Header logo is


2011


no image
BET specific surface area and pore structure of MOFs determined by hydrogen adsorption at 20 K

Streppel, B., Hirscher, M.

{Physical Chemistry Chemical Physics}, 13(8):3220-3222, 2011 (article)

mms

DOI [BibTex]

2011


DOI [BibTex]


no image
High contrast magnetic and nonmagnetic sample current microscopy for bulk and transparent samples using soft X-rays

Nolle, D., Weigand, M., Schütz, G., Goering, E.

{Microscopy and Microanalysis}, 17, pages: 834-842, 2011 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetic vortex core reversal by rotating magnetic fields generated on micrometer length scales

Curcic, M., Stoll, H., Weigand, M., Sackmann, V., Jüllig, P., Kammerer, M., Noske, M., Sproll, M., Van Waeyenberge, B., Vansteenkiste, A., Woltersdorf, G., Tyliszczak, T., Schütz, G.

{Physica Status Solidi B}, 248(10):2317-2322, 2011 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Operational Space Control of Constrained and Underactuated Systems

Mistry, M., Righetti, L.

In Proceedings of Robotics: Science and Systems, Los Angeles, CA, USA, June 2011 (inproceedings)

Abstract
The operational space formulation (Khatib, 1987), applied to rigid-body manipulators, describes how to decouple task-space and null-space dynamics, and write control equations that correspond only to forces at the end-effector or, alternatively, only to motion within the null-space. We would like to apply this useful theory to modern humanoids and other legged systems, for manipulation or similar tasks, however these systems present additional challenges due to their underactuated floating bases and contact states that can dynamically change. In recent work, Sentis et al. derived controllers for such systems by implementing a task Jacobian projected into a space consistent with the supporting constraints and underactuation (the so called "support consistent reduced Jacobian"). Here, we take a new approach to derive operational space controllers for constrained underactuated systems, by first considering the operational space dynamics within "projected inverse-dynamics" (Aghili, 2005), and subsequently resolving underactuation through the addition of dynamically consistent control torques. Doing so results in a simplified control solution compared with previous results, and importantly yields several new insights into the underlying problem of operational space control in constrained environments: 1) Underactuated systems, such as humanoid robots, cannot in general completely decouple task and null-space dynamics. However, 2) there may exist an infinite number of control solutions to realize desired task-space dynamics, and 3) these solutions involve the addition of dynamically consistent null-space motion or constraint forces (or combinations of both). In light of these findings, we present several possible control solutions, with varying optimization criteria, and highlight some of their practical consequences.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Nanomechanics of AFM based nanomanipulation

Xie, H., Onal, C., Régnier, S., Sitti, M.

In Atomic Force Microscopy Based Nanorobotics, pages: 87-143, Springer Berlin Heidelberg, 2011 (incollection)

pi

[BibTex]

[BibTex]


no image
Under-actuated tank-like climbing robot with various transitioning capabilities

Seo, T., Sitti, M.

In Robotics and Automation (ICRA), 2011 IEEE International Conference on, pages: 777-782, 2011 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Enhancing adhesion of biologically inspired polymer microfibers with a viscous oil coating

Cheung, E., Sitti, M.

The Journal of Adhesion, 87(6):547-557, Taylor & Francis Group, 2011 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Rotating magnetic micro-robots for versatile non-contact fluidic manipulation of micro-objects

Diller, E., Ye, Z., Sitti, M.

In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on, pages: 1291-1296, 2011 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Formation of two amorphous phases in the Ni60Nb18Y22 alloy after high pressure torsion

Straumal, B. B., Mazilkin, A. A., Protasova, S. G., Goll, D., Baretzky, B., Bakai, A. S., Dobatkin, S. V.

{Kovove Materialy-Metallic Materials}, 49(1):17-22, 2011 (article)

mms

link (url) [BibTex]

link (url) [BibTex]


no image
Structure and properties of nanograined Fe-C alloys after severe plastic deformation

Straumal, B. B., Dobatkin, S. V., Rodin, A. O., Protasova, S. G., Mazilkin, A. A., Goll, D., Baretzky, B.

{Advanced Engineering Materials}, 13(6):463-469, 2011 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Increased flux pinning in YBa2Cu3O7-δthin-film devices through embedding of Au nano crystals

Katzer, C., Schmidt, M., Michalowski, P., Kuhwald, D., Schmidl, F., Grosse, V., Treiber, S., Stahl, C., Albrecht, J., Hübner, U., Undisz, A., Rettenmayr, M., Schütz, G., Seidel, P.

{Europhysics Letters}, 95(6), 2011 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Signal transfer in a chain of stray-field coupled ferromagnetic squares

Vogel, A., Martens, M., Weigand, M., Meier, G.

{Applied Physics Letters}, 99, 2011 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Transmission electron microscopy investigation of boundaries between amorphous "grains" in Ni50Nb20Y30 alloy

Mazilkin, A. A., Abrosimova, G. E., Protasova, S. G., Straumal, B. B., Schütz, G., Dobatkin, S. V., Bakai, A. S.

In 46, pages: 4336-4342, Mie, Japan, 2011 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Electron theory of magnetoelectric effects in metallic ferromagnetic nanostructures

Subkow, S., Fähnle, M.

{Physical Review B}, 84, 2011 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetic antivortex-core reversal by rotating magnetic fields

Kamionka, T., Martens, M., Chou, K., Drews, A., Tyliszczak, T., Stoll, H., Van Waeyenberge, B., Meier, G.

{Physical Review B}, 83, 2011 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetic properties of exchange-spring composite films

Kronmüller, H., Goll, D.

{Physica Status Solidi B}, 248(10):2361-2367, 2011 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Wetting transition of grain boundaries in the Sn-rich part of the Sn-Bi phase diagram

Yeh, C.-H., Chang, L.-S., Straumal, B. B.

{Journal of Materials Science}, 46(5):1557-1562, 2011 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Online movement adaptation based on previous sensor experiences

Pastor, P., Righetti, L., Kalakrishnan, M., Schaal, S.

In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 365-371, IEEE, San Francisco, USA, sep 2011 (inproceedings)

Abstract
Personal robots can only become widespread if they are capable of safely operating among humans. In uncertain and highly dynamic environments such as human households, robots need to be able to instantly adapt their behavior to unforseen events. In this paper, we propose a general framework to achieve very contact-reactive motions for robotic grasping and manipulation. Associating stereotypical movements to particular tasks enables our system to use previous sensor experiences as a predictive model for subsequent task executions. We use dynamical systems, named Dynamic Movement Primitives (DMPs), to learn goal-directed behaviors from demonstration. We exploit their dynamic properties by coupling them with the measured and predicted sensor traces. This feedback loop allows for online adaptation of the movement plan. Our system can create a rich set of possible motions that account for external perturbations and perception uncertainty to generate truly robust behaviors. As an example, we present an application to grasping with the WAM robot arm.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning to grasp under uncertainty

Stulp, F., Theodorou, E., Buchli, J., Schaal, S.

In Robotics and Automation (ICRA), 2011 IEEE International Conference on, Shanghai, China, May 9-13, 2011, clmc (inproceedings)

Abstract
We present an approach that enables robots to learn motion primitives that are robust towards state estimation uncertainties. During reaching and preshaping, the robot learns to use fine manipulation strategies to maneuver the object into a pose at which closing the hand to perform the grasp is more likely to succeed. In contrast, common assumptions in grasp planning and motion planning for reaching are that these tasks can be performed independently, and that the robot has perfect knowledge of the pose of the objects in the environment. We implement our approach using Dynamic Movement Primitives and the probabilistic model-free reinforcement learning algorithm Policy Improvement with Path Integrals (PI2 ). The cost function that PI2 optimizes is a simple boolean that penalizes failed grasps. The key to acquiring robust motion primitives is to sample the actual pose of the object from a distribution that represents the state estimation uncertainty. During learning, the robot will thus optimize the chance of grasping an object from this distribution, rather than at one specific pose. In our empirical evaluation, we demonstrate how the motion primitives become more robust when grasping simple cylindrical objects, as well as more complex, non-convex objects. We also investigate how well the learned motion primitives generalize towards new object positions and other state estimation uncertainty distributions.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Instrumentation Issues of an AFM Based Nanorobotic System

Xie, H., Onal, C., Régnier, S., Sitti, M.

In Atomic Force Microscopy Based Nanorobotics, pages: 31-86, Springer Berlin Heidelberg, 2011 (incollection)

pi

[BibTex]

[BibTex]


no image
Piezoelectric polymer fiber arrays for tactile sensing applications

Sümer, B., Aksak, B., Şsahin, K., Chuengsatiansup, K., Sitti, M.

Sensor Letters, 9(2):457-463, American Scientific Publishers, 2011 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Assembly and disassembly of magnetic mobile micro-robots towards deterministic 2-D reconfigurable micro-systems

Pawashe, C., Diller, E., Floyd, S., Sitti, M.

In Robotics and Automation (ICRA), 2011 IEEE International Conference on, pages: 261-266, 2011 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Stochastic dynamics of bacteria propelled spherical micro-robots

Arabagi, V., Behkam, B., Sitti, M.

In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on, pages: 3937-3942, 2011 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Control methodologies for a heterogeneous group of untethered magnetic micro-robots

Floyd, S., Diller, E., Pawashe, C., Sitti, M.

The International Journal of Robotics Research, 30(13):1553-1565, SAGE Publications, 2011 (article)

pi

[BibTex]

[BibTex]


no image
Projected Newton-type methods in machine learning

Schmidt, M., Kim, D., Sra, S.

In Optimization for Machine Learning, pages: 305-330, MIT Press, Cambridge, MA, USA, 2011 (incollection)

Abstract
{We consider projected Newton-type methods for solving large-scale optimization problems arising in machine learning and related fields. We first introduce an algorithmic framework for projected Newton-type methods by reviewing a canonical projected (quasi-)Newton method. This method, while conceptually pleasing, has a high computation cost per iteration. Thus, we discuss two variants that are more scalable, namely, two-metric projection and inexact projection methods. Finally, we show how to apply the Newton-type framework to handle non-smooth objectives. Examples are provided throughout the chapter to illustrate machine learning applications of our framework.}

mms

link (url) [BibTex]

link (url) [BibTex]


no image
Study of krypton/xenon storage and separation in microporous frameworks

Soleimani Dorcheh, A.

Universität Darmstadt, Darmstadt, 2011 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Influence of dot size and annealing on the magnetic properties of large-area L10-FePt nanopatterns

Bublat, T., Goll, D.

{Journal of Applied Physics}, 110(7), 2011 (article)

mms

DOI [BibTex]


no image
The temperature-dependent magnetization profile across an epitaxial bilayer of ferromagnetic La2/3Ca1/3MnO3 and superconducting YBa2Cu3O7-δ

Brück, S., Treiber, S., Macke, S., Audehm, P., Christiani, G., Soltan, S., Habermeier, H., Goering, E., Albrecht, J.

{New Journal of Physics}, 13(3), 2011 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Spin interactions in bcc and fcc Fe beyond the Heisenberg model

Singer, R., Dietermann, F., Fähnle, M.

{Physical Review Letters}, 107, 2011 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Route to a family of robust, non-interpenetrated metal-organic frameworks with pto-like topology

Klein, N., Senkovska, I., Baburin, I. A., Grünker, R., Stoeck, U., Schlichtenmayer, M., Streppel, B., Mueller, U., Leoni, S., Hirscher, M., Kaskel, S.

{Chemistry - A European Journal}, 17(46):13007-13016, 2011 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Initial stages of growth of iron on silicon for spin injection through Schottky barrier

Dash, S. P., Carstanjen, H. D.

{Physica Status Solidi B}, 248(10):2300-2304, 2011 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Fe3O4/ZnO: A high-quality magnetic oxide-semiconductor heterostructure by reactive deposition

Paul, M., Kufer, D., Müller, A., Brück, S., Goering, E., Kamp, M., Verbeeck, J., Tian, H., Van Tendeloo, G., Ingle, N. J. C., Sing, M., Claessen, R.

{Applied Physics Letters}, 98, 2011 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Influence of texture on the ferromagnetic properties of nanograined ZnO films

Straumal, B., Mazilkin, A., Protasova, S., Myatiev, A., Straumal, P., Goering, E., Baretzky, B.

{Physica Status Solidi B}, 248(7):1581-1586, 2011 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Control of spin configuration in half-metallic La0.7Sr0.3MnO3 nano-structures

Rhensius, J., Vaz, C. A. F., Bisig, A., Schweitzer, S., Heidler, J., Körner, H. S., Locatelli, A., Niño, M. A., Weigand, M., Méchin, L., Gaucher, F., Goering, E., Heyderman, L. J., Kläui, M.

{Applied Physics Letters}, 99(6), 2011 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Comparison of various sol-gel derived metal oxide layers for inverted organic solar cells

Oh, H., Krantz, J., Litzov, I., Stubhan, T., Pinna, L., Brabec, C. J.

{Solar Energy Materials \& Solar Cells}, 95(8):2194-2199, 2011 (article)

mms

DOI [BibTex]

DOI [BibTex]

2007


no image
Reaction graph kernels for discovering missing enzymes in the plant secondary metabolism

Saigo, H., Hattori, M., Tsuda, K.

NIPS Workshop on Machine Learning in Computational Biology, December 2007 (talk)

Abstract
Secondary metabolic pathway in plant is important for finding druggable candidate enzymes. However, there are many enzymes whose functions are still undiscovered especially in organism-specific metabolic pathways. We propose reaction graph kernels for automatically assigning the EC numbers to unknown enzymatic reactions in a metabolic network. Experiments are carried out on KEGG/REACTION database and our method successfully predicted the first three digits of the EC number with 83% accuracy.We also exhaustively predicted missing enzymatic functions in the plant secondary metabolism pathways, and evaluated our results in biochemical validity.

ei

Web [BibTex]

2007


Web [BibTex]


no image
Positional Oligomer Importance Matrices

Sonnenburg, S., Zien, A., Philips, P., Rätsch, G.

NIPS Workshop on Machine Learning in Computational Biology, December 2007 (talk)

Abstract
At the heart of many important bioinformatics problems, such as gene finding and function prediction, is the classification of biological sequences, above all of DNA and proteins. In many cases, the most accurate classifiers are obtained by training SVMs with complex sequence kernels, for instance for transcription starts or splice sites. However, an often criticized downside of SVMs with complex kernels is that it is very hard for humans to understand the learned decision rules and to derive biological insights from them. To close this gap, we introduce the concept of positional oligomer importance matrices (POIMs) and develop an efficient algorithm for their computation. We demonstrate how they overcome the limitations of sequence logos, and how they can be used to find relevant motifs for different biological phenomena in a straight-forward way. Note that the concept of POIMs is not limited to interpreting SVMs, but is applicable to general k−mer based scoring systems.

ei

Web [BibTex]

Web [BibTex]


no image
Machine Learning Algorithms for Polymorphism Detection

Schweikert, G., Zeller, G., Weigel, D., Schölkopf, B., Rätsch, G.

NIPS Workshop on Machine Learning in Computational Biology, December 2007 (talk)

ei

Web [BibTex]

Web [BibTex]


no image
A Tutorial on Spectral Clustering

von Luxburg, U.

Statistics and Computing, 17(4):395-416, December 2007 (article)

Abstract
In recent years, spectral clustering has become one of the most popular modern clustering algorithms. It is simple to implement, can be solved efficiently by standard linear algebra software, and very often outperforms traditional clustering algorithms such as the k-means algorithm. On the first glance spectral clustering appears slightly mysterious, and it is not obvious to see why it works at all and what it really does. The goal of this tutorial is to give some intuition on those questions. We describe different graph Laplacians and their basic properties, present the most common spectral clustering algorithms, and derive those algorithms from scratch by several different approaches. Advantages and disadvantages of the different spectral clustering algorithms are discussed.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
An Automated Combination of Kernels for Predicting Protein Subcellular Localization

Zien, A., Ong, C.

NIPS Workshop on Machine Learning in Computational Biology, December 2007 (talk)

Abstract
Protein subcellular localization is a crucial ingredient to many important inferences about cellular processes, including prediction of protein function and protein interactions.We propose a new class of protein sequence kernels which considers all motifs including motifs with gaps. This class of kernels allows the inclusion of pairwise amino acid distances into their computation. We utilize an extension of the multiclass support vector machine (SVM)method which directly solves protein subcellular localization without resorting to the common approach of splitting the problem into several binary classification problems. To automatically search over families of possible amino acid motifs, we optimize over multiple kernels at the same time. We compare our automated approach to four other predictors on three different datasets, and show that we perform better than the current state of the art. Furthermore, our method provides some insights as to which features are most useful for determining subcellular localization, which are in agreement with biological reasoning.

ei

Web [BibTex]

Web [BibTex]


no image
A Tutorial on Kernel Methods for Categorization

Jäkel, F., Schölkopf, B., Wichmann, F.

Journal of Mathematical Psychology, 51(6):343-358, December 2007 (article)

Abstract
The abilities to learn and to categorize are fundamental for cognitive systems, be it animals or machines, and therefore have attracted attention from engineers and psychologists alike. Modern machine learning methods and psychological models of categorization are remarkably similar, partly because these two fields share a common history in artificial neural networks and reinforcement learning. However, machine learning is now an independent and mature field that has moved beyond psychologically or neurally inspired algorithms towards providing foundations for a theory of learning that is rooted in statistics and functional analysis. Much of this research is potentially interesting for psychological theories of learning and categorization but also hardly accessible for psychologists. Here, we provide a tutorial introduction to a popular class of machine learning tools, called kernel methods. These methods are closely related to perceptrons, radial-basis-function neural networks and exemplar theories of catego rization. Recent theoretical advances in machine learning are closely tied to the idea that the similarity of patterns can be encapsulated in a positive definite kernel. Such a positive definite kernel can define a reproducing kernel Hilbert space which allows one to use powerful tools from functional analysis for the analysis of learning algorithms. We give basic explanations of some key concepts—the so-called kernel trick, the representer theorem and regularization—which may open up the possibility that insights from machine learning can feed back into psychology.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Accurate Splice site Prediction Using Support Vector Machines

Sonnenburg, S., Schweikert, G., Philips, P., Behr, J., Rätsch, G.

BMC Bioinformatics, 8(Supplement 10):1-16, December 2007 (article)

Abstract
Background: For splice site recognition, one has to solve two classification problems: discriminating true from decoy splice sites for both acceptor and donor sites. Gene finding systems typically rely on Markov Chains to solve these tasks. Results: In this work we consider Support Vector Machines for splice site recognition. We employ the so-called weighted degree kernel which turns out well suited for this task, as we will illustrate in several experiments where we compare its prediction accuracy with that of recently proposed systems. We apply our method to the genome-wide recognition of splice sites in Caenorhabditis elegans, Drosophila melanogaster, Arabidopsis thaliana, Danio rerio, and Homo sapiens. Our performance estimates indicate that splice sites can be recognized very accurately in these genomes and that our method outperforms many other methods including Markov Chains, GeneSplicer and SpliceMachine. We provide genome-wide predictions of splice sites and a stand-alone prediction tool ready to be used for incorporation in a gene finder. Availability: Data, splits, additional information on the model selection, the whole genome predictions, as well as the stand-alone prediction tool are available for download at http:// www.fml.mpg.de/raetsch/projects/splice.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Challenges in Brain-Computer Interface Development: Induction, Measurement, Decoding, Integration

Hill, NJ.

Invited keynote talk at the launch of BrainGain, the Dutch BCI research consortium, November 2007 (talk)

Abstract
I‘ll present a perspective on Brain-Computer Interface development from T{\"u}bingen. Some of the benefits promised by BCI technology lie in the near foreseeable future, and some further away. Our motivation is to make BCI technology feasible for the people who could benefit from what it has to offer soon: namely, people in the "completely locked-in" state. I‘ll mention some of the challenges of working with this user group, and explain the specific directions they have motivated us to take in developing experimental methods, algorithms, and software.

ei

[BibTex]

[BibTex]


no image
Towards compliant humanoids: an experimental assessment of suitable task space position/orientation controllers

Nakanishi, J., Mistry, M., Peters, J., Schaal, S.

In IROS 2007, 2007, pages: 2520-2527, (Editors: Grant, E. , T. C. Henderson), IEEE Service Center, Piscataway, NJ, USA, IEEE/RSJ International Conference on Intelligent Robots and Systems, November 2007 (inproceedings)

Abstract
Compliant control will be a prerequisite for humanoid robotics if these robots are supposed to work safely and robustly in human and/or dynamic environments. One view of compliant control is that a robot should control a minimal number of degrees-of-freedom (DOFs) directly, i.e., those relevant DOFs for the task, and keep the remaining DOFs maximally compliant, usually in the null space of the task. This view naturally leads to task space control. However, surprisingly few implementations of task space control can be found in actual humanoid robots. This paper makes a first step towards assessing the usefulness of task space controllers for humanoids by investigating which choices of controllers are available and what inherent control characteristics they have—this treatment will concern position and orientation control, where the latter is based on a quaternion formulation. Empirical evaluations on an anthropomorphic Sarcos master arm illustrate the robustness of the different controllers as well as the eas e of implementing and tuning them. Our extensive empirical results demonstrate that simpler task space controllers, e.g., classical resolved motion rate control or resolved acceleration control can be quite advantageous in face of inevitable modeling errors in model-based control, and that well chosen formulations are easy to implement and quite robust, such that they are useful for humanoids.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]