Header logo is


2017


Design of a visualization scheme for functional connectivity data of Human Brain
Design of a visualization scheme for functional connectivity data of Human Brain

Bramlage, L.

Hochschule Osnabrück - University of Applied Sciences, 2017 (thesis)

sf

Bramlage_BSc_2017.pdf [BibTex]

2017



no image
A Comparison of Autoregressive Hidden Markov Models for Multimodal Manipulations With Variable Masses

Kroemer, O., Peters, J.

IEEE Robotics and Automation Letters, 2(2):1101-1108, 2017 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Phase Estimation for Fast Action Recognition and Trajectory Generation in Human-Robot Collaboration

Maeda, G., Ewerton, M., Neumann, G., Lioutikov, R., Peters, J.

International Journal of Robotics Research, 36(13-14):1579-1594, 2017, Special Issue on the Seventeenth International Symposium on Robotics Research (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
A Phase-coded Aperture Camera with Programmable Optics

Chen, J., Hirsch, M., Heintzmann, R., Eberhardt, B., Lensch, H. P. A.

Electronic Imaging, 2017(17):70-75, 2017 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Selective hydrogen isotope separation via breathing transition in MIL-53(Al)

Kim, J. Y., Zhang, L., Balderas-Xicohténcatl, R., Park, J., Hirscher, M., Moon, H. R., Oh, H.

{Journal of the American Chemical Society}, 139(49):17743-17746, American Chemical Society, Washington, DC, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Efficient synthesis for large-scale production and characterization for hydrogen storage of ligand exchanged MOF-74/174/184-M (M\textequalsMg2+, Ni2+)

Oh, H., Maurer, S., Balderas-Xicohténcatl, R., Arnold, L., Magdysyuk, O. V., Schütz, G., Müller, U., Hirscher, M.

{International Journal of Hydrogen Energy}, 42(2):1027-1035, Elsevier, Amsterdam, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


Computer Vision for Autonomous Vehicles: Problems, Datasets and State-of-the-Art
Computer Vision for Autonomous Vehicles: Problems, Datasets and State-of-the-Art

Janai, J., Güney, F., Behl, A., Geiger, A.

Arxiv, 2017 (article)

Abstract
Recent years have witnessed amazing progress in AI related fields such as computer vision, machine learning and autonomous vehicles. As with any rapidly growing field, however, it becomes increasingly difficult to stay up-to-date or enter the field as a beginner. While several topic specific survey papers have been written, to date no general survey on problems, datasets and methods in computer vision for autonomous vehicles exists. This paper attempts to narrow this gap by providing a state-of-the-art survey on this topic. Our survey includes both the historically most relevant literature as well as the current state-of-the-art on several specific topics, including recognition, reconstruction, motion estimation, tracking, scene understanding and end-to-end learning. Towards this goal, we first provide a taxonomy to classify each approach and then analyze the performance of the state-of-the-art on several challenging benchmarking datasets including KITTI, ISPRS, MOT and Cityscapes. Besides, we discuss open problems and current research challenges. To ease accessibility and accommodate missing references, we will also provide an interactive platform which allows to navigate topics and methods, and provides additional information and project links for each paper.

avg

pdf Project Page Project Page [BibTex]


A Deep Learning Based 6 Degree-of-Freedom Localization Method for Endoscopic Capsule Robots
A Deep Learning Based 6 Degree-of-Freedom Localization Method for Endoscopic Capsule Robots

Turan, M., Almalioglu, Y., Konukoglu, E., Sitti, M.

arXiv preprint arXiv:1705.05435, 2017 (article)

Abstract
We present a robust deep learning based 6 degrees-of-freedom (DoF) localization system for endoscopic capsule robots. Our system mainly focuses on localization of endoscopic capsule robots inside the GI tract using only visual information captured by a mono camera integrated to the robot. The proposed system is a 23-layer deep convolutional neural network (CNN) that is capable to estimate the pose of the robot in real time using a standard CPU. The dataset for the evaluation of the system was recorded inside a surgical human stomach model with realistic surface texture, softness, and surface liquid properties so that the pre-trained CNN architecture can be transferred confidently into a real endoscopic scenario. An average error of 7.1% and 3.4% for translation and rotation has been obtained, respectively. The results accomplished from the experiments demonstrate that a CNN pre-trained with raw 2D endoscopic images performs accurately inside the GI tract and is robust to various challenges posed by reflection distortions, lens imperfections, vignetting, noise, motion blur, low resolution, and lack of unique landmarks to track.

pi

link (url) Project Page [BibTex]


no image
Efficiency of analytical and sampling-based uncertainty propagation in intensity-modulated proton therapy

Wahl, N., Hennig, P., Wieser, H. P., Bangert, M.

Physics in Medicine & Biology, 62(14):5790-5807, 2017 (article)

Abstract
The sensitivity of intensity-modulated proton therapy (IMPT) treatment plans to uncertainties can be quantified and mitigated with robust/min-max and stochastic/probabilistic treatment analysis and optimization techniques. Those methods usually rely on sparse random, importance, or worst-case sampling. Inevitably, this imposes a trade-off between computational speed and accuracy of the uncertainty propagation. Here, we investigate analytical probabilistic modeling (APM) as an alternative for uncertainty propagation and minimization in IMPT that does not rely on scenario sampling. APM propagates probability distributions over range and setup uncertainties via a Gaussian pencil-beam approximation into moments of the probability distributions over the resulting dose in closed form. It supports arbitrary correlation models and allows for efficient incorporation of fractionation effects regarding random and systematic errors. We evaluate the trade-off between run-time and accuracy of APM uncertainty computations on three patient datasets. Results are compared against reference computations facilitating importance and random sampling. Two approximation techniques to accelerate uncertainty propagation and minimization based on probabilistic treatment plan optimization are presented. Runtimes are measured on CPU and GPU platforms, dosimetric accuracy is quantified in comparison to a sampling-based benchmark (5000 random samples). APM accurately propagates range and setup uncertainties into dose uncertainties at competitive run-times (GPU ##IMG## [http://ej.iop.org/images/0031-9155/62/14/5790/pmbaa6ec5ieqn001.gif] {$\leqslant {5}$} min). The resulting standard deviation (expectation value) of dose show average global ##IMG## [http://ej.iop.org/images/0031-9155/62/14/5790/pmbaa6ec5ieqn002.gif] {$\gamma_{{3}\% / {3}~{\rm mm}}$} pass rates between 94.2% and 99.9% (98.4% and 100.0%). All investigated importance sampling strategies provided less accuracy at higher run-times considering only a single fraction. Considering fractionation, APM uncertainty propagation and treatment plan optimization was proven to be possible at constant time complexity, while run-times of sampling-based computations are linear in the number of fractions. Using sum sampling within APM, uncertainty propagation can only be accelerated at the cost of reduced accuracy in variance calculations. For probabilistic plan optimization, we were able to approximate the necessary pre-computations within seconds, yielding treatment plans of similar quality as gained from exact uncertainty propagation. APM is suited to enhance the trade-off between speed and accuracy in uncertainty propagation and probabilistic treatment plan optimization, especially in the context of fractionation. This brings fully-fledged APM computations within reach of clinical application.

pn

link (url) [BibTex]

link (url) [BibTex]


{Deep EndoVO: A Recurrent Convolutional Neural Network (RCNN) based Visual Odometry Approach for Endoscopic Capsule Robots}
Deep EndoVO: A Recurrent Convolutional Neural Network (RCNN) based Visual Odometry Approach for Endoscopic Capsule Robots

Turan, M., Almalioglu, Y., Araujo, H., Konukoglu, E., Sitti, M.

ArXiv e-prints, 2017 (article)

Abstract
Ingestible wireless capsule endoscopy is an emerging minimally invasive diagnostic technology for inspection of the GI tract and diagnosis of a wide range of diseases and pathologies. Medical device companies and many research groups have recently made substantial progresses in converting passive capsule endoscopes to active capsule robots, enabling more accurate, precise, and intuitive detection of the location and size of the diseased areas. Since a reliable real time pose estimation functionality is crucial for actively controlled endoscopic capsule robots, in this study, we propose a monocular visual odometry (VO) method for endoscopic capsule robot operations. Our method lies on the application of the deep Recurrent Convolutional Neural Networks (RCNNs) for the visual odometry task, where Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) are used for the feature extraction and inference of dynamics across the frames, respectively. Detailed analyses and evaluations made on a real pig stomach dataset proves that our system achieves high translational and rotational accuracies for different types of endoscopic capsule robot trajectories.

pi

link (url) Project Page [BibTex]


no image
Analytical probabilistic modeling of RBE-weighted dose for ion therapy

Wieser, H., Hennig, P., Wahl, N., Bangert, M.

Physics in Medicine and Biology (PMB), 62(23):8959-8982, 2017 (article)

pn

link (url) [BibTex]

link (url) [BibTex]


no image
On Maximum Entropy and Inference

Gresele, L., Marsili, M.

Entropy, 19(12):article no. 642, 2017 (article)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Towards Engagement Models that Consider Individual Factors in HRI: On the Relation of Extroversion and Negative Attitude Towards Robots to Gaze and Speech During a Human-Robot Assembly Task

Ivaldi, S., Lefort, S., Peters, J., Chetouani, M., Provasi, J., Zibetti, E.

International Journal of Social Robotics, 9(1):63-86, 2017 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Non-parametric Policy Search with Limited Information Loss

van Hoof, H., Neumann, G., Peters, J.

Journal of Machine Learning Research , 18(73):1-46, 2017 (article)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Stability of Controllers for Gaussian Process Dynamics

Vinogradska, J., Bischoff, B., Nguyen-Tuong, D., Peters, J.

Journal of Machine Learning Research, 18(100):1-37, 2017 (article)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
SUV-quantification of physiological lung tissue in an integrated PET/MR-system: Impact of lung density and bone tissue

Seith, F., Schmidt, H., Gatidis, S., Bezrukov, I., Schraml, C., Pfannenberg, C., la Fougère, C., Nikolaou, K., Schwenzer, N.

PLOS ONE, 12(5):1-13, 2017 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Corrosion-protected hybrid nanoparticles

Jeong, H., Alarcón-Correa, M., Mark, A. G., Son, K., Lee, T., Fischer, P.

{Advanced Science}, 4(12), Wiley-VCH, Weinheim, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Investigation of the Dzyaloshinskii-Moriya interaction and room temperature skyrmions in W/CoFeB/MgO thin films and microwires

Jaiswal, S., Litzius, K., Lemesh, I., Büttner, F., Finizio, S., Raabe, J., Weigand, M., Lee, K., Langer, J., Ocker, B., Jakob, G., Beach, G. S. D., Kläui, M.

{Applied Physics Letters}, 111(2), American Institute of Physics, Melville, NY, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Ultrafast demagnetization after femtosecond laser pulses: Transfer of angular momentum from the electronic system to magnetoelastic spin-phonon modes

Fähnle, M., Tsatsoulis, T., Illg, C., Haag, M., Müller, B. Y., Zhang, L.

{Journal of Superconductivity and Novel Magnetism}, 30(5):1381-1387, Springer Science + Business Media B.V., New York, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetic behavior of single chain magnets in metal organic frameworks CPO-27-Co

Son, K., Goering, E., Hirscher, M., Oh, H.

{Journal of Nanoscience and Nanotechnology}, 17(10):7541-7546, American Scientific Publishers, Stevenson Ranch, Calif., 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Switching by domain-wall automotion in asymmetric ferromagnetic rings

Mawass, M., Richter, K., Bisig, A., Reeve, R. M., Krüger, B., Weigand, M., Stoll, H., Krone, A., Kronast, F., Schütz, G., Kläui, M.

{Physical Review Applied}, 7(4), American Physical Society, College Park, Md. [u.a.], 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
A neutral atom moving in an external magnetic field does not feel a Lorentz force

Fähnle, M.

{American Journal of Modern Physics}, 6(6):153-155, Science Publishing Group, New York, NY, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Temperature-dependent first-order reversal curve measurements on unusually hard magnetic low-temperature phase of MnBi

Muralidhar, S., Gräfe, J., Chen, Y., Etter, M., Gregori, G., Ener, S., Sawatzki, S., Hono, K., Gutfleisch, O., Kronmüller, H., Schütz, G., Goering, E. J.

{Physical Review B}, 95(2), American Physical Society, Woodbury, NY, 2017 (article)

mms

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Smooth and rapid microwave synthesis of MIL-53(Fe) including superparamagnetic \textlessgamma\textgreater-Fe2O3 nanoparticles

Wengert, S., Albrecht, J., Ruoß, S., Stahl, C., Schütz, G., Schäfer, R.

{Journal of Magnetism and Magnetic Materials}, 444, pages: 168-172, NH, Elsevier, Amsterdam, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Characterization and differentiation of rock varnish types from different environments by microanalytical techniques

Macholdt, D. S., Jochum, K. P., Pöhlker, C., Arangio, A., Förster, J., Stoll, B., Weis, U., Weber, B., Müller, M., Kappl, M., Shiraiwa, M., Kilcoyne, A. L. D., Weigand, M., Scholz, D., Haug, G. H., Al-Amri, A., Andreae, M. O.

{Chemical Geology}, 459, pages: 91-118, Elsevier, Amsterdam, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy

Litzius, K., Lemesh, I., Krüger, B., Bassirian, P., Caretta, L., Richter, K., Büttner, F., Sato, K., Tretiakov, O. A., Förster, J., Reeve, R. M., Weigand, M., Bykova, I., Stoll, H., Schütz, G., Beach, G. S. D., Kläui, M.

{Nature Physics}, 13(2):170-175, Nature Pub. Group, London, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Comment on magnonic black holes

Fähnle, M., Schütz, G.

{Journal of Magnetism and Magnetic Materials}, 444, pages: 146-146, NH, Elsevier, Amsterdam, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Cr-Substitution in Ba2In2O5 \mbox⋅ (H2O)x (x \textequals 0.16, 0.74)

Yoon, S., Son, K., Hagemann, H., Widenmeyer, M., Weidenkaff, A.

{Solid State Sciences}, 73, pages: 1-6, Elsevier Masson SAS, Paris, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Comment on half-integer quantum numbers for the total angular momentum of photons in light beams with finite lateral extensions

Fähnle, M.

{American Journal of Modern Physics}, 6(5):88-90, Science Publishing Group, New York, NY, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Advanced magneto-optical Kerr effect measurements of superconductors at low temperatures

Stahl, C., Gräfe, J., Ruoß, S., Zahn, P., Bayer, J., Simmendinger, J., Schütz, G., Albrecht, J.

{AIP Advances}, 7(10), 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Unifying ultrafast demagnetization and intrinsic Gilbert damping in Co/Ni bilayers with electronic relaxation near the Fermi surface

Zhang, W., He, W., Zhang, X.-Q., Cheng, Z.-H., Teng, J., Fähnle, M.

{Physical Review B}, 96(22), American Physical Society, Woodbury, NY, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Influence of the skin barrier on the penetration of topically-applied dexamethasone probed by soft X-ray spectromicroscopy

Yamamoto, K., Klossek, A., Flesch, R., Rancan, F., Weigand, M., Bykova, I., Bechtel, M., Ahlberg, S., Vogt, A., Blume-Peytavi, U., Schrade, P., Bachmann, S., Hedtrich, S., Schäfer-Korting, M., Rühl, E.

{European Journal of Pharmaceutics and Biopharmaceutics}, 118, pages: 30-37, Elsevier, Amsterdam, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Capture of heavy hydrogen isotopes in a metal-organic framework with active Cu(I) sites

Weinrauch, I., Savchenko, I., Denysenko, D., Souliou, S. M., Kim, H., Le Tacon, M., Daemen, L. L., Cheng, Y., Mavrandonakis, A., Ramirez-Cuesta, A. J., Volkmer, D., Schütz, G., Hirscher, M., Heine, T.

{Nature Communications}, 8, Nature Publishing Group, London, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Multiscale simulations of topological transformations in magnetic-skyrmion spin structures

De Lucia, A., Litzius, K., Krüger, B., Tretiakov, O. A., Kläui, M.

{Physical Review B}, 96(2), American Physical Society, Woodbury, NY, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Unexpectedly marginal effect of electronic correlations on ultrafast demagnetization after femtosecond laser-pulse excitation

Weng, W., Huang, Haonan, Briones Paz, J. Z., Teeny, N., Müller, B. Y., Haag, M., Kuhn, T., Fähnle, M.

{Physical Review B}, 95(22), American Physical Society, Woodbury, NY, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Black manganese-rich crusts on a Gothic cathedral

Macholdt, D. S., Herrmann, S., Jochum, K. P., Kilcoyne, A. L. D., Laubscher, T., Pfisterer, H. K., Pöhlker, C., Schwager, B., Weber, B., Weigand, M., Domke, K. F., Andreae, M. O.

{Atmospheric Environment}, 171, pages: 205-220, Elsevier, Amsterdam [u.a.], 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]

2008


no image
Modelling contrast discrimination data suggest both the pedestal effect and stochastic resonance to be caused by the same mechanism

Goris, R., Wagemans, J., Wichmann, F.

Journal of Vision, 8(15):1-21, November 2008 (article)

Abstract
Computational models of spatial vision typically make use of a (rectified) linear filter, a nonlinearity and dominant late noise to account for human contrast discrimination data. Linear–nonlinear cascade models predict an improvement in observers' contrast detection performance when low, subthreshold levels of external noise are added (i.e., stochastic resonance). Here, we address the issue whether a single contrast gain-control model of early spatial vision can account for both the pedestal effect, i.e., the improved detectability of a grating in the presence of a low-contrast masking grating, and stochastic resonance. We measured contrast discrimination performance without noise and in both weak and moderate levels of noise. Making use of a full quantitative description of our data with few parameters combined with comprehensive model selection assessments, we show the pedestal effect to be more reduced in the presence of weak noise than in moderate noise. This reduction rules out independent, additive sources of performance improvement and, together with a simulation study, supports the parsimonious explanation that a single mechanism underlies the pedestal effect and stochastic resonance in contrast perception.

ei

Web DOI [BibTex]


no image
Frequent Subgraph Retrieval in Geometric Graph Databases

Nowozin, S., Tsuda, K.

(180), Max-Planck Institute for Biological Cybernetics, Tübingen, Germany, November 2008 (techreport)

Abstract
Discovery of knowledge from geometric graph databases is of particular importance in chemistry and biology, because chemical compounds and proteins are represented as graphs with 3D geometric coordinates. In such applications, scientists are not interested in the statistics of the whole database. Instead they need information about a novel drug candidate or protein at hand, represented as a query graph. We propose a polynomial-delay algorithm for geometric frequent subgraph retrieval. It enumerates all subgraphs of a single given query graph which are frequent geometric epsilon-subgraphs under the entire class of rigid geometric transformations in a database. By using geometric epsilon-subgraphs, we achieve tolerance against variations in geometry. We compare the proposed algorithm to gSpan on chemical compound data, and we show that for a given minimum support the total number of frequent patterns is substantially limited by requiring geometric matching. Although the computation time per pattern is larger than for non-geometric graph mining, the total time is within a reasonable level even for small minimum support.

ei

PDF [BibTex]

PDF [BibTex]


no image
gBoost: A Mathematical Programming Approach to Graph Classification and Regression

Saigo, H., Nowozin, S., Kadowaki, T., Kudo, T., Tsuda, K.

Machine Learning, 75(1):69-89, November 2008 (article)

Abstract
Graph mining methods enumerate frequently appearing subgraph patterns, which can be used as features for subsequent classification or regression. However, frequent patterns are not necessarily informative for the given learning problem. We propose a mathematical programming boosting method (gBoost) that progressively collects informative patterns. Compared to AdaBoost, gBoost can build the prediction rule with fewer iterations. To apply the boosting method to graph data, a branch-and-bound pattern search algorithm is developed based on the DFS code tree. The constructed search space is reused in later iterations to minimize the computation time. Our method can learn more efficiently than the simpler method based on frequent substructure mining, because the output labels are used as an extra information source for pruning the search space. Furthermore, by engineering the mathematical program, a wide range of machine learning problems can be solved without modifying the pattern search algorithm.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Machine Learning for Motor Skills in Robotics

Peters, J.

K{\"u}nstliche Intelligenz, 2008(4):41-43, November 2008 (article)

Abstract
Autonomous robots that can adapt to novel situations has been a long standing vision of robotics, artificial intelligence, and the cognitive sciences. Early approaches to this goal during the heydays of artificial intelligence research in the late 1980s, however, made it clear that an approach purely based on reasoning or human insights would not be able to model all the perceptuomotor tasks of future robots. Instead, new hope was put in the growing wake of machine learning that promised fully adaptive control algorithms which learn both by observation and trial-and-error. However, to date, learning techniques have yet to fulfill this promise as only few methods manage to scale into the high-dimensional domains of manipulator and humanoid robotics and usually scaling was only achieved in precisely pre-structured domains. We have investigated the ingredients for a general approach to motor skill learning in order to get one step closer towards human-like performance. For doing so, we study two major components for such an approach, i.e., firstly, a theoretically well-founded general approach to representing the required control structures for task representation and execution and, secondly, appropriate learning algorithms which can be applied in this setting.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Kernels, Regularization and Differential Equations

Steinke, F., Schölkopf, B.

Pattern Recognition, 41(11):3271-3286, November 2008 (article)

Abstract
Many common machine learning methods such as Support Vector Machines or Gaussian process inference make use of positive definite kernels, reproducing kernel Hilbert spaces, Gaussian processes, and regularization operators. In this work these objects are presented in a general, unifying framework, and interrelations are highlighted. With this in mind we then show how linear stochastic differential equation models can be incorporated naturally into the kernel framework. And vice versa, many kernel machines can be interpreted in terms of differential equations. We focus especially on ordinary differential equations, also known as dynamical systems, and it is shown that standard kernel inference algorithms are equivalent to Kalman filter methods based on such models. In order not to cloud qualitative insights with heavy mathematical machinery, we restrict ourselves to finite domains, implying that differential equations are treated via their corresponding finite difference equations.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Simultaneous Implicit Surface Reconstruction and Meshing

Giesen, J., Maier, M., Schölkopf, B.

(179), Max-Planck Institute for Biological Cybernetics, Tübingen, Germany, November 2008 (techreport)

Abstract
We investigate an implicit method to compute a piecewise linear representation of a surface from a set of sample points. As implicit surface functions we use the weighted sum of piecewise linear kernel functions. For such a function we can partition Rd in such a way that these functions are linear on the subsets of the partition. For each subset in the partition we can then compute the zero level set of the function exactly as the intersection of a hyperplane with the subset.

ei

PDF [BibTex]

PDF [BibTex]


no image
Taxonomy Inference Using Kernel Dependence Measures

Blaschko, M., Gretton, A.

(181), Max-Planck Institute for Biological Cybernetics, Tübingen, Germany, November 2008 (techreport)

Abstract
We introduce a family of unsupervised algorithms, numerical taxonomy clustering, to simultaneously cluster data, and to learn a taxonomy that encodes the relationship between the clusters. The algorithms work by maximizing the dependence between the taxonomy and the original data. The resulting taxonomy is a more informative visualization of complex data than simple clustering; in addition, taking into account the relations between different clusters is shown to substantially improve the quality of the clustering, when compared with state-of-the-art algorithms in the literature (both spectral clustering and a previous dependence maximization approach). We demonstrate our algorithm on image and text data.

ei

PDF [BibTex]

PDF [BibTex]


no image
Mixture Models for Protein Structure Ensembles

Hirsch, M., Habeck, M.

Bioinformatics, 24(19):2184-2192, October 2008 (article)

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Structure of the human voltage-dependent anion channel

Bayrhuber, M., Meins, T., Habeck, M., Becker, S., Giller, K., Villinger, S., Vonrhein, C., Griesinger, C., Zweckstetter, M., Zeth, K.

Proceedings of the National Academy of Sciences of the United States of America, 105(40):15370-15375, October 2008 (article)

Abstract
The voltage-dependent anion channel (VDAC), also known as mitochondrial porin, is the most abundant protein in the mitochondrial outer membrane (MOM). VDAC is the channel known to guide the metabolic flux across the MOM and plays a key role in mitochondrially induced apoptosis. Here, we present the 3D structure of human VDAC1, which was solved conjointly by NMR spectroscopy and x-ray crystallography. Human VDAC1 (hVDAC1) adopts a β-barrel architecture composed of 19 β-strands with an α-helix located horizontally midway within the pore. Bioinformatic analysis indicates that this channel architecture is common to all VDAC proteins and is adopted by the general import pore TOM40 of mammals, which is also located in the MOM.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
MRI-Based Attenuation Correction for PET/MRI: A Novel Approach Combining Pattern Recognition and Atlas Registration

Hofmann, M., Steinke, F., Scheel, V., Charpiat, G., Farquhar, J., Aschoff, P., Brady, M., Schölkopf, B., Pichler, B.

Journal of Nuclear Medicine, 49(11):1875-1883, October 2008 (article)

Abstract
For quantitative PET information, correction of tissue photon attenuation is mandatory. Generally in conventional PET, the attenuation map is obtained from a transmission scan, which uses a rotating radionuclide source, or from the CT scan in a combined PET/CT scanner. In the case of PET/MRI scanners currently under development, insufficient space for the rotating source exists; the attenuation map can be calculated from the MR image instead. This task is challenging because MR intensities correlate with proton densities and tissue-relaxation properties, rather than with attenuation-related mass density. METHODS: We used a combination of local pattern recognition and atlas registration, which captures global variation of anatomy, to predict pseudo-CT images from a given MR image. These pseudo-CT images were then used for attenuation correction, as the process would be performed in a PET/CT scanner. RESULTS: For human brain scans, we show on a database of 17 MR/CT image pairs that our method reliably enables e stimation of a pseudo-CT image from the MR image alone. On additional datasets of MRI/PET/CT triplets of human brain scans, we compare MRI-based attenuation correction with CT-based correction. Our approach enables PET quantification with a mean error of 3.2% for predefined regions of interest, which we found to be clinically not significant. However, our method is not specific to brain imaging, and we show promising initial results on 1 whole-body animal dataset. CONCLUSION: This method allows reliable MRI-based attenuation correction for human brain scans. Further work is necessary to validate the method for whole-body imaging.

ei

Web DOI [BibTex]

Web DOI [BibTex]