accurately and efficiently and demonstrates the potential of discrete optimization for optical flow. We obtain state-of-the-art performance on MPI Sintel and KITTI.

avg ps

pdf suppmat project DOI [BibTex]

pdf suppmat project DOI [BibTex]


no image
A Random Riemannian Metric for Probabilistic Shortest-Path Tractography

Hauberg, S., Schober, M., Liptrot, M., Hennig, P., Feragen, A.

In 18th International Conference on Medical Image Computing and Computer Assisted Intervention, 9349, pages: 597-604, Lecture Notes in Computer Science, MICCAI, 2015 (inproceedings)

ei pn

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Recent Methodological Advances in Causal Discovery and Inference

Spirtes, P., Zhang, K.

In 15th Conference on Theoretical Aspects of Rationality and Knowledge, pages: 23-35, (Editors: Ramanujam, R.), TARK, 2015 (inproceedings)

ei

[BibTex]

[BibTex]


Thumb xl screen shot 2015 08 22 at 22.13.35
Policy Learning with Hypothesis Based Local Action Selection

Sankaran, B., Bohg, J., Ratliff, N., Schaal, S.

In Reinforcement Learning and Decision Making, 2015 (inproceedings)

Abstract
For robots to be able to manipulate in unknown and unstructured environments the robot should be capable of operating under partial observability of the environment. Object occlusions and unmodeled environments are some of the factors that result in partial observability. A common scenario where this is encountered is manipulation in clutter. In the case that the robot needs to locate an object of interest and manipulate it, it needs to perform a series of decluttering actions to accurately detect the object of interest. To perform such a series of actions, the robot also needs to account for the dynamics of objects in the environment and how they react to contact. This is a non trivial problem since one needs to reason not only about robot-object interactions but also object-object interactions in the presence of contact. In the example scenario of manipulation in clutter, the state vector would have to account for the pose of the object of interest and the structure of the surrounding environment. The process model would have to account for all the aforementioned robot-object, object-object interactions. The complexity of the process model grows exponentially as the number of objects in the scene increases. This is commonly the case in unstructured environments. Hence it is not reasonable to attempt to model all object-object and robot-object interactions explicitly. Under this setting we propose a hypothesis based action selection algorithm where we construct a hypothesis set of the possible poses of an object of interest given the current evidence in the scene and select actions based on our current set of hypothesis. This hypothesis set tends to represent the belief about the structure of the environment and the number of poses the object of interest can take. The agent's only stopping criterion is when the uncertainty regarding the pose of the object is fully resolved.

am

Web Project Page [BibTex]


Thumb xl isa
Joint 3D Estimation of Vehicles and Scene Flow

Menze, M., Heipke, C., Geiger, A.

In Proc. of the ISPRS Workshop on Image Sequence Analysis (ISA), 2015 (inproceedings)

Abstract
Three-dimensional reconstruction of dynamic scenes is an important prerequisite for applications like mobile robotics or autonomous driving. While much progress has been made in recent years, imaging conditions in natural outdoor environments are still very challenging for current reconstruction and recognition methods. In this paper, we propose a novel unified approach which reasons jointly about 3D scene flow as well as the pose, shape and motion of vehicles in the scene. Towards this goal, we incorporate a deformable CAD model into a slanted-plane conditional random field for scene flow estimation and enforce shape consistency between the rendered 3D models and the parameters of all superpixels in the image. The association of superpixels to objects is established by an index variable which implicitly enables model selection. We evaluate our approach on the challenging KITTI scene flow dataset in terms of object and scene flow estimation. Our results provide a prove of concept and demonstrate the usefulness of our method.

avg ps

PDF [BibTex]

PDF [BibTex]


no image
Learning Optimal Striking Points for A Ping-Pong Playing Robot

Huang, Y., Schölkopf, B., Peters, J.

In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 4587-4592, IROS, 2015 (inproceedings)

am ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Model-Based Relative Entropy Stochastic Search

Abdolmaleki, A., Peters, J., Neumann, G.

In Advances in Neural Information Processing Systems 28, pages: 3523-3531, (Editors: C. Cortes, N.D. Lawrence, D.D. Lee, M. Sugiyama and R. Garnett), Curran Associates, Inc., 29th Annual Conference on Neural Information Processing Systems (NIPS), 2015 (inproceedings)

am ei

link (url) [BibTex]

link (url) [BibTex]


no image
Modeling Spatio-Temporal Variability in Human-Robot Interaction with Probabilistic Movement Primitives

Ewerton, M., Neumann, G., Lioutikov, R., Ben Amor, H., Peters, J., Maeda, G.

In Workshop on Machine Learning for Social Robotics, ICRA, 2015 (inproceedings)

am ei

link (url) [BibTex]

link (url) [BibTex]


no image
Extracting Low-Dimensional Control Variables for Movement Primitives

Rueckert, E., Mundo, J., Paraschos, A., Peters, J., Neumann, G.

In IEEE International Conference on Robotics and Automation, pages: 1511-1518, ICRA, 2015 (inproceedings)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Self-calibration of optical lenses

Hirsch, M., Schölkopf, B.

In IEEE International Conference on Computer Vision (ICCV 2015), pages: 612-620, IEEE, 2015 (inproceedings)

ei

DOI [BibTex]

DOI [BibTex]


Thumb xl subimage
Smooth Loops from Unconstrained Video

Sevilla-Lara, L., Wulff, J., Sunkavalli, K., Shechtman, E.

In Computer Graphics Forum (Proceedings of EGSR), 34(4):99-107, Eurographics Symposium on Rendering, 2015 (inproceedings)

Abstract
Converting unconstrained video sequences into videos that loop seamlessly is an extremely challenging problem. In this work, we take the first steps towards automating this process by focusing on an important subclass of videos containing a single dominant foreground object. Our technique makes two novel contributions over previous work: first, we propose a correspondence-based similarity metric to automatically identify a good transition point in the video where the appearance and dynamics of the foreground are most consistent. Second, we develop a technique that aligns both the foreground and background about this transition point using a combination of global camera path planning and patch-based video morphing. We demonstrate that this allows us to create natural, compelling, loopy videos from a wide range of videos collected from the internet.

ps

pdf link (url) DOI Project Page [BibTex]

pdf link (url) DOI Project Page [BibTex]


no image
Telling cause from effect in deterministic linear dynamical systems

Shajarisales, N., Janzing, D., Schölkopf, B., Besserve, M.

In Proceedings of the 32nd International Conference on Machine Learning, 37, pages: 285–294, JMLR Workshop and Conference Proceedings, (Editors: F. Bach and D. Blei), JMLR, ICML, 2015 (inproceedings)

ei

PDF [BibTex]

PDF [BibTex]


no image
A New Perspective and Extension of the Gaussian Filter

Wüthrich, M., Trimpe, S., Kappler, D., Schaal, S.

In Robotics: Science and Systems, 2015 (inproceedings)

Abstract
The Gaussian Filter (GF) is one of the most widely used filtering algorithms; instances are the Extended Kalman Filter, the Unscented Kalman Filter and the Divided Difference Filter. GFs represent the belief of the current state by a Gaussian with the mean being an affine function of the measurement. We show that this representation can be too restrictive to accurately capture the dependencies in systems with nonlinear observation models, and we investigate how the GF can be generalized to alleviate this problem. To this end we view the GF from a variational-inference perspective, and analyze how restrictions on the form of the belief can be relaxed while maintaining simplicity and efficiency. This analysis provides a basis for generalizations of the GF. We propose one such generalization which coincides with a GF using a virtual measurement, obtained by applying a nonlinear function to the actual measurement. Numerical experiments show that the proposed Feature Gaussian Filter (FGF) can have a substantial performance advantage over the standard GF for systems with nonlinear observation models.

am ics

Web PDF Project Page [BibTex]


no image
A Cognitive Brain-Computer Interface for Patients with Amyotrophic Lateral Sclerosis

Hohmann, M. R., Fomina, T., Jayaram, V., Widmann, N., Förster, C., Müller vom Hagen, J., Synofzik, M., Schölkopf, B., Schöls, L., Grosse-Wentrup, M.

In Proceedings of the 2015 IEEE International Conference on Systems, Man, and Cybernetics, pages: 3187-3191, SMC, 2015 (inproceedings)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Efficient Learning of Linear Separators under Bounded Noise

Awasthi, P., Balcan, M., Haghtalab, N., Urner, R.

In Proceedings of the 28th Conference on Learning Theory, 40, pages: 167-190, (Editors: Grünwald, P. and Hazan, E. and Kale, S.), JMLR, COLT, 2015 (inproceedings)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Learning multiple collaborative tasks with a mixture of Interaction Primitives

Ewerton, M., Neumann, G., Lioutikov, R., Ben Amor, H., Peters, J., Maeda, G.

In IEEE International Conference on Robotics and Automation, pages: 1535-1542, ICRA, 2015 (inproceedings)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Whole-body motor strategies for balancing on a beam when changing the number of available degrees of freedom

Chiovetto, E, Huber, M, Righetti, L., Schaal, S., Sternad, D, Giese, M.

In Progress in Motor Control X, Budapest, Hungry, 2015 (inproceedings)

am

[BibTex]

[BibTex]


no image
Combined FORC and x-ray microscopy study of magnetisation reversal in antidot lattices

Gräfe, J., Haering, F., Stahl, C., Weigand, M., Skripnik, M., Nowak, U., Ziemann, P., Wiedwald, U., Schütz, G., Goering, E.

In IEEE International Magnetics Conference (INTERMAG 2015), IEEE, Beijing, China, 2015 (inproceedings)

mms

DOI Project Page Project Page [BibTex]

DOI Project Page Project Page [BibTex]


no image
Local control of domain wall dynamics in ferromagnetic rings

Richter, K., Mawass, M., Krone, A., Krüger, B., Weigand, M., Stoll, H., Schütz, G., Kläui, M.

In IEEE International Magnetics Conference (INTERMAG 2015), IEEE, Beijing, China, 2015 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Developing neural networks with neurons competing for survival

Peng, Z, Braun, DA

pages: 152-153, IEEE, Piscataway, NJ, USA, 5th Joint IEEE International Conference on Development and Learning and on Epigenetic Robotics (IEEE ICDL-EPIROB), August 2015 (conference)

Abstract
We study developmental growth in a feedforward neural network model inspired by the survival principle in nature. Each neuron has to select its incoming connections in a way that allow it to fire, as neurons that are not able to fire over a period of time degenerate and die. In order to survive, neurons have to find reoccurring patterns in the activity of the neurons in the preceding layer, because each neuron requires more than one active input at any one time to have enough activation for firing. The sensory input at the lowest layer therefore provides the maximum amount of activation that all neurons compete for. The whole network grows dynamically over time depending on how many patterns can be found and how many neurons can maintain themselves accordingly. We show in simulations that this naturally leads to abstractions in higher layers that emerge in a unsupervised fashion. When evaluating the network in a supervised learning paradigm, it is clear that our network is not competitive. What is interesting though is that this performance was achieved by neurons that simply struggle for survival and do not know about performance error. In contrast to most studies on neural evolution that rely on a network-wide fitness function, our goal was to show that learning behaviour can appear in a system without being driven by any specific utility function or reward signal.

ei

DOI [BibTex]

DOI [BibTex]


no image
From Humans to Robots and Back: Role of Arm Movement in Medio-lateral Balance Control

Huber, M, Chiovetto, E, Schaal, S., Giese, M., Sternad, D

In Annual Meeting of Neural Control of Movement, Charleston, NC, 2015 (inproceedings)

am

[BibTex]

[BibTex]


no image
Ultrafast demagnetization after laser pulse irradiation in Ni: Ab-initio electron-phonon scattering and phase space calculations

Illg, C., Haag, M., Fähnle, M.

In Ultrafast Magnetism I. Proceedings of the International Conference UMC 2013, 159, pages: 131-133, Springer Proceedings in Physics, Springer, Strasbourg, 2015 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Trajectory generation for multi-contact momentum control

Herzog, A., Rotella, N., Schaal, S., Righetti, L.

In 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), pages: 874-880, IEEE, Seoul, South Korea, 2015 (inproceedings)

Abstract
Simplified models of the dynamics such as the linear inverted pendulum model (LIPM) have proven to perform well for biped walking on flat ground. However, for more complex tasks the assumptions of these models can become limiting. For example, the LIPM does not allow for the control of contact forces independently, is limited to co-planar contacts and assumes that the angular momentum is zero. In this paper, we propose to use the full momentum equations of a humanoid robot in a trajectory optimization framework to plan its center of mass, linear and angular momentum trajectories. The model also allows for planning desired contact forces for each end-effector in arbitrary contact locations. We extend our previous results on linear quadratic regulator (LQR) design for momentum control by computing the (linearized) optimal momentum feedback law in a receding horizon fashion. The resulting desired momentum and the associated feedback law are then used in a hierarchical whole body control approach. Simulation experiments show that the approach is computationally fast and is able to generate plans for locomotion on complex terrains while demonstrating good tracking performance for the full humanoid control.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Automotive domain wall propagation in ferromagnetic rings

Richter, K., Mawass, M., Krone, A., Krüger, B., Weigand, M., Schütz, G., Stoll, H., Kläui, M.

In IEEE International Magnetics Conference (INTERMAG 2015), IEEE, Beijing, China, 2015 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Humanoid Momentum Estimation Using Sensed Contact Wrenches

Rotella, N., Herzog, A., Schaal, S., Righetti, L.

In 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), pages: 556-563, IEEE, Seoul, South Korea, 2015 (inproceedings)

Abstract
This work presents approaches for the estimation of quantities important for the control of the momentum of a humanoid robot. In contrast to previous approaches which use simplified models such as the Linear Inverted Pendulum Model, we present estimators based on the momentum dynamics of the robot. By using this simple yet dynamically-consistent model, we avoid the issues of using simplified models for estimation. We develop an estimator for the center of mass and full momentum which can be reformulated to estimate center of mass offsets as well as external wrenches applied to the robot. The observability of these estimators is investigated and their performance is evaluated in comparison to previous approaches.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
The third dimension: Vortex core reversal by interaction with \textquotesingleflexure modes’

Noske, M., Stoll, H., Fähnle, M., Weigand, M., Dieterle, G., Förster, J., Gangwar, A., Slavin, A., Back, C. H., Schütz, G.

In IEEE International Magnetics Conference (INTERMAG 2015), IEEE, Beijing, China, 2015 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Skyrmions at room temperature in magnetic multilayers

Moreau-Luchaire, C., Reyren, N., Moutafis, C., Sampaio, J., Van Horne, N., Vaz, C. A., Warnicke, P., Garcia, K., Weigand, M., Bouzehouane, K., Deranlot, C., George, J., Raabe, J., Cros, V., Fert, A.

In IEEE International Magnetics Conference (INTERMAG 2015), IEEE, Beijing, China, 2015 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]

2011


no image
Statistical estimation for optimization problems on graphs

Langovoy, M., Sra, S.

In pages: 1-6, NIPS Workshop on Discrete Optimization in Machine Learning (DISCML): Uncertainty, Generalization and Feedback , December 2011 (inproceedings)

Abstract
Large graphs abound in machine learning, data mining, and several related areas. A useful step towards analyzing such graphs is that of obtaining certain summary statistics — e.g., or the expected length of a shortest path between two nodes, or the expected weight of a minimum spanning tree of the graph, etc. These statistics provide insight into the structure of a graph, and they can help predict global properties of a graph. Motivated thus, we propose to study statistical properties of structured subgraphs (of a given graph), in particular, to estimate the expected objective function value of a combinatorial optimization problem over these subgraphs. The general task is very difficult, if not unsolvable; so for concreteness we describe a more specific statistical estimation problem based on spanning trees. We hope that our position paper encourages others to also study other types of graphical structures for which one can prove nontrivial statistical estimates.

ei

PDF Web [BibTex]

2011


PDF Web [BibTex]


no image
On the discardability of data in Support Vector Classification problems

Del Favero, S., Varagnolo, D., Dinuzzo, F., Schenato, L., Pillonetto, G.

In pages: 3210-3215, IEEE, Piscataway, NJ, USA, 50th IEEE Conference on Decision and Control and European Control Conference (CDC - ECC), December 2011 (inproceedings)

Abstract
We analyze the problem of data sets reduction for support vector classification. The work is also motivated by distributed problems, where sensors collect binary measurements at different locations moving inside an environment that needs to be divided into a collection of regions labeled in two different ways. The scope is to let each agent retain and exchange only those measurements that are mostly informative for the collective reconstruction of the decision boundary. For the case of separable classes, we provide the exact conditions and an efficient algorithm to determine if an element in the training set can become a support vector when new data arrive. The analysis is then extended to the non-separable case deriving a sufficient discardability condition and a general data selection scheme for classification. Numerical experiments relative to the distributed problem show that the proposed procedure allows the agents to exchange a small amount of the collected data to obtain a highly predictive decision boundary.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Information, learning and falsification

Balduzzi, D.

In pages: 1-4, NIPS Philosophy and Machine Learning Workshop, December 2011 (inproceedings)

Abstract
There are (at least) three approaches to quantifying information. The first, algorithmic information or Kolmogorov complexity, takes events as strings and, given a universal Turing machine, quantifies the information content of a string as the length of the shortest program producing it [1]. The second, Shannon information, takes events as belonging to ensembles and quantifies the information resulting from observing the given event in terms of the number of alternate events that have been ruled out [2]. The third, statistical learning theory, has introduced measures of capacity that control (in part) the expected risk of classifiers [3]. These capacities quantify the expectations regarding future data that learning algorithms embed into classifiers. Solomonoff and Hutter have applied algorithmic information to prove remarkable results on universal induction. Shannon information provides the mathematical foundation for communication and coding theory. However, both approaches have shortcomings. Algorithmic information is not computable, severely limiting its practical usefulness. Shannon information refers to ensembles rather than actual events: it makes no sense to compute the Shannon information of a single string – or rather, there are many answers to this question depending on how a related ensemble is constructed. Although there are asymptotic results linking algorithmic and Shannon information, it is unsatisfying that there is such a large gap – a difference in kind – between the two measures. This note describes a new method of quantifying information, effective information, that links algorithmic information to Shannon information, and also links both to capacities arising in statistical learning theory [4, 5]. After introducing the measure, we show that it provides a non-universal analog of Kolmogorov complexity. We then apply it to derive basic capacities in statistical learning theory: empirical VC-entropy and empirical Rademacher complexity. A nice byproduct of our approach is an interpretation of the explanatory power of a learning algorithm in terms of the number of hypotheses it falsifies [6], counted in two different ways for the two capacities. We also discuss how effective information relates to information gain, Shannon and mutual information.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
A general linear non-Gaussian state-space model: Identifiability, identification, and applications

Zhang, K., Hyvärinen, A.

In JMLR Workshop and Conference Proceedings Volume 20, pages: 113-128, (Editors: Hsu, C.-N. , W.S. Lee ), MIT Press, Cambridge, MA, USA, 3rd Asian Conference on Machine Learning (ACML), November 2011 (inproceedings)

Abstract
State-space modeling provides a powerful tool for system identification and prediction. In linear state-space models the data are usually assumed to be Gaussian and the models have certain structural constraints such that they are identifiable. In this paper we propose a non-Gaussian state-space model which does not have such constraints. We prove that this model is fully identifiable. We then propose an efficient two-step method for parameter estimation: one first extracts the subspace of the latent processes based on the temporal information of the data, and then performs multichannel blind deconvolution, making use of both the temporal information and non-Gaussianity. We conduct a series of simulations to illustrate the performance of the proposed method. Finally, we apply the proposed model and parameter estimation method on real data, including major world stock indices and magnetoencephalography (MEG) recordings. Experimental results are encouraging and show the practical usefulness of the proposed model and method.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Non-stationary correction of optical aberrations

Schuler, C., Hirsch, M., Harmeling, S., Schölkopf, B.

In pages: 659-666 , (Editors: DN Metaxas and L Quan and A Sanfeliu and LJ Van Gool), IEEE, Piscataway, NJ, USA, 13th IEEE International Conference on Computer Vision (ICCV), November 2011 (inproceedings)

Abstract
Taking a sharp photo at several megapixel resolution traditionally relies on high grade lenses. In this paper, we present an approach to alleviate image degradations caused by imperfect optics. We rely on a calibration step to encode the optical aberrations in a space-variant point spread function and obtain a corrected image by non-stationary deconvolution. By including the Bayer array in our image formation model, we can perform demosaicing as part of the deconvolution.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Learning low-rank output kernels

Dinuzzo, F., Fukumizu, K.

In JMLR Workshop and Conference Proceedings Volume 20, pages: 181-196, (Editors: Hsu, C.-N. , W.S. Lee), JMLR, Cambridge, MA, USA, 3rd Asian Conference on Machine Learning (ACML) , November 2011 (inproceedings)

Abstract
Output kernel learning techniques allow to simultaneously learn a vector-valued function and a positive semidefinite matrix which describes the relationships between the outputs. In this paper, we introduce a new formulation that imposes a low-rank constraint on the output kernel and operates directly on a factor of the kernel matrix. First, we investigate the connection between output kernel learning and a regularization problem for an architecture with two layers. Then, we show that a variety of methods such as nuclear norm regularized regression, reduced-rank regression, principal component analysis, and low rank matrix approximation can be seen as special cases of the output kernel learning framework. Finally, we introduce a block coordinate descent strategy for learning low-rank output kernels.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Stability Condition for Teleoperation System with Packet Loss

Hong, A., Cho, JH., Lee, DY.

In pages: 760-761, 2011 KSME Annual Fall Conference, November 2011 (inproceedings)

Abstract
This paper focuses on the stability condition of teleoperation system where there is a packet loss in communication channel. Communication channel between master and slave cause packet loss and it obviously leads to a performance degradation and instability of teleoperation system. We consider two-channel control architecture for teleoperation system, and control inputs to remote site are produced by position of master and slave. In this paper, teleoperation system is modeled in discrete domain to include packet loss process. Also, the stability condition for teleoperation system with packet loss is discussed with input-to-state stability. Finally, the stability condition is presented in LMI approach.

ei

[BibTex]

[BibTex]


no image
Fast removal of non-uniform camera shake

Hirsch, M., Schuler, C., Harmeling, S., Schölkopf, B.

In pages: 463-470 , (Editors: DN Metaxas and L Quan and A Sanfeliu and LJ Van Gool), IEEE, Piscataway, NJ, USA, 13th IEEE International Conference on Computer Vision (ICCV), November 2011 (inproceedings)

Abstract
Camera shake leads to non-uniform image blurs. State-of-the-art methods for removing camera shake model the blur as a linear combination of homographically transformed versions of the true image. While this is conceptually interesting, the resulting algorithms are computationally demanding. In this paper we develop a forward model based on the efficient filter flow framework, incorporating the particularities of camera shake, and show how an efficient algorithm for blur removal can be obtained. Comprehensive comparisons on a number of real-world blurry images show that our approach is not only substantially faster, but it also leads to better deblurring results.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


Thumb xl iccv2011homepageimage notext small
Home 3D body scans from noisy image and range data

Weiss, A., Hirshberg, D., Black, M.

In Int. Conf. on Computer Vision (ICCV), pages: 1951-1958, IEEE, Barcelona, November 2011 (inproceedings)

Abstract
The 3D shape of the human body is useful for applications in fitness, games and apparel. Accurate body scanners, however, are expensive, limiting the availability of 3D body models. We present a method for human shape reconstruction from noisy monocular image and range data using a single inexpensive commodity sensor. The approach combines low-resolution image silhouettes with coarse range data to estimate a parametric model of the body. Accurate 3D shape estimates are obtained by combining multiple monocular views of a person moving in front of the sensor. To cope with varying body pose, we use a SCAPE body model which factors 3D body shape and pose variations. This enables the estimation of a single consistent shape while allowing pose to vary. Additionally, we describe a novel method to minimize the distance between the projected 3D body contour and the image silhouette that uses analytic derivatives of the objective function. We propose a simple method to estimate standard body measurements from the recovered SCAPE model and show that the accuracy of our method is competitive with commercial body scanning systems costing orders of magnitude more.

ps

pdf YouTube poster Project Page Project Page [BibTex]

pdf YouTube poster Project Page Project Page [BibTex]