Header logo is


4182 results (BibTeX)

2005


no image
Energy-based models of motor cortical population activity

Wood, F., Black, M.

Program No. 689.20. 2005 Abstract Viewer/Itinerary Planner, Society for Neuroscience, Washington, DC, 2005 (conference)

ps

abstract [BibTex]

2005


abstract [BibTex]


no image
A new methodology for robot control design

Peters, J., Mistry, M., Udwadia, F. E., Schaal, S.

In The 5th ASME International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC 2005), Long Beach, CA, Sept. 24-28, 2005, clmc (inproceedings)

Abstract
Gauss principle of least constraint and its generalizations have provided a useful insights for the development of tracking controllers for mechanical systems (Udwadia,2003). Using this concept, we present a novel methodology for the design of a specific class of robot controllers. With our new framework, we demonstrate that well-known and also several novel nonlinear robot control laws can be derived from this generic framework, and show experimental verifications on a Sarcos Master Arm robot for some of these controllers. We believe that the suggested approach unifies and simplifies the design of optimal nonlinear control laws for robots obeying rigid body dynamics equations, both with or without external constraints, holonomic or nonholonomic constraints, with over-actuation or underactuation, as well as open-chain and closed-chain kinematics.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Geckobot and waalbot: Small-scale wall climbing robots

Unver, O., Murphy, M., Sitti, M.

In Infotech@ Aerospace, pages: 6940, 2005 (incollection)

pi

[BibTex]

[BibTex]


no image
Fusion of biomedical microcapsule endoscope and microsystem technology

Kim, Tae Song, Kim, Byungkyu, Cho, Dongil Dan, Song, Si Young, Dario, P, Sitti, M

In Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS’05. The 13th International Conference on, 1, pages: 9-14, 2005 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Atomic force microscope based two-dimensional assembly of micro/nanoparticles

Tafazzoli, A., Pawashe, C., Sitti, M.

In Assembly and Task Planning: From Nano to Macro Assembly and Manufacturing, 2005.(ISATP 2005). The 6th IEEE International Symposium on, pages: 230-235, 2005 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Perception of Curvature and Object Motion Via Contact Location Feedback

Provancher, W. R., Kuchenbecker, K. J., Niemeyer, G., Cutkosky, M. R.

In Robotics Research: the Eleventh International Symposium (ISRR 2003), 15, pages: 456-465, Springer Tracts in Advanced Robotics, Springer, Siena, Italy, 2005, Oral presentation given by Provancher (incollection)

hi

[BibTex]

[BibTex]


no image
Arm movement experiments with joint space force fields using an exoskeleton robot

Mistry, M., Mohajerian, P., Schaal, S.

In IEEE Ninth International Conference on Rehabilitation Robotics, pages: 408-413, Chicago, Illinois, June 28-July 1, 2005, clmc (inproceedings)

Abstract
A new experimental platform permits us to study a novel variety of issues of human motor control, particularly full 3-D movements involving the major seven degrees-of-freedom (DOF) of the human arm. We incorporate a seven DOF robot exoskeleton, and can minimize weight and inertia through gravity, Coriolis, and inertia compensation, such that subjects' arm movements are largely unaffected by the manipulandum. Torque perturbations can be individually applied to any or all seven joints of the human arm, thus creating novel dynamic environments, or force fields, for subjects to respond and adapt to. Our first study investigates a joint space force field where the shoulder velocity drives a disturbing force in the elbow joint. Results demonstrate that subjects learn to compensate for the force field within about 100 trials, and from the strong presence of aftereffects when removing the field in some randomized catch trials, that an inverse dynamics, or internal model, of the force field is formed by the nervous system. Interestingly, while post-learning hand trajectories return to baseline, joint space trajectories remained changed in response to the field, indicating that besides learning a model of the force field, the nervous system also chose to exploit the space to minimize the effects of the force field on the realization of the endpoint trajectory plan. Further applications for our apparatus include studies in motor system redundancy resolution and inverse kinematics, as well as rehabilitation.

am

link (url) [BibTex]

link (url) [BibTex]


no image
A unifying framework for the control of robotics systems

Peters, J., Mistry, M., Udwadia, F. E., Cory, R., Nakanishi, J., Schaal, S.

In IEEE International Conference on Intelligent Robots and Systems (IROS 2005), pages: 1824-1831, Edmonton, Alberta, Canada, Aug. 2-6, 2005, clmc (inproceedings)

Abstract
Recently, [1] suggested to derive tracking controllers for mechanical systems using a generalization of GaussÕ principle of least constraint. This method al-lows us to reformulate control problems as a special class of optimal control. We take this line of reasoning one step further and demonstrate that well-known and also several novel nonlinear robot control laws can be derived from this generic methodology. We show experimental verifications on a Sar-cos Master Arm robot for some of the the derived controllers.We believe that the suggested approach offers a promising unification and simplification of nonlinear control law design for robots obeying rigid body dynamics equa-tions, both with or without external constraints, with over-actuation or under-actuation, as well as open-chain and closed-chain kinematics.

am

link (url) [BibTex]

link (url) [BibTex]


no image
A piezoelectric unimorph actuator based precision positioning miniature walking robot

Son, K. J., Kartik, V., Wickert, J. A., Sitti, M.

In Proc. IEEE/ASME Int. Conf. Adv. Intell. Mechatronics, pages: 176-182, 2005 (inproceedings)

pi

[BibTex]

[BibTex]


no image
A new endoscopic microcapsule robot using beetle inspired microfibrillar adhesives

Cheung, E., Karagozler, M. E., Park, S., Kim, B., Sitti, M.

In Advanced Intelligent Mechatronics. Proceedings, 2005 IEEE/ASME International Conference on, pages: 551-557, 2005 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Learning to Feel the Physics of a Body

Der, R., Hesse, F., Martius, G.

In Computational Intelligence for Modelling, Control and Automation, CIMCA 2005 , 2, pages: 252-257, Washington, DC, USA, 2005 (inproceedings)

Abstract
Despite the tremendous progress in robotic hardware and in both sensorial and computing efficiencies the performance of contemporary autonomous robots is still far below that of simple animals. This has triggered an intensive search for alternative approaches to the control of robots. The present paper exemplifies a general approach to the self-organization of behavior which has been developed and tested in various examples in recent years. We apply this approach to an underactuated snake like artifact with a complex physical behavior which is not known to the controller. Due to the weak forces available, the controller so to say has to develop a kind of feeling for the body which is seen to emerge from our approach in a natural way with meandering and rotational collective modes being observed in computer simulation experiments.

al

[BibTex]

[BibTex]

2004


no image
Attentional Modulation of Auditory Event-Related Potentials in a Brain-Computer Interface

Hill, J., Lal, T., Bierig, K., Birbaumer, N., Schölkopf, B.

In BioCAS04, (S3/5/INV- S3/17-20):4, IEEE Computer Society, Los Alamitos, CA, USA, 2004 IEEE International Workshop on Biomedical Circuits and Systems, December 2004 (inproceedings)

Abstract
Motivated by the particular problems involved in communicating with "locked-in" paralysed patients, we aim to develop a brain-computer interface that uses auditory stimuli. We describe a paradigm that allows a user to make a binary decision by focusing attention on one of two concurrent auditory stimulus sequences. Using Support Vector Machine classification and Recursive Channel Elimination on the independent components of averaged event-related potentials, we show that an untrained user‘s EEG data can be classified with an encouragingly high level of accuracy. This suggests that it is possible for users to modulate EEG signals in a single trial by the conscious direction of attention, well enough to be useful in BCI.

ei

PDF Web DOI [BibTex]

2004


PDF Web DOI [BibTex]


no image
On the representation, learning and transfer of spatio-temporal movement characteristics

Ilg, W., Bakir, GH., Mezger, J., Giese, M.

International Journal of Humanoid Robotics, 1(4):613-636, December 2004 (article)

ei

[BibTex]

[BibTex]


no image
Insect-inspired estimation of egomotion

Franz, MO., Chahl, JS., Krapp, HG.

Neural Computation, 16(11):2245-2260, November 2004 (article)

Abstract
Tangential neurons in the fly brain are sensitive to the typical optic flow patterns generated during egomotion. In this study, we examine whether a simplified linear model based on the organization principles in tangential neurons can be used to estimate egomotion from the optic flow. We present a theory for the construction of an estimator consisting of a linear combination of optic flow vectors that incorporates prior knowledge both about the distance distribution of the environment, and about the noise and egomotion statistics of the sensor. The estimator is tested on a gantry carrying an omnidirectional vision sensor. The experiments show that the proposed approach leads to accurate and robust estimates of rotation rates, whereas translation estimates are of reasonable quality, albeit less reliable.

ei

PDF PostScript Web DOI [BibTex]

PDF PostScript Web DOI [BibTex]


no image
Efficient face detection by a cascaded support-vector machine expansion

Romdhani, S., Torr, P., Schölkopf, B., Blake, A.

Proceedings of The Royal Society of London A, 460(2501):3283-3297, A, November 2004 (article)

Abstract
We describe a fast system for the detection and localization of human faces in images using a nonlinear ‘support-vector machine‘. We approximate the decision surface in terms of a reduced set of expansion vectors and propose a cascaded evaluation which has the property that the full support-vector expansion is only evaluated on the face-like parts of the image, while the largest part of typical images is classified using a single expansion vector (a simpler and more efficient classifier). As a result, only three reduced-set vectors are used, on average, to classify an image patch. Hence, the cascaded evaluation, presented in this paper, offers a thirtyfold speed-up over an evaluation using the full set of reduced-set vectors, which is itself already thirty times faster than classification using all the support vectors.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Fast Binary and Multi-Output Reduced Set Selection

Weston, J., Bakir, G.

(132), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, November 2004 (techreport)

Abstract
We propose fast algorithms for reducing the number of kernel evaluations in the testing phase for methods such as Support Vector Machines (SVM) and Ridge Regression (RR). For non-sparse methods such as RR this results in significantly improved prediction time. For binary SVMs, which are already sparse in their expansion, the pay off is mainly in the cases of noisy or large-scale problems. However, we then further develop our method for multi-class problems where, after choosing the expansion to find vectors which describe all the hyperplanes jointly, we again achieve significant gains.

ei

PostScript [BibTex]

PostScript [BibTex]


no image
Joint Kernel Maps

Weston, J., Schölkopf, B., Bousquet, O., Mann, .., Noble, W.

(131), Max-Planck-Institute for Biological Cybernetics, Tübingen, November 2004 (techreport)

ei

PDF [BibTex]

PDF [BibTex]


no image
Canceling Induced Master Motion in Force-Reflecting Teleoperation

Kuchenbecker, K. J., Niemeyer, G.

In Proc. ASME International Mechanical Engineering Congress and Exposition, Symposium on Advances in Robot Dynamics and Control, 2, paper number 60049, Anaheim, California, USA, November 2004, Oral presentation given by Kuchenbecker. {B}est Student Paper Award (inproceedings)

hi

[BibTex]

[BibTex]


no image
Discrete vs. Continuous: Two Sides of Machine Learning

Zhou, D.

October 2004 (talk)

Abstract
We consider the problem of transductive inference. In many real-world problems, unlabeled data is far easier to obtain than labeled data. Hence transductive inference is very significant in many practical problems. According to Vapnik's point of view, one should predict the function value only on the given points directly rather than a function defined on the whole space, the latter being a more complicated problem. Inspired by this idea, we develop discrete calculus on finite discrete spaces, and then build discrete regularization. A family of transductive algorithms is naturally derived from this regularization framework. We validate the algorithms on both synthetic and real-world data from text/web categorization to bioinformatics problems. A significant by-product of this work is a powerful way of ranking data based on examples including images, documents, proteins and many other kinds of data. This talk is mainly based on the followiing contribution: (1) D. Zhou and B. Sch{\"o}lkopf: Transductive Inference with Graphs, MPI Technical report, August, 2004; (2) D. Zhou, B. Sch{\"o}lkopf and T. Hofmann. Semi-supervised Learning on Directed Graphs. NIPS 2004; (3) D. Zhou, O. Bousquet, T.N. Lal, J. Weston and B. Sch{\"o}lkopf. Learning with Local and Global Consistency. NIPS 2003.

ei

PDF [BibTex]


no image
Using kernel PCA for Initialisation of Variational Bayesian Nonlinear Blind Source Separation Method

Honkela, A., Harmeling, S., Lundqvist, L., Valpola, H.

In ICA 2004, pages: 790-797, (Editors: Puntonet, C. G., A. Prieto), Springer, Berlin, Germany, Fifth International Conference on Independent Component Analysis and Blind Signal Separation, October 2004 (inproceedings)

Abstract
The variational Bayesian nonlinear blind source separation method introduced by Lappalainen and Honkela in 2000 is initialised with linear principal component analysis (PCA). Because of the multilayer perceptron (MLP) network used to model the nonlinearity, the method is susceptible to local minima and therefore sensitive to the initialisation used. As the method is used for nonlinear separation, the linear initialisation may in some cases lead it astray. In this paper we study the use of kernel PCA (KPCA) in the initialisation. KPCA is a rather straightforward generalisation of linear PCA and it is much faster to compute than the variational Bayesian method. The experiments show that it can produce significantly better initialisations than linear PCA. Additionally, the model comparison methods provided by the variational Bayesian framework can be easily applied to compare different kernels.

ei

DOI [BibTex]

DOI [BibTex]


no image
S-cones contribute to flicker brightness in human vision

Wehrhahn, C., Hill, NJ., Dillenburger, B.

34(174.12), 34th Annual Meeting of the Society for Neuroscience (Neuroscience), October 2004 (poster)

Abstract
In the retina of primates three cone types sensitive to short, middle and long wavelengths of light convert photons into electrical signals. Many investigators have presented evidence that, in color normal observers, the signals of cones sensitive to short wavelengths of light (S-cones) do not contribute to the perception of brightness of a colored surface when this is alternated with an achromatic reference (flicker brightness). Other studies indicate that humans do use S-cone signals when performing this task. Common to all these studies is the small number of observers, whose performance data are reported. Considerable variability in the occurrence of cone types across observers has been found, but, to our knowledge, no cone counts exist from larger populations of humans. We reinvestigated how much the S-cones contribute to flicker brightness. 76 color normal observers were tested in a simple psychophysical procedure neutral to the cone type occurence (Teufel & Wehrhahn (2000), JOSA A 17: 994 - 1006). The data show that, in the majority of our observers, S-cones provide input with a negative sign - relative to L- and M-cone contribution - in the task in question. There is indeed considerable between-subject variability such that for 20 out of 76 observers the magnitude of this input does not differ significantly from 0. Finally, we argue that the sign of S-cone contribution to flicker brightness perception by an observer cannot be used to infer the relative sign their contributions to the neuronal signals carrying the information leading to the perception of flicker brightness. We conclude that studies which use only a small number of observers may easily fail to find significant evidence for the small but significant population tendency for the S-cones to contribute to flicker brightness. Our results confirm all earlier results and reconcile their contradictory interpretations.

ei

Web [BibTex]

Web [BibTex]


no image
Robust ICA for Super-Gaussian Sources

Meinecke, F., Harmeling, S., Müller, K.

In ICA 2004, pages: 217-224, (Editors: Puntonet, C. G., A. Prieto), Springer, Berlin, Germany, Fifth International Conference on Independent Component Analysis and Blind Signal Separation, October 2004 (inproceedings)

Abstract
Most ICA algorithms are sensitive to outliers. Instead of robustifying existing algorithms by outlier rejection techniques, we show how a simple outlier index can be used directly to solve the ICA problem for super-Gaussian source signals. This ICA method is outlier-robust by construction and can be used for standard ICA as well as for over-complete ICA (i.e. more source signals than observed signals (mixtures)).

ei

DOI [BibTex]

DOI [BibTex]


no image
Learning Motor Primitives with Reinforcement Learning

Peters, J., Schaal, S.

AAAI Fall Symposium on Real-Life Reinforcement Learning 2004, 2004, pages: 1, October 2004 (poster)

ei

Web [BibTex]

Web [BibTex]


no image
Independent component analysis and beyond

Harmeling, S.

Biologische Kybernetik, Universität Potsdam, Potsdam, October 2004 (phdthesis)

ei

PDF [BibTex]

PDF [BibTex]


no image
Pattern detection methods and systems and face detection methods and systems

Blake, A., Romdhani, S., Schölkopf, B., Torr, P. H. S.

United States Patent, No 6804391, October 2004 (patent)

ei

[BibTex]

[BibTex]


no image
Modelling Spikes with Mixtures of Factor Analysers

Görür, D., Rasmussen, C., Tolias, A., Sinz, F., Logothetis, N.

In Pattern Recognition, pages: 391-398, LNCS 3175, (Editors: Rasmussen, C. E. , H.H. Bülthoff, B. Schölkopf, M.A. Giese), Springer, Berlin, Germany, 26th DAGM Symposium, September 2004 (inproceedings)

Abstract
Identifying the action potentials of individual neurons from extracellular recordings, known as spike sorting, is a challenging problem. We consider the spike sorting problem using a generative model,mixtures of factor analysers, which concurrently performs clustering and feature extraction. The most important advantage of this method is that it quantifies the certainty with which the spikes are classified. This can be used as a means for evaluating the quality of clustering and therefore spike isolation. Using this method, nearly simultaneously occurring spikes can also be modelled which is a hard task for many of the spike sorting methods. Furthermore, modelling the data with a generative model allows us to generate simulated data.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Learning Depth From Stereo

Sinz, F., Candela, J., BakIr, G., Rasmussen, C., Franz, M.

In 26th DAGM Symposium, pages: 245-252, LNCS 3175, (Editors: Rasmussen, C. E., H. H. Bülthoff, B. Schölkopf, M. A. Giese), Springer, Berlin, Germany, 26th DAGM Symposium, September 2004 (inproceedings)

Abstract
We compare two approaches to the problem of estimating the depth of a point in space from observing its image position in two different cameras: 1.~The classical photogrammetric approach explicitly models the two cameras and estimates their intrinsic and extrinsic parameters using a tedious calibration procedure; 2.~A generic machine learning approach where the mapping from image to spatial coordinates is directly approximated by a Gaussian Process regression. Our results show that the generic learning approach, in addition to simplifying the procedure of calibration, can lead to higher depth accuracies than classical calibration although no specific domain knowledge is used.

ei

PDF PostScript Web [BibTex]

PDF PostScript Web [BibTex]


no image
Grundlagen von Support Vector Maschinen und Anwendungen in der Bildverarbeitung

Eichhorn, J.

September 2004 (talk)

Abstract
Invited talk at the workshop "Numerical, Statistical and Discrete Methods in Image Processing" at the TU M{\"u}nchen (in GERMAN)

ei

PDF [BibTex]


no image
Advanced Lectures on Machine Learning

Bousquet, O., von Luxburg, U., Rätsch, G.

ML Summer Schools 2003, LNAI 3176, pages: 240, Springer, Berlin, Germany, ML Summer Schools, September 2004 (proceedings)

Abstract
Machine Learning has become a key enabling technology for many engineering applications, investigating scientific questions and theoretical problems alike. To stimulate discussions and to disseminate new results, a summer school series was started in February 2002, the documentation of which is published as LNAI 2600. This book presents revised lectures of two subsequent summer schools held in 2003 in Canberra, Australia, and in T{\"u}bingen, Germany. The tutorial lectures included are devoted to statistical learning theory, unsupervised learning, Bayesian inference, and applications in pattern recognition; they provide in-depth overviews of exciting new developments and contain a large number of references. Graduate students, lecturers, researchers and professionals alike will find this book a useful resource in learning and teaching machine learning.

ei

Web [BibTex]

Web [BibTex]


no image
Stability of Hausdorff-based Distance Measures

Shapiro, MD., Blaschko, MB.

In VIIP, pages: 1-6, VIIP, September 2004 (inproceedings)

ei

[BibTex]

[BibTex]


no image
Automatic spike sorting for neural decoding

Wood, F. D., Fellows, M., Donoghue, J. P., Black, M. J.

In Proc. IEEE Engineering in Medicine and Biology Society, pages: 4009-4012, September 2004 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


Thumb xl wuembs2004
Closed-loop neural control of cursor motion using a Kalman filter

Wu, W., Shaikhouni, A., Donoghue, J. P., Black, M. J.

In Proc. IEEE Engineering in Medicine and Biology Society, pages: 4126-4129, September 2004 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


no image
Pattern Recognition: 26th DAGM Symposium, LNCS, Vol. 3175

Rasmussen, C., Bülthoff, H., Giese, M., Schölkopf, B.

Proceedings of the 26th Pattern Recognition Symposium (DAGM‘04), pages: 581, Springer, Berlin, Germany, 26th Pattern Recognition Symposium, August 2004 (proceedings)

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Semi-Supervised Induction

Yu, K., Tresp, V., Zhou, D.

(141), Max Planck Institute for Biological Cybernetics, Tuebingen, Germany, August 2004 (techreport)

Abstract
Considerable progress was recently achieved on semi-supervised learning, which differs from the traditional supervised learning by additionally exploring the information of the unlabelled examples. However, a disadvantage of many existing methods is that it does not generalize to unseen inputs. This paper investigates learning methods that effectively make use of both labelled and unlabelled data to build predictive functions, which are defined on not just the seen inputs but the whole space. As a nice property, the proposed method allows effcient training and can easily handle new test points. We validate the method based on both toy data and real world data sets.

ei

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Kernel Methods in Computational Biology

Schölkopf, B., Tsuda, K., Vert, J.

pages: 410, Computational Molecular Biology, MIT Press, Cambridge, MA, USA, August 2004 (book)

Abstract
Modern machine learning techniques are proving to be extremely valuable for the analysis of data in computational biology problems. One branch of machine learning, kernel methods, lends itself particularly well to the difficult aspects of biological data, which include high dimensionality (as in microarray measurements), representation as discrete and structured data (as in DNA or amino acid sequences), and the need to combine heterogeneous sources of information. This book provides a detailed overview of current research in kernel methods and their applications to computational biology. Following three introductory chapters—an introduction to molecular and computational biology, a short review of kernel methods that focuses on intuitive concepts rather than technical details, and a detailed survey of recent applications of kernel methods in computational biology—the book is divided into three sections that reflect three general trends in current research. The first part presents different ideas for the design of kernel functions specifically adapted to various biological data; the second part covers different approaches to learning from heterogeneous data; and the third part offers examples of successful applications of support vector machine methods.

ei

Web [BibTex]

Web [BibTex]


no image
Learning kernels from biological networks by maximizing entropy

Tsuda, K., Noble, W.

Bioinformatics, 20(Suppl. 1):i326-i333, August 2004 (article)

Abstract
Motivation: The diffusion kernel is a general method for computing pairwise distances among all nodes in a graph, based on the sum of weighted paths between each pair of nodes. This technique has been used successfully, in conjunction with kernel-based learning methods, to draw inferences from several types of biological networks. Results: We show that computing the diffusion kernel is equivalent to maximizing the von Neumann entropy, subject to a global constraint on the sum of the Euclidean distances between nodes. This global constraint allows for high variance in the pairwise distances. Accordingly, we propose an alternative, locally constrained diffusion kernel, and we demonstrate that the resulting kernel allows for more accurate support vector machine prediction of protein functional classifications from metabolic and protein–protein interaction networks.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
On Hausdorff Distance Measures

Shapiro, MD., Blaschko, MB.

Department of Computer Science, University of Massachusetts Amherst, August 2004 (techreport)

ei

[BibTex]

[BibTex]


no image
Learning to Find Graph Pre-Images

BakIr, G., Zien, A., Tsuda, K.

In Pattern Recognition, pages: 253-261, (Editors: Rasmussen, C. E., H. H. Bülthoff, B. Schölkopf, M. A. Giese), Springer, Berlin, Germany, 26th DAGM Symposium, August 2004 (inproceedings)

Abstract
The recent development of graph kernel functions has made it possible to apply well-established machine learning methods to graphs. However, to allow for analyses that yield a graph as a result, it is necessary to solve the so-called pre-image problem: to reconstruct a graph from its feature space representation induced by the kernel. Here, we suggest a practical solution to this problem.

ei

PostScript PDF DOI [BibTex]

PostScript PDF DOI [BibTex]


no image
The benefit of liquid Helium cooling for Cryo-Electron Tomography: A quantitative comparative study

Schweikert, G., Luecken, U., Pfeifer, G., Baumeister, W., Plitzko, J.

The thirteenth European Microscopy Congress, August 2004 (talk)

ei

[BibTex]

[BibTex]


no image
Masking effect produced by Mach bands on the detection of narrow bars of random polarity

Henning, GB., Hoddinott, KT., Wilson-Smith, ZJ., Hill, NJ.

Journal of the Optical Society of America, 21(8):1379-1387, A, August 2004 (article)

ei

[BibTex]

[BibTex]


no image
Gaussian Process Classification for Segmenting and Annotating Sequences

Altun, Y., Hofmann, T., Smola, A.

In Proceedings of the 21st International Conference on Machine Learning (ICML 2004), pages: 25-32, (Editors: Greiner, R. , D. Schuurmans), ACM Press, New York, USA, 21st International Conference on Machine Learning (ICML), July 2004 (inproceedings)

Abstract
Many real-world classification tasks involve the prediction of multiple, inter-dependent class labels. A prototypical case of this sort deals with prediction of a sequence of labels for a sequence of observations. Such problems arise naturally in the context of annotating and segmenting observation sequences. This paper generalizes Gaussian Process classification to predict multiple labels by taking dependencies between neighboring labels into account. Our approach is motivated by the desire to retain rigorous probabilistic semantics, while overcoming limitations of parametric methods like Conditional Random Fields, which exhibit conceptual and computational difficulties in high-dimensional input spaces. Experiments on named entity recognition and pitch accent prediction tasks demonstrate the competitiveness of our approach.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Learning with Non-Positive Kernels

Ong, CS., Mary, X., Canu, S., Smola, AJ.

In ICML 2004, pages: 81-81, ACM Press, New York, NY, USA, Twenty-First International Conference on Machine Learning, July 2004 (inproceedings)

Abstract
n this paper we show that many kernel methods can be adapted to deal with indefinite kernels, that is, kernels which are not positive semidefinite. They do not satisfy Mercer‘s condition and they induce associated functional spaces called Reproducing Kernel Kre&icaron;n Spaces (RKKS), a generalization of Reproducing Kernel Hilbert Spaces (RKHS).Machine learning in RKKS shares many "nice" properties of learning in RKHS, such as orthogonality and projection. However, since the kernels are indefinite, we can no longer minimize the loss, instead we stabilize it. We show a general representer theorem for constrained stabilization and prove generalization bounds by computing the Rademacher averages of the kernel class. We list several examples of indefinite kernels and investigate regularization methods to solve spline interpolation. Some preliminary experiments with indefinite kernels for spline smoothing are reported for truncated spectral factorization, Landweber-Fridman iterations, and MR-II.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Exponential Families for Conditional Random Fields

Altun, Y., Smola, A., Hofmann, T.

In Proceedings of the 20th Annual Conference on Uncertainty in Artificial Intelligence (UAI 2004), pages: 2-9, (Editors: Chickering, D.M. , J.Y. Halpern), Morgan Kaufmann, San Francisco, CA, USA, 20th Annual Conference on Uncertainty in Artificial Intelligence (UAI), July 2004 (inproceedings)

Abstract
In this paper we define conditional random fields in reproducing kernel Hilbert spaces and show connections to Gaussian Process classification. More specifically, we prove decomposition results for undirected graphical models and we give constructions for kernels. Finally we present efficient means of solving the optimization problem using reduced rank decompositions and we show how stationarity can be exploited efficiently in the optimization process.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Object categorization with SVM: kernels for local features

Eichhorn, J., Chapelle, O.

(137), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, July 2004 (techreport)

Abstract
In this paper, we propose to combine an efficient image representation based on local descriptors with a Support Vector Machine classifier in order to perform object categorization. For this purpose, we apply kernels defined on sets of vectors. After testing different combinations of kernel / local descriptors, we have been able to identify a very performant one.

ei

PDF [BibTex]

PDF [BibTex]


no image
Hilbertian Metrics and Positive Definite Kernels on Probability Measures

Hein, M., Bousquet, O.

(126), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, July 2004 (techreport)

Abstract
We investigate the problem of defining Hilbertian metrics resp. positive definite kernels on probability measures, continuing previous work. This type of kernels has shown very good results in text classification and has a wide range of possible applications. In this paper we extend the two-parameter family of Hilbertian metrics of Topsoe such that it now includes all commonly used Hilbertian metrics on probability measures. This allows us to do model selection among these metrics in an elegant and unified way. Second we investigate further our approach to incorporate similarity information of the probability space into the kernel. The analysis provides a better understanding of these kernels and gives in some cases a more efficient way to compute them. Finally we compare all proposed kernels in two text and one image classification problem.

ei

PDF [BibTex]

PDF [BibTex]


no image
Using Conditional Random Fields to Predict Pitch Accent in Conversational Speech

Gregory, M., Altun, Y.

In pages: 677-684, (Editors: Scott, D. , W. Daelemans, M. Walker), ACL, East Stroudsburg, PA, USA, 42nd Annual Meeting of the Association for Computational Linguistics (ACL), July 2004 (inproceedings)

Abstract
The detection of prosodic characteristics is an important aspect of both speech synthesis and speech recognition. Correct placement of pitch accents aids in more natural sounding speech, while automatic detection of accents can contribute to better wordlevel recognition and better textual understanding. In this paper we investigate probabilistic, contextual, and phonological factors that influence pitch accent placement in natural, conversational speech in a sequence labeling setting. We introduce Conditional Random Fields (CRFs) to pitch accent prediction task in order to incorporate these factors efficiently in a sequence model. We demonstrate the usefulness and the incremental effect of these factors in a sequence model by performing experiments on hand labeled data from the Switchboard Corpus. Our model outperforms the baseline and previous models of pitch accent prediction on the Switchboard Corpus.

ei

Web [BibTex]

Web [BibTex]


no image
Kernels, Associated Structures and Generalizations

Hein, M., Bousquet, O.

(127), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, July 2004 (techreport)

Abstract
This paper gives a survey of results in the mathematical literature on positive definite kernels and their associated structures. We concentrate on properties which seem potentially relevant for Machine Learning and try to clarify some results that have been misused in the literature. Moreover we consider different lines of generalizations of positive definite kernels. Namely we deal with operator-valued kernels and present the general framework of Hilbertian subspaces of Schwartz which we use to introduce kernels which are distributions. Finally indefinite kernels and their associated reproducing kernel spaces are considered.

ei

PDF [BibTex]

PDF [BibTex]


no image
Analysis of differential gene expression in healthy and osteoarthritic cartilage and isolated chondrocytes by microarray analysis

Aigner, T., Saas, J., Zien, A., Zimmer, R., Gebhard, P., Knorr, T.

In Volume 1: Cellular and Molecular Tools, pages: 109-128, (Editors: Sabatini, M., P. Pastoureau and F. De Ceuninck), Humana Press, July 2004 (inbook)

Abstract
The regulation of chondrocytes in osteoarthritic cartilage and the expression of specific gene products by these cells during early-onset and late-stage osteoarthritis are not well characterized. With the introduction of cDNA array technology, the measurement of thousands of different genes in one small tissue sample can be carried out. Interpretation of gene expression analyses in articular cartilage is aided by the fact that this tissue contains only one cell type in both normal and diseased conditions. However, care has to be taken not to over- and misinterpret results, and some major challenges must be overcome in order to utilize the potential of this technology properly in the field of osteoarthritis.

ei

Web [BibTex]

Web [BibTex]