3341 results (BibTeX)

2015


no image
Modeling Spatio-Temporal Variability in Human-Robot Interaction with Probabilistic Movement Primitives

Ewerton, M., Neumann, G., Lioutikov, R., Ben Amor, H., Peters, J., Maeda, G.

In Workshop on Machine Learning for Social Robotics, ICRA, 2015 (inproceedings)

am ei

link (url) [BibTex]

2015


link (url) [BibTex]


no image
Learning multiple collaborative tasks with a mixture of Interaction Primitives

Ewerton, M., Neumann, G., Lioutikov, R., Ben Amor, H., Peters, J., Maeda, G.

In IEEE International Conference on Robotics and Automation, pages: 1535-1542, ICRA, 2015 (inproceedings)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Motor Skills from Partially Observed Movements Executed at Different Speeds

Ewerton, M., Maeda, G., Peters, J., Neumann, G.

In Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, pages: 456-463, IROS, September 2015 (inproceedings)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Bayesian Optimization for Learning Gaits under Uncertainty

Calandra, R., Seyfarth, A., Peters, J., Deisenroth, M.

Annals of Mathematics and Artificial Intelligence, pages: 1-19, 2015 (article)

am ei

DOI [BibTex]

DOI [BibTex]


no image
Learning Inverse Dynamics Models with Contacts

Calandra, R., Ivaldi, S., Deisenroth, M., Rückert, E., Peters, J.

In IEEE International Conference on Robotics and Automation, pages: 3186-3191, ICRA, 2015 (inproceedings)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Torque Control in Presence of Contacts using Tactile Sensing from Robot Skin

Calandra, R., Ivaldi, S., Deisenroth, M., Peters, J.

In 15th IEEE-RAS International Conference on Humanoid Robots, pages: 690-695, Humanoids, November 2015 (inproceedings)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl thumb
Proceedings of the 37th German Conference on Pattern Recognition

Gall, J., Gehler, P., Leibe, B.

Springer, German Conference on Pattern Recognition, October 2015 (proceedings)

ps

GCPR conference website [BibTex]

GCPR conference website [BibTex]


no image
Model-Based Relative Entropy Stochastic Search

Abdolmaleki, A., Peters, J., Neumann, G.

In Advances in Neural Information Processing Systems 28, pages: 3523-3531, (Editors: C. Cortes, N.D. Lawrence, D.D. Lee, M. Sugiyama and R. Garnett), Curran Associates, Inc., 29th Annual Conference on Neural Information Processing Systems (NIPS), 2015 (inproceedings)

am ei

link (url) [BibTex]

link (url) [BibTex]


no image
Learning Movement Primitive Attractor Goals and Sequential Skills from Kinesthetic Demonstrations

Manschitz, S., Kober, J., Gienger, M., Peters, J.

Robotics and Autonomous Systems, 74, Part A, pages: 97-107, 2015 (article)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Active Reward Learning with a Novel Acquisition Function

Daniel, C., Kroemer, O., Viering, M., Metz, J., Peters, J.

Autonomous Robots, 39(3):389-405, 2015 (article)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl philip
FollowMe: Efficient Online Min-Cost Flow Tracking with Bounded Memory and Computation

Lenz, P., Geiger, A., Urtasun, R.

In International Conference on Computer Vision (ICCV), International Conference on Computer Vision (ICCV), December 2015 (inproceedings)

Abstract
One of the most popular approaches to multi-target tracking is tracking-by-detection. Current min-cost flow algorithms which solve the data association problem optimally have three main drawbacks: they are computationally expensive, they assume that the whole video is given as a batch, and they scale badly in memory and computation with the length of the video sequence. In this paper, we address each of these issues, resulting in a computationally and memory-bounded solution. First, we introduce a dynamic version of the successive shortest-path algorithm which solves the data association problem optimally while reusing computation, resulting in faster inference than standard solvers. Second, we address the optimal solution to the data association problem when dealing with an incoming stream of data (i.e., online setting). Finally, we present our main contribution which is an approximate online solution with bounded memory and computation which is capable of handling videos of arbitrary length while performing tracking in real time. We demonstrate the effectiveness of our algorithms on the KITTI and PETS2009 benchmarks and show state-of-the-art performance, while being significantly faster than existing solvers.

avg ps

pdf suppmat video project [BibTex]

pdf suppmat video project [BibTex]


no image
Hierarchical Label Queries with Data-Dependent Partitions

Kpotufe, S., Urner, R., Ben-David, S.

In Proceedings of the 28th Conference on Learning Theory, 40, pages: 1176-1189, (Editors: Grünwald, P. and Hazan, E. and Kale, S. ), JMLR, COLT, 2015 (inproceedings)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Active Nearest Neighbors in Changing Environments

Berlind, C., Urner, R.

In Proceedings of the 32nd International Conference on Machine Learning, 37, pages: 1870-1879, JMLR Workshop and Conference Proceedings, (Editors: Bach, F. and Blei, D. ), JMLR, ICML, 2015 (inproceedings)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Efficient Learning of Linear Separators under Bounded Noise

Awasthi, P., Balcan, M., Haghtalab, N., Urner, R.

In Proceedings of the 28th Conference on Learning Theory, 40, pages: 167-190, (Editors: Grünwald, P. and Hazan, E. and Kale, S.), JMLR, COLT, 2015 (inproceedings)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Shifts of Gamma Phase across Primary Visual Cortical Sites Reflect Dynamic Stimulus-Modulated Information Transfer

Besserve, M., Lowe, S. C., Logothetis, N. K., Schölkopf, B., Panzeri, S.

PLOS Biology, 13(9):e1002257, September 2015 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl screen shot 2015 10 14 at 08.57.57
Multi-view and 3D Deformable Part Models

Pepik, B., Stark, M., Gehler, P., Schiele, B.

Pattern Analysis and Machine Intelligence, 37(11):14, IEEE, March 2015 (article)

Abstract
As objects are inherently 3-dimensional, they have been modeled in 3D in the early days of computer vision. Due to the ambiguities arising from mapping 2D features to 3D models, 3D object representations have been neglected and 2D feature-based models are the predominant paradigm in object detection nowadays. While such models have achieved outstanding bounding box detection performance, they come with limited expressiveness, as they are clearly limited in their capability of reasoning about 3D shape or viewpoints. In this work, we bring the worlds of 3D and 2D object representations closer, by building an object detector which leverages the expressive power of 3D object representations while at the same time can be robustly matched to image evidence. To that end, we gradually extend the successful deformable part model [1] to include viewpoint information and part-level 3D geometry information, resulting in several different models with different level of expressiveness. We end up with a 3D object model, consisting of multiple object parts represented in 3D and a continuous appearance model. We experimentally verify that our models, while providing richer object hypotheses than the 2D object models, provide consistently better joint object localization and viewpoint estimation than the state-of-the-art multi-view and 3D object detectors on various benchmarks (KITTI [2], 3D object classes [3], Pascal3D+ [4], Pascal VOC 2007 [5], EPFL multi-view cars [6]).

ps

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl thumb3
3D Object Reconstruction from Hand-Object Interactions

Tzionas, D., Gall, J.

In International Conference on Computer Vision (ICCV), International Conference on Computer Vision (ICCV), December 2015 (inproceedings)

Abstract
Recent advances have enabled 3d object reconstruction approaches using a single off-the-shelf RGB-D camera. Although these approaches are successful for a wide range of object classes, they rely on stable and distinctive geometric or texture features. Many objects like mechanical parts, toys, household or decorative articles, however, are textureless and characterized by minimalistic shapes that are simple and symmetric. Existing in-hand scanning systems and 3d reconstruction techniques fail for such symmetric objects in the absence of highly distinctive features. In this work, we show that extracting 3d hand motion for in-hand scanning effectively facilitates the reconstruction of even featureless and highly symmetric objects and we present an approach that fuses the rich additional information of hands into a 3d reconstruction pipeline, significantly contributing to the state-of-the-art of in-hand scanning.

ps

pdf Project's Website Video Spotlight Extended Abstract YouTube DOI Project Page [BibTex]

pdf Project's Website Video Spotlight Extended Abstract YouTube DOI Project Page [BibTex]


Thumb xl bogo iccv2015 teaser
Detailed Full-Body Reconstructions of Moving People from Monocular RGB-D Sequences

Bogo, F., Black, M. J., Loper, M., Romero, J.

In International Conference on Computer Vision (ICCV), pages: 2300-2308, December 2015 (inproceedings)

Abstract
We accurately estimate the 3D geometry and appearance of the human body from a monocular RGB-D sequence of a user moving freely in front of the sensor. Range data in each frame is first brought into alignment with a multi-resolution 3D body model in a coarse-to-fine process. The method then uses geometry and image texture over time to obtain accurate shape, pose, and appearance information despite unconstrained motion, partial views, varying resolution, occlusion, and soft tissue deformation. Our novel body model has variable shape detail, allowing it to capture faces with a high-resolution deformable head model and body shape with lower-resolution. Finally we combine range data from an entire sequence to estimate a high-resolution displacement map that captures fine shape details. We compare our recovered models with high-resolution scans from a professional system and with avatars created by a commercial product. We extract accurate 3D avatars from challenging motion sequences and even capture soft tissue dynamics.

ps

Video pdf Project Page Project Page [BibTex]

Video pdf Project Page Project Page [BibTex]


Thumb xl intrinsicdepth teaser1
Intrinsic Depth: Improving Depth Transfer with Intrinsic Images

Kong, N., Black, M. J.

In IEEE International Conference on Computer Vision (ICCV), pages: 3514-3522, International Conference on Computer Vision (ICCV), December 2015 (inproceedings)

Abstract
We formulate the estimation of dense depth maps from video sequences as a problem of intrinsic image estimation. Our approach synergistically integrates the estimation of multiple intrinsic images including depth, albedo, shading, optical flow, and surface contours. We build upon an example-based framework for depth estimation that uses label transfer from a database of RGB and depth pairs. We combine this with a method that extracts consistent albedo and shading from video. In contrast to raw RGB values, albedo and shading provide a richer, more physical, foundation for depth transfer. Additionally we train a new contour detector to predict surface boundaries from albedo, shading, and pixel values and use this to improve the estimation of depth boundaries. We also integrate sparse structure from motion with our method to improve the metric accuracy of the estimated depth maps. We evaluate our Intrinsic Depth method quantitatively by estimating depth from videos in the NYU RGB-D and SUN3D datasets. We find that combining the estimation of multiple intrinsic images improves depth estimation relative to the baseline method.

ps

pdf suppmat YouTube official video poster Project Page [BibTex]

pdf suppmat YouTube official video poster Project Page [BibTex]


Thumb xl teaser
Permutohedral Lattice CNNs

Kiefel, M., Jampani, V., Gehler, P. V.

In ICLR Workshop Track, ICLR, May 2015 (inproceedings)

Abstract
This paper presents a convolutional layer that is able to process sparse input features. As an example, for image recognition problems this allows an efficient filtering of signals that do not lie on a dense grid (like pixel position), but of more general features (such as color values). The presented algorithm makes use of the permutohedral lattice data structure. The permutohedral lattice was introduced to efficiently implement a bilateral filter, a commonly used image processing operation. Its use allows for a generalization of the convolution type found in current (spatial) convolutional network architectures.

ei ps

pdf link (url) Project Page [BibTex]

pdf link (url) Project Page [BibTex]


Thumb xl zhou
Exploiting Object Similarity in 3D Reconstruction

Zhou, C., Güney, F., Wang, Y., Geiger, A.

In International Conference on Computer Vision (ICCV), December 2015 (inproceedings)

Abstract
Despite recent progress, reconstructing outdoor scenes in 3D from movable platforms remains a highly difficult endeavor. Challenges include low frame rates, occlusions, large distortions and difficult lighting conditions. In this paper, we leverage the fact that the larger the reconstructed area, the more likely objects of similar type and shape will occur in the scene. This is particularly true for outdoor scenes where buildings and vehicles often suffer from missing texture or reflections, but share similarity in 3D shape. We take advantage of this shape similarity by locating objects using detectors and jointly reconstructing them while learning a volumetric model of their shape. This allows us to reduce noise while completing missing surfaces as objects of similar shape benefit from all observations for the respective category. We evaluate our approach with respect to LIDAR ground truth on a novel challenging suburban dataset and show its advantages over the state-of-the-art.

avg ps

pdf suppmat [BibTex]

pdf suppmat [BibTex]


no image
Permutational Rademacher Complexity: a New Complexity Measure for Transductive Learning

Tolstikhin, I., Zhivotovskiy, N., Blanchard, G.

In Proceedings of the 26th International Conference on Algorithmic Learning Theory, 9355, pages: 209-223, Lecture Notes in Computer Science, (Editors: K. Chaudhuri, C. Gentile and S. Zilles), Springer, ALT, October 2015 (inproceedings)

ei

DOI [BibTex]

DOI [BibTex]


Thumb xl splitbodieswebteaser2
SMPL: A Skinned Multi-Person Linear Model

Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M. J.

ACM Trans. Graphics (Proc. SIGGRAPH Asia), 34(6):248:1-248:16, ACM, New York, NY, October 2015 (article)

Abstract
We present a learned model of human body shape and pose-dependent shape variation that is more accurate than previous models and is compatible with existing graphics pipelines. Our Skinned Multi-Person Linear model (SMPL) is a skinned vertex-based model that accurately represents a wide variety of body shapes in natural human poses. The parameters of the model are learned from data including the rest pose template, blend weights, pose-dependent blend shapes, identity-dependent blend shapes, and a regressor from vertices to joint locations. Unlike previous models, the pose-dependent blend shapes are a linear function of the elements of the pose rotation matrices. This simple formulation enables training the entire model from a relatively large number of aligned 3D meshes of different people in different poses. We quantitatively evaluate variants of SMPL using linear or dual-quaternion blend skinning and show that both are more accurate than a Blend-SCAPE model trained on the same data. We also extend SMPL to realistically model dynamic soft-tissue deformations. Because it is based on blend skinning, SMPL is compatible with existing rendering engines and we make it available for research purposes.

ps

pdf video code/model errata DOI Project Page [BibTex]

pdf video code/model errata DOI Project Page [BibTex]


no image
Toward Cognitive Brain-Computer Interfaces for Patients with Amyotrophic Lateral Sclerosis

Fomina, T., Schölkopf, B., Grosse-Wentrup, M.

In 7th Computer Science and Electronic Engineering Conference, pages: 77-80, Curran Associates, Inc., CEEC, 2015 (inproceedings)

ei

[BibTex]

[BibTex]


Thumb xl screenshot from 2015 09 14 11 58 36
Predicting Human Reaching Motion in Collaborative Tasks Using Inverse Optimal Control and Iterative Re-planning

Mainprice, J., Hayne, R., Berenson, D.

In Proceedings of the IEEE International Conference on Robotics and Automation, 2015 (inproceedings)

am

Project Page [BibTex]

Project Page [BibTex]


no image
Predicting Human Reaching Motion in Collaborative Tasks Using Inverse Optimal Control and Iterative Re-planning

Jim Mainprice, Rafi Hayne, Dmitry Berenson

In 2015 (inproceedings)

Abstract
To enable safe and efficient human-robot collaboration in shared workspaces, it is important for the robot to predict how a human will move when performing a task. While predicting human motion for tasks not known a priori is very challenging, we argue that single-arm reaching motions for known tasks in collaborative settings (which are especially relevant for manufacturing) are indeed predictable. Two hypotheses underlie our approach for predicting such motions: First, that the trajectory the human performs is optimal with respect to an unknown cost function, and second, that human adaptation to their partner’s motion can be captured well through iterative replanning with the above cost function. The key to our approach is thus to learn a cost function which “explains” the motion of the human. To do this, we gather example trajectories from two participants performing a collaborative assembly task using motion capture. We then use Inverse Optimal Control to learn a cost function from these trajectories. Finally, we predict a human’s motion for a given task by iteratively re-planning a trajectory for a 23 DoFs human kinematic model using the STOMP algorithm with the learned cost function in the presence of a moving collaborator. Our results suggest that our method outperforms baseline methods and generalizes well for tasks similar to those that were demonstrated.

[BibTex]


no image
Identification of the Default Mode Network with Electroencephalography

Fomina, T., Hohmann, M. R., Schölkopf, B., Grosse-Wentrup, M.

In Proceedings of the 37th IEEE Conference for Engineering in Medicine and Biology, pages: 7566-7569, EMBC, 2015 (inproceedings)

ei

DOI [BibTex]

DOI [BibTex]


Thumb xl posterior
Automatic LQR Tuning Based on Gaussian Process Optimization: Early Experimental Results

Marco, A., Hennig, P., Bohg, J., Schaal, S., Trimpe, S.

Machine Learning in Planning and Control of Robot Motion Workshop at the IEEE/RSJ International Conference on Intelligent Robots and Systems, September 2015 (conference)

Abstract
This paper proposes an automatic controller tuning framework based on linear optimal control combined with Bayesian optimization. With this framework, an initial set of controller gains is automatically improved according to a pre-defined performance objective evaluated from experimental data. The underlying Bayesian optimization algorithm is Entropy Search, which represents the latent objective as a Gaussian process and constructs an explicit belief over the location of the objective minimum. This is used to maximize the information gain from each experimental evaluation. Thus, this framework shall yield improved controllers with fewer evaluations compared to alternative approaches. A seven-degree-of-freedom robot arm balancing an inverted pole is used as the experimental demonstrator. Preliminary results of a low-dimensional tuning problem highlight the method’s potential for automatic controller tuning on robotic platforms.

am ei pn

PDF Project Page [BibTex]

PDF Project Page [BibTex]


no image
Understanding the Geometry of Workspace Obstacles in Motion Optimization

Ratliff, N., Toussaint, M., Schaal, S.

In Proceedings of the IEEE International Conference on Robotics and Automation, March 2015 (inproceedings)

am

PDF Video Project Page [BibTex]

PDF Video Project Page [BibTex]


Thumb xl sap2015
Perception of Strength and Power of Realistic Male Characters

Wellerdiek, A. C., Breidt, M., Geuss, M. N., Streuber, S., Kloos, U., Black, M. J., Mohler, B. J.

In Proc. ACM SIGGRAPH Symposium on Applied Perception, SAP’15, pages: 7-14, ACM, New York, NY, September 2015 (inproceedings)

Abstract
We investigated the influence of body shape and pose on the perception of physical strength and social power for male virtual characters. In the first experiment, participants judged the physical strength of varying body shapes, derived from a statistical 3D body model. Based on these ratings, we determined three body shapes (weak, average, and strong) and animated them with a set of power poses for the second experiment. Participants rated how strong or powerful they perceived virtual characters of varying body shapes that were displayed in different poses. Our results show that perception of physical strength was mainly driven by the shape of the body. However, the social attribute of power was influenced by an interaction between pose and shape. Specifically, the effect of pose on power ratings was greater for weak body shapes. These results demonstrate that a character with a weak shape can be perceived as more powerful when in a high-power pose.

ps

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


no image
Data-Driven Online Decision Making for Autonomous Manipulation

Kappler, D., Pastor, P., Kalakrishnan, M., Wuthrich, M., Schaal, S.

In Proceedings of Robotics: Science and Systems, Rome, Italy, 2015 (inproceedings)

am

Project Page [BibTex]

Project Page [BibTex]


Thumb xl teaser
Towards Probabilistic Volumetric Reconstruction using Ray Potentials

(Best Paper Award)

Ulusoy, A. O., Geiger, A., Black, M. J.

In 3D Vision (3DV), 2015 3rd International Conference on, pages: 10-18, Lyon, October 2015 (inproceedings)

Abstract
This paper presents a novel probabilistic foundation for volumetric 3-d reconstruction. We formulate the problem as inference in a Markov random field, which accurately captures the dependencies between the occupancy and appearance of each voxel, given all input images. Our main contribution is an approximate highly parallelized discrete-continuous inference algorithm to compute the marginal distributions of each voxel's occupancy and appearance. In contrast to the MAP solution, marginals encode the underlying uncertainty and ambiguity in the reconstruction. Moreover, the proposed algorithm allows for a Bayes optimal prediction with respect to a natural reconstruction loss. We compare our method to two state-of-the-art volumetric reconstruction algorithms on three challenging aerial datasets with LIDAR ground truth. Our experiments demonstrate that the proposed algorithm compares favorably in terms of reconstruction accuracy and the ability to expose reconstruction uncertainty.

avg ps

code YouTube pdf suppmat DOI Project Page [BibTex]

code YouTube pdf suppmat DOI Project Page [BibTex]


Thumb xl screen shot 2015 08 22 at 21.47.37
Direct Loss Minimization Inverse Optimal Control

Doerr, A., Ratliff, N., Bohg, J., Toussaint, M., Schaal, S.

In Proceedings of Robotics: Science and Systems, Rome, Italy, Robotics: Science and Systems XI, July 2015 (inproceedings)

Abstract
Inverse Optimal Control (IOC) has strongly impacted the systems engineering process, enabling automated planner tuning through straightforward and intuitive demonstration. The most successful and established applications, though, have been in lower dimensional problems such as navigation planning where exact optimal planning or control is feasible. In higher dimensional systems, such as humanoid robots, research has made substantial progress toward generalizing the ideas to model free or locally optimal settings, but these systems are complicated to the point where demonstration itself can be difficult. Typically, real-world applications are restricted to at best noisy or even partial or incomplete demonstrations that prove cumbersome in existing frameworks. This work derives a very flexible method of IOC based on a form of Structured Prediction known as Direct Loss Minimization. The resulting algorithm is essentially Policy Search on a reward function that rewards similarity to demonstrated behavior (using Covariance Matrix Adaptation (CMA) in our experiments). Our framework blurs the distinction between IOC, other forms of Imitation Learning, and Reinforcement Learning, enabling us to derive simple, versatile, and practical algorithms that blend imitation and reinforcement signals into a unified framework. Our experiments analyze various aspects of its performance and demonstrate its efficacy on conveying preferences for motion shaping and combined reach and grasp quality optimization.

am

PDF Video Project Page [BibTex]

PDF Video Project Page [BibTex]


Thumb xl flowcap im
FlowCap: 2D Human Pose from Optical Flow

Romero, J., Loper, M., Black, M. J.

In Pattern Recognition, Proc. 37th German Conference on Pattern Recognition (GCPR), LNCS 9358, pages: 412-423, Springer, GCPR, 2015 (inproceedings)

Abstract
We estimate 2D human pose from video using only optical flow. The key insight is that dense optical flow can provide information about 2D body pose. Like range data, flow is largely invariant to appearance but unlike depth it can be directly computed from monocular video. We demonstrate that body parts can be detected from dense flow using the same random forest approach used by the Microsoft Kinect. Unlike range data, however, when people stop moving, there is no optical flow and they effectively disappear. To address this, our FlowCap method uses a Kalman filter to propagate body part positions and ve- locities over time and a regression method to predict 2D body pose from part centers. No range sensor is required and FlowCap estimates 2D human pose from monocular video sources containing human motion. Such sources include hand-held phone cameras and archival television video. We demonstrate 2D body pose estimation in a range of scenarios and show that the method works with real-time optical flow. The results suggest that optical flow shares invariances with range data that, when complemented with tracking, make it valuable for pose estimation.

ps

video pdf preprint Project Page [BibTex]

video pdf preprint Project Page [BibTex]


Thumb xl objs2acts
Linking Objects to Actions: Encoding of Target Object and Grasping Strategy in Primate Ventral Premotor Cortex

Vargas-Irwin, C. E., Franquemont, L., Black, M. J., Donoghue, J. P.

Journal of Neuroscience, 35(30):10888-10897, July 2015 (article)

Abstract
Neural activity in ventral premotor cortex (PMv) has been associated with the process of matching perceived objects with the motor commands needed to grasp them. It remains unclear how PMv networks can flexibly link percepts of objects affording multiple grasp options into a final desired hand action. Here, we use a relational encoding approach to track the functional state of PMv neuronal ensembles in macaque monkeys through the process of passive viewing, grip planning, and grasping movement execution. We used objects affording multiple possible grip strategies. The task included separate instructed delay periods for object presentation and grip instruction. This approach allowed us to distinguish responses elicited by the visual presentation of the objects from those associated with selecting a given motor plan for grasping. We show that PMv continuously incorporates information related to object shape and grip strategy as it becomes available, revealing a transition from a set of ensemble states initially most closely related to objects, to a new set of ensemble patterns reflecting unique object-grip combinations. These results suggest that PMv dynamically combines percepts, gradually navigating toward activity patterns associated with specific volitional actions, rather than directly mapping perceptual object properties onto categorical grip representations. Our results support the idea that PMv is part of a network that dynamically computes motor plans from perceptual information. Significance Statement: The present work demonstrates that the activity of groups of neurons in primate ventral premotor cortex reflects information related to visually presented objects, as well as the motor strategy used to grasp them, linking individual objects to multiple possible grips. PMv could provide useful control signals for neuroprosthetic assistive devices designed to interact with objects in a flexible way.

ps

publisher link DOI Project Page [BibTex]

publisher link DOI Project Page [BibTex]


no image
Lernende Roboter

Trimpe, S.

In Jahrbuch der Max-Planck-Gesellschaft, Max Planck Society, May 2015, (popular science article in German) (inbook)

am

link (url) [BibTex]

link (url) [BibTex]


no image
On the Choice of the Event Trigger in Event-based Estimation

Trimpe, S., Campi, M.

In Proceeding of the First International Conference on Event-based Control, Communication, and Signal Processing, June 2015 (inproceedings)

am

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


no image
Guaranteed H2 Performance in Distributed Event-Based State Estimation

Muehlebach, M., Trimpe, S.

In Proceeding of the First International Conference on Event-based Control, Communication, and Signal Processing, June 2015 (inproceedings)

am

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


Thumb xl screenshot area 2015 07 27 013425
The fertilized forests Decision Forest Library

Lassner, C., Lienhart, R.

In ACM Transactions on Multimedia (ACMMM) Open-source Software Competition, October 2015 (inproceedings)

Abstract
Since the introduction of Random Forests in the 80's they have been a frequently used statistical tool for a variety of machine learning tasks. Many different training algorithms and model adaptions demonstrate the versatility of the forests. This variety resulted in a fragmentation of research and code, since each adaption requires its own algorithms and representations. In 2011, Criminisi and Shotton developed a unifying Decision Forest model for many tasks. By identifying the reusable parts and specifying clear interfaces, we extend this approach to an object oriented representation and implementation. This has the great advantage that research on specific parts of the Decision Forest model can be done `locally' by reusing well-tested and high-performance components. Our fertilized forests library is open source and easy to extend. It provides components allowing for parallelization up to node optimization level to exploit modern many core architectures. Additionally, the library provides consistent and easy-to-maintain interfaces to C++, Python and Matlab and offers cross-platform and cross-interface persistence.

ps

website and code pdf [BibTex]

website and code pdf [BibTex]


Thumb xl screenshot area 2015 07 27 014123
Active Learning for Efficient Sampling of Control Models of Collectives

Schiendorfer, A., Lassner, C., Anders, G., Reif, W., Lienhart, R.

In International Conference on Self-adaptive and Self-organizing Systems (SASO), September 2015 (inproceedings)

Abstract
Many large-scale systems benefit from an organizational structure to provide for problem decomposition. A pivotal problem solving setting is given by hierarchical control systems familiar from hierarchical task networks. If these structures can be modified autonomously by, e.g., coalition formation and reconfiguration, adequate decisions on higher levels require a faithful abstracted model of a collective of agents. An illustrative example is found in calculating schedules for a set of power plants organized in a hierarchy of Autonomous Virtual Power Plants. Functional dependencies over the combinatorial domain, such as the joint costs or rates of change of power production, are approximated by repeatedly sampling input-output pairs and substituting the actual functions by piecewise linear functions. However, if the sampled data points are weakly informative, the resulting abstracted high-level optimization introduces severe errors. Furthermore, obtaining additional point labels amounts to solving computationally hard optimization problems. Building on prior work, we propose to apply techniques from active learning to maximize the information gained by each additional point. Our results show that significantly better allocations in terms of cost-efficiency (up to 33.7 % reduction in costs in our case study) can be found with fewer but carefully selected sampling points using Decision Forests.

ps

code (hosted on github) [BibTex]

code (hosted on github) [BibTex]


Thumb xl screenshot area 2015 07 27 010243
Active Learning for Abstract Models of Collectives

Schiendorfer, A., Lassner, C., Anders, G., Reif, W., Lienhart, R.

In 3rd Workshop on Self-optimisation in Organic and Autonomic Computing Systems (SAOS), March 2015 (inproceedings)

Abstract
Organizational structures such as hierarchies provide an effective means to deal with the increasing complexity found in large-scale energy systems. In hierarchical systems, the concrete functions describing the subsystems can be replaced by abstract piecewise linear functions to speed up the optimization process. However, if the data points are weakly informative the resulting abstracted optimization problem introduces severe errors and exhibits bad runtime performance. Furthermore, obtaining additional point labels amounts to solving computationally hard optimization problems. Therefore, we propose to apply methods from active learning to search for informative inputs. We present first results experimenting with Decision Forests and Gaussian Processes that motivate further research. Using points selected by Decision Forests, we could reduce the average mean-squared error of the abstract piecewise linear function by one third.

ps

code (hosted on github) pdf [BibTex]

code (hosted on github) pdf [BibTex]


Thumb xl screenshot area 2015 07 27 004943
Norm-induced entropies for decision forests

Lassner, C., Lienhart, R.

IEEE Winter Conference on Applications of Computer Vision (WACV), January 2015 (conference)

Abstract
The entropy measurement function is a central element of decision forest induction. The Shannon entropy and other generalized entropies such as the Renyi and Tsallis entropy are designed to fulfill the Khinchin-Shannon axioms. Whereas these axioms are appropriate for physical systems, they do not necessarily model well the artificial system of decision forest induction. In this paper, we show that when omitting two of the four axioms, every norm induces an entropy function. The remaining two axioms are sufficient to describe the requirements for an entropy function in the decision forest context. Furthermore, we introduce and analyze the p-norm-induced entropy, show relations to existing entropies and the relation to various heuristics that are commonly used for decision forest training. In experiments with classification, regression and the recently introduced Hough forests, we show how the discrete and differential form of the new entropy can be used for forest induction and how the functions can simply be fine-tuned. The experiments indicate that the impact of the entropy function is limited, however can be a simple and useful post-processing step for optimizing decision forests for high performance applications.

ps

pdf code [BibTex]

pdf code [BibTex]


Thumb xl menze
Discrete Optimization for Optical Flow

Menze, M., Heipke, C., Geiger, A.

In German Conference on Pattern Recognition (GCPR), 9358, pages: 16-28, Springer International Publishing, 2015 (inproceedings)

Abstract
We propose to look at large-displacement optical flow from a discrete point of view. Motivated by the observation that sub-pixel accuracy is easily obtained given pixel-accurate optical flow, we conjecture that computing the integral part is the hardest piece of the problem. Consequently, we formulate optical flow estimation as a discrete inference problem in a conditional random field, followed by sub-pixel refinement. Naive discretization of the 2D flow space, however, is intractable due to the resulting size of the label set. In this paper, we therefore investigate three different strategies, each able to reduce computation and memory demands by several orders of magnitude. Their combination allows us to estimate large-displacement optical flow both accurately and efficiently and demonstrates the potential of discrete optimization for optical flow. We obtain state-of-the-art performance on MPI Sintel and KITTI.

avg ps

pdf suppmat project DOI Project Page [BibTex]

pdf suppmat project DOI Project Page [BibTex]


Thumb xl geiger
Joint 3D Object and Layout Inference from a single RGB-D Image

(Best Paper Award)

Geiger, A., Wang, C.

In German Conference on Pattern Recognition (GCPR), 9358, pages: 183-195, Lecture Notes in Computer Science, Springer International Publishing, 2015 (inproceedings)

Abstract
Inferring 3D objects and the layout of indoor scenes from a single RGB-D image captured with a Kinect camera is a challenging task. Towards this goal, we propose a high-order graphical model and jointly reason about the layout, objects and superpixels in the image. In contrast to existing holistic approaches, our model leverages detailed 3D geometry using inverse graphics and explicitly enforces occlusion and visibility constraints for respecting scene properties and projective geometry. We cast the task as MAP inference in a factor graph and solve it efficiently using message passing. We evaluate our method with respect to several baselines on the challenging NYUv2 indoor dataset using 21 object categories. Our experiments demonstrate that the proposed method is able to infer scenes with a large degree of clutter and occlusions.

avg ps

pdf suppmat video project DOI Project Page Project Page [BibTex]

pdf suppmat video project DOI Project Page Project Page [BibTex]


no image
Probabilistic numerics and uncertainty in computations

Hennig, P., Osborne, M. A., Girolami, M.

Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 471(2179), 2015 (article)

Abstract
We deliver a call to arms for probabilistic numerical methods: algorithms for numerical tasks, including linear algebra, integration, optimization and solving differential equations, that return uncertainties in their calculations. Such uncertainties, arising from the loss of precision induced by numerical calculation with limited time or hardware, are important for much contemporary science and industry. Within applications such as climate science and astrophysics, the need to make decisions on the basis of computations with large and complex data have led to a renewed focus on the management of numerical uncertainty. We describe how several seminal classic numerical methods can be interpreted naturally as probabilistic inference. We then show that the probabilistic view suggests new algorithms that can flexibly be adapted to suit application specifics, while delivering improved empirical performance. We provide concrete illustrations of the benefits of probabilistic numeric algorithms on real scientific problems from astrometry and astronomical imaging, while highlighting open problems with these new algorithms. Finally, we describe how probabilistic numerical methods provide a coherent framework for identifying the uncertainty in calculations performed with a combination of numerical algorithms (e.g. both numerical optimizers and differential equation solvers), potentially allowing the diagnosis (and control) of error sources in computations.

ei pn

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


no image
BundleMAP: Anatomically Localized Features from dMRI for Detection of Disease

Khatami, M., Schmidt-Wilcke, T., Sundgren, P., Abbasloo, A., Schölkopf, B., Schultz, T.

In 6th International Workshop on Machine Learning in Medical Imaging, 9352, pages: 52-60, Lecture Notes in Computer Science, (Editors: L. Zhou, L. Wang, Q. Wang and Y. Shi), Springer, MLMI, 2015 (inproceedings)

ei

DOI [BibTex]

DOI [BibTex]


no image
A Cognitive Brain-Computer Interface for Patients with Amyotrophic Lateral Sclerosis

Hohmann, M. R., Fomina, T., Jayaram, V., Widmann, N., Förster, C., Müller vom Hagen, J., Synofzik, M., Schölkopf, B., Schöls, L., Grosse-Wentrup, M.

In Proceedings of the 2015 IEEE International Conference on Systems, Man, and Cybernetics, pages: 3187-3191, SMC, 2015 (inproceedings)

ei

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


no image
Learning Optimal Striking Points for A Ping-Pong Playing Robot

Huang, Y., Schölkopf, B., Peters, J.

In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 4587-4592, IROS, 2015 (inproceedings)

am ei

PDF DOI [BibTex]

PDF DOI [BibTex]


Thumb xl subimage
Smooth Loops from Unconstrained Video

Sevilla-Lara, L., Wulff, J., Sunkavalli, K., Shechtman, E.

In Computer Graphics Forum (Proceedings of EGSR), 34(4):99-107, Eurographics Symposium on Rendering, 2015 (inproceedings)

Abstract
Converting unconstrained video sequences into videos that loop seamlessly is an extremely challenging problem. In this work, we take the first steps towards automating this process by focusing on an important subclass of videos containing a single dominant foreground object. Our technique makes two novel contributions over previous work: first, we propose a correspondence-based similarity metric to automatically identify a good transition point in the video where the appearance and dynamics of the foreground are most consistent. Second, we develop a technique that aligns both the foreground and background about this transition point using a combination of global camera path planning and patch-based video morphing. We demonstrate that this allows us to create natural, compelling, loopy videos from a wide range of videos collected from the internet.

ps

pdf link (url) DOI Project Page [BibTex]

pdf link (url) DOI Project Page [BibTex]


Thumb xl bmvc2015 web teaser
Human Pose as Context for Object Detection

Srikantha, A., Gall, J.

British Machine Vision Conference, British Machine Vision Conference, September 2015 (conference)

Abstract
Detecting small objects in images is a challenging problem particularly when they are often occluded by hands or other body parts. Recently, joint modelling of human pose and objects has been proposed to improve both pose estimation as well as object detection. These approaches, however, focus on explicit interaction with an object and lack the flexibility to combine both modalities when interaction is not obvious. We therefore propose to use human pose as an additional context information for object detection. To this end, we represent an object category by a tree model and train regression forests that localize parts of an object for each modality separately. Predictions of the two modalities are then combined to detect the bounding box of the object. We evaluate our approach on three challenging datasets which vary in the amount of object interactions and the quality of automatically extracted human poses.

ps

pdf abstract Project Page [BibTex]

pdf abstract Project Page [BibTex]