3331 results (BibTeX)

2015


A systematic search for transiting planets in the K2 data

Foreman-Mackey, D., Montet, B., Hogg, D., Morton, T., Wang, D., Schölkopf, B.

The Astrophysical Journal, 806(2), 2015 (article)

Abstract
Photometry of stars from the K2 extension of NASA’s Kepler mission is afflicted by systematic effects caused by small (few-pixel) drifts in the telescope pointing and other spacecraft issues. We present a method for searching K2 light curves for evidence of exoplanets by simultaneously fitting for these systematics and the transit signals of interest. This method is more computationally expensive than standard search algorithms but we demonstrate that it can be efficiently implemented and used to discover transit signals. We apply this method to the full Campaign 1 data set and report a list of 36 planet candidates transiting 31 stars, along with an analysis of the pipeline performance and detection efficiency based on artificial signal injections and recoveries. For all planet candidates, we present posterior distributions on the properties of each system based strictly on the transit observables.

ei

link (url) DOI [BibTex]

2015


link (url) DOI [BibTex]


Thumb md dynateaser
Dyna: A Model of Dynamic Human Shape in Motion

Pons-Moll, G., Romero, J., Mahmood, N., J. Black, M.

ACM Transactions on Graphics, (Proc. SIGGRAPH), 34(4):120:1-120:14, ACM, August 2015 (article)

Abstract
To look human, digital full-body avatars need to have soft tissue deformations like those of real people. We learn a model of soft-tissue deformations from examples using a high-resolution 4D capture system and a method that accurately registers a template mesh to sequences of 3D scans. Using over 40,000 scans of ten subjects, we learn how soft tissue motion causes mesh triangles to deform relative to a base 3D body model. Our Dyna model uses a low-dimensional linear subspace to approximate soft-tissue deformation and relates the subspace coefficients to the changing pose of the body. Dyna uses a second-order auto-regressive model that predicts soft-tissue deformations based on previous deformations, the velocity and acceleration of the body, and the angular velocities and accelerations of the limbs. Dyna also models how deformations vary with a person’s body mass index (BMI), producing different deformations for people with different shapes. Dyna realistically represents the dynamics of soft tissue for previously unseen subjects and motions. We provide tools for animators to modify the deformations and apply them to new stylized characters.

ps

pdf preprint video data DOI Project Page Project Page Project Page [BibTex]

pdf preprint video data DOI Project Page Project Page Project Page [BibTex]


Thumb md screen shot 2015 05 07 at 11.56.54
3D Object Class Detection in the Wild

Pepik, B., Stark, M., Gehler, P., Ritschel, T., Schiele, B.

In Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), IEEE, Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2015 (inproceedings)

ps

Project Page [BibTex]

Project Page [BibTex]


Distinguishing Cause from Effect Based on Exogeneity

Zhang, K., Zhang, J., Schölkopf, B.

In Fifteenth Conference on Theoretical Aspects of Rationality and Knowledge, pages: 261-271, (Editors: Ramanujam, R.), TARK, 2015 (inproceedings)

ei

[BibTex]

[BibTex]


Thumb md thumb teaser mrg
Metric Regression Forests for Correspondence Estimation

Pons-Moll, G., Taylor, J., Shotton, J., Hertzmann, A., Fitzgibbon, A.

International Journal of Computer Vision, pages: 1-13, 2015 (article)

ps

springer PDF Project Page [BibTex]

springer PDF Project Page [BibTex]


Towards a Learning Theory of Cause-Effect Inference

Lopez-Paz, D., Muandet, K., Schölkopf, B., Tolstikhin, I.

In Proceedings of the 32nd International Conference on Machine Learning, 37, pages: 1452–1461, JMLR Workshop and Conference Proceedings, (Editors: F. Bach and D. Blei), JMLR, ICML, 2015 (inproceedings)

ei

Web Project Page [BibTex]

Web Project Page [BibTex]


The Randomized Causation Coefficient

Lopez-Paz, D., Muandet, K., Recht, B.

Journal of Machine Learning, 16, pages: 2901-2907, 2015 (article)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


Context affects lightness at the level of surfaces

Maertens, M., Wichmann, F., Shapley, R.

Journal of Vision, 15(1):1-15, 2015 (article)

ei

Web PDF link (url) DOI [BibTex]

Web PDF link (url) DOI [BibTex]


Spatial statistics and attentional dynamics in scene viewing

Engbert, R., Trukenbrod, H., Barthelmé, S., Wichmann, F.

Journal of Vision, 15(1):1-17, 2015 (article)

ei

Web PDF link (url) DOI Project Page [BibTex]

Web PDF link (url) DOI Project Page [BibTex]


Thumb md th teaser
From Scans to Models: Registration of 3D Human Shapes Exploiting Texture Information

Bogo, F.

University of Padova, March 2015 (phdthesis)

Abstract
New scanning technologies are increasing the importance of 3D mesh data, and of algorithms that can reliably register meshes obtained from multiple scans. Surface registration is important e.g. for building full 3D models from partial scans, identifying and tracking objects in a 3D scene, creating statistical shape models. Human body registration is particularly important for many applications, ranging from biomedicine and robotics to the production of movies and video games; but obtaining accurate and reliable registrations is challenging, given the articulated, non-rigidly deformable structure of the human body. In this thesis, we tackle the problem of 3D human body registration. We start by analyzing the current state of the art, and find that: a) most registration techniques rely only on geometric information, which is ambiguous on flat surface areas; b) there is a lack of adequate datasets and benchmarks in the field. We address both issues. Our contribution is threefold. First, we present a model-based registration technique for human meshes that combines geometry and surface texture information to provide highly accurate mesh-to-mesh correspondences. Our approach estimates scene lighting and surface albedo, and uses the albedo to construct a high-resolution textured 3D body model that is brought into registration with multi-camera image data using a robust matching term. Second, by leveraging our technique, we present FAUST (Fine Alignment Using Scan Texture), a novel dataset collecting 300 high-resolution scans of 10 people in a wide range of poses. FAUST is the first dataset providing both real scans and automatically computed, reliable "ground-truth" correspondences between them. Third, we explore possible uses of our approach in dermatology. By combining our registration technique with a melanocytic lesion segmentation algorithm, we propose a system that automatically detects new or evolving lesions over almost the entire body surface, thus helping dermatologists identify potential melanomas. We conclude this thesis investigating the benefits of using texture information to establish frame-to-frame correspondences in dynamic monocular sequences captured with consumer depth cameras. We outline a novel approach to reconstruct realistic body shape and appearance models from dynamic human performances, and show preliminary results on challenging sequences captured with a Kinect.

ps

[BibTex]


Structural Intervention Distance (SID) for Evaluating Causal Graphs

Peters, J., Bühlmann, P.

Neural Computation , 27(3):771-799, 2015 (article)

ei

DOI [BibTex]

DOI [BibTex]


Artificial intelligence: Learning to see and act

Schölkopf, B.

Nature, News & Views, 518(7540):486-487, 2015 (article)

ei

DOI [BibTex]

DOI [BibTex]


Thumb md silvia phd
Shape Models of the Human Body for Distributed Inference

Zuffi, S.

Brown University, May 2015 (phdthesis)

Abstract
In this thesis we address the problem of building shape models of the human body, in 2D and 3D, which are realistic and efficient to use. We focus our efforts on the human body, which is highly articulated and has interesting shape variations, but the approaches we present here can be applied to generic deformable and articulated objects. To address efficiency, we constrain our models to be part-based and have a tree-structured representation with pairwise relationships between connected parts. This allows the application of methods for distributed inference based on message passing. To address realism, we exploit recent advances in computer graphics that represent the human body with statistical shape models learned from 3D scans. We introduce two articulated body models, a 2D model, named Deformable Structures (DS), which is a contour-based model parameterized for 2D pose and projected shape, and a 3D model, named Stitchable Puppet (SP), which is a mesh-based model parameterized for 3D pose, pose-dependent deformations and intrinsic body shape. We have successfully applied the models to interesting and challenging problems in computer vision and computer graphics, namely pose estimation from static images, pose estimation from video sequences, pose and shape estimation from 3D scan data. This advances the state of the art in human pose and shape estimation and suggests that carefully de ned realistic models can be important for computer vision. More work at the intersection of vision and graphics is thus encouraged.

ps

PDF [BibTex]


Thumb md silviateaser
The Stitched Puppet: A Graphical Model of 3D Human Shape and Pose

Zuffi, S., J. Black, M.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR 2015), pages: 3537-3546, June 2015 (inproceedings)

Abstract
We propose a new 3D model of the human body that is both realistic and part-based. The body is represented by a graphical model in which nodes of the graph correspond to body parts that can independently translate and rotate in 3D as well as deform to capture pose-dependent shape variations. Pairwise potentials define a “stitching cost” for pulling the limbs apart, giving rise to the stitched puppet model (SPM). Unlike existing realistic 3D body models, the distributed representation facilitates inference by allowing the model to more effectively explore the space of poses, much like existing 2D pictorial structures models. We infer pose and body shape using a form of particle-based max-product belief propagation. This gives the SPM the realism of recent 3D body models with the computational advantages of part-based models. We apply the SPM to two challenging problems involving estimating human shape and pose from 3D data. The first is the FAUST mesh alignment challenge (http://faust.is.tue.mpg.de/), where ours is the first method to successfully align all 3D meshes. The second involves estimating pose and shape from crude visual hull representations of complex body movements.

ps

pdf Extended Abstract poster code/project video DOI Project Page [BibTex]

pdf Extended Abstract poster code/project video DOI Project Page [BibTex]


Thumb md jonasteaser
Efficient Sparse-to-Dense Optical Flow Estimation using a Learned Basis and Layers

Wulff, J., J. Black, M.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR 2015), pages: 120-130, June 2015 (inproceedings)

Abstract
We address the elusive goal of estimating optical flow both accurately and efficiently by adopting a sparse-to-dense approach. Given a set of sparse matches, we regress to dense optical flow using a learned set of full-frame basis flow fields. We learn the principal components of natural flow fields using flow computed from four Hollywood movies. Optical flow fields are then compactly approximated as a weighted sum of the basis flow fields. Our new PCA-Flow algorithm robustly estimates these weights from sparse feature matches. The method runs in under 300ms/frame on the MPI-Sintel dataset using a single CPU and is more accurate and significantly faster than popular methods such as LDOF and Classic+NL. The results, however, are too smooth for some applications. Consequently, we develop a novel sparse layered flow method in which each layer is represented by PCA-flow. Unlike existing layered methods, estimation is fast because it uses only sparse matches. We combine information from different layers into a dense flow field using an image-aware MRF. The resulting PCA-Layers method runs in 3.6s/frame, is significantly more accurate than PCA-flow and achieves state-of-the-art performance in occluded regions on MPI-Sintel.

ps

pdf Extended Abstract Supplemental Material Poster Code Project Page [BibTex]

pdf Extended Abstract Supplemental Material Poster Code Project Page [BibTex]


Thumb md ijazteaser
Pose-Conditioned Joint Angle Limits for 3D Human Pose Reconstruction

Akhter, I., J. Black, M.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR 2015), pages: 1446-1455, June 2015 (inproceedings)

Abstract
The estimation of 3D human pose from 2D joint locations is central to many vision problems involving the analysis of people in images and video. To address the fact that the problem is inherently ill posed, many methods impose a prior over human poses. Unfortunately these priors admit invalid poses because they do not model how joint-limits vary with pose. Here we make two key contributions. First, we collected a motion capture dataset that explores a wide range of human poses. From this we learn a pose-dependent model of joint limits that forms our prior. The dataset and the prior will be made publicly available. Second, we define a general parameterization of body pose and a new, multistage, method to estimate 3D pose from 2D joint locations that uses an over-complete dictionary of human poses. Our method shows good generalization while avoiding impossible poses. We quantitatively compare our method with recent work and show state-of-the-art results on 2D to 3D pose estimation using the CMU mocap dataset. We also show superior results on manual annotations on real images and automatic part-based detections on the Leeds sports pose dataset.

ps

pdf Extended Abstract video project/data/code poster DOI Project Page [BibTex]

pdf Extended Abstract video project/data/code poster DOI Project Page [BibTex]


Thumb md img sceneflow
Object Scene Flow for Autonomous Vehicles

Menze, M., Geiger, A.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) 2015, pages: 3061-3070, IEEE, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), June 2015 (inproceedings)

Abstract
This paper proposes a novel model and dataset for 3D scene flow estimation with an application to autonomous driving. Taking advantage of the fact that outdoor scenes often decompose into a small number of independently moving objects, we represent each element in the scene by its rigid motion parameters and each superpixel by a 3D plane as well as an index to the corresponding object. This minimal representation increases robustness and leads to a discrete-continuous CRF where the data term decomposes into pairwise potentials between superpixels and objects. Moreover, our model intrinsically segments the scene into its constituting dynamic components. We demonstrate the performance of our model on existing benchmarks as well as a novel realistic dataset with scene flow ground truth. We obtain this dataset by annotating 400 dynamic scenes from the KITTI raw data collection using detailed 3D CAD models for all vehicles in motion. Our experiments also reveal novel challenges which can't be handled by existing methods.

avg ps

pdf abstract suppmat DOI Project Page [BibTex]

pdf abstract suppmat DOI Project Page [BibTex]


Thumb md img displet
Displets: Resolving Stereo Ambiguities using Object Knowledge

Güney, F., Geiger, A.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) 2015, pages: 4165-4175, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), June 2015 (inproceedings)

Abstract
Stereo techniques have witnessed tremendous progress over the last decades, yet some aspects of the problem still remain challenging today. Striking examples are reflecting and textureless surfaces which cannot easily be recovered using traditional local regularizers. In this paper, we therefore propose to regularize over larger distances using object-category specific disparity proposals (displets) which we sample using inverse graphics techniques based on a sparse disparity estimate and a semantic segmentation of the image. The proposed displets encode the fact that objects of certain categories are not arbitrarily shaped but typically exhibit regular structures. We integrate them as non-local regularizer for the challenging object class 'car' into a superpixel based CRF framework and demonstrate its benefits on the KITTI stereo evaluation.

avg ps

pdf abstract suppmat Project Page [BibTex]

pdf abstract suppmat Project Page [BibTex]


Identification of Time-Dependent Causal Model: A Gaussian Process Treatment

Huang, B., Zhang, K., Schölkopf, B.

In 24th International Joint Conference on Artificial Intelligence, Machine Learning Track, pages: 3561-3568, (Editors: Yang, Q. and Wooldridge, M.), AAAI Press, Palo Alto, California USA, IJCAI15, 2015 (inproceedings)

ei

link (url) [BibTex]

link (url) [BibTex]


Inference of Cause and Effect with Unsupervised Inverse Regression

Sgouritsa, E., Janzing, D., Hennig, P., Schölkopf, B.

In Proceedings of the 18th International Conference on Artificial Intelligence and Statistics, 38, pages: 847-855, JMLR Workshop and Conference Proceedings, (Editors: Lebanon, G. and Vishwanathan, S.V.N.), JMLR.org, AISTATS, 2015 (inproceedings)

ei pn

Web PDF Project Page [BibTex]

Web PDF Project Page [BibTex]


Learning of Non-Parametric Control Policies with High-Dimensional State Features

van Hoof, H., Peters, J., Neumann, G.

In Proceedings of the 18th International Conference on Artificial Intelligence and Statistics, 38, pages: 995–1003, (Editors: Lebanon, G. and Vishwanathan, S.V.N. ), JMLR, AISTATS, 2015 (inproceedings)

am ei

link (url) [BibTex]

link (url) [BibTex]


Developing biorobotics for veterinary research into cat movements

Mariti, C., Muscolo, G., Peters, J., Puig, D., Recchiuto, C., Sighieri, C., Solanas, A., von Stryk, O.

Journal of Veterinary Behavior: Clinical Applications and Research, 10(3):248-254, 2015 (article)

ei

DOI [BibTex]

DOI [BibTex]


Thumb md jampani15aistats teaser
Consensus Message Passing for Layered Graphical Models

Jampani, V., M. Ali Eslami, S., Tarlow, D., Kohli, P., Winn, J.

In Eighteenth International Conference on Artificial Intelligence and Statistics (AISTATS), 38, pages: 425-433, JMLR Workshop and Conference Proceedings, Eighteenth International Conference on Artificial Intelligence and Statistics, May 2015 (inproceedings)

Abstract
Generative models provide a powerful framework for probabilistic reasoning. However, in many domains their use has been hampered by the practical difficulties of inference. This is particularly the case in computer vision, where models of the imaging process tend to be large, loopy and layered. For this reason bottom-up conditional models have traditionally dominated in such domains. We find that widely-used, general-purpose message passing inference algorithms such as Expectation Propagation (EP) and Variational Message Passing (VMP) fail on the simplest of vision models. With these models in mind, we introduce a modification to message passing that learns to exploit their layered structure by passing 'consensus' messages that guide inference towards good solutions. Experiments on a variety of problems show that the proposed technique leads to significantly more accurate inference results, not only when compared to standard EP and VMP, but also when compared to competitive bottom-up conditional models.

ps

online pdf supplementary link (url) Project Page [BibTex]

online pdf supplementary link (url) Project Page [BibTex]


Multi-Source Domain Adaptation: A Causal View

Zhang, K., Gong, M., Schölkopf, B.

In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, pages: 3150-3157, AAAI Press, AAAI, 2015 (inproceedings)

ei

Web PDF link (url) [BibTex]

Web PDF link (url) [BibTex]


Thumb md untitled
Efficient Facade Segmentation using Auto-Context

Jampani, V., Gadde, R., V. Gehler, P.

In Applications of Computer Vision (WACV), 2015 IEEE Winter Conference on, pages: 1038-1045, IEEE, WACV,, January 2015 (inproceedings)

Abstract
In this paper we propose a system for the problem of facade segmentation. Building facades are highly structured images and consequently most methods that have been proposed for this problem, aim to make use of this strong prior information. We are describing a system that is almost domain independent and consists of standard segmentation methods. A sequence of boosted decision trees is stacked using auto-context features and learned using the stacked generalization technique. We find that this, albeit standard, technique performs better, or equals, all previous published empirical results on all available facade benchmark datasets. The proposed method is simple to implement, easy to extend, and very efficient at test time inference.

ps

website pdf supplementary IEEE page link (url) DOI Project Page [BibTex]

website pdf supplementary IEEE page link (url) DOI Project Page [BibTex]


Thumb md ssimssmall
Spike train SIMilarity Space (SSIMS): A framework for single neuron and ensemble data analysis

E. Vargas-Irwin, C., M. Brandman, D., B. Zimmermann, J., P. Donoghue, J., J. Black, M.

Neural Computation, 27(1):1-31, MIT Press, January 2015 (article)

Abstract
We present a method to evaluate the relative similarity of neural spiking patterns by combining spike train distance metrics with dimensionality reduction. Spike train distance metrics provide an estimate of similarity between activity patterns at multiple temporal resolutions. Vectors of pair-wise distances are used to represent the intrinsic relationships between multiple activity patterns at the level of single units or neuronal ensembles. Dimensionality reduction is then used to project the data into concise representations suitable for clustering analysis as well as exploratory visualization. Algorithm performance and robustness are evaluated using multielectrode ensemble activity data recorded in behaving primates. We demonstrate how Spike train SIMilarity Space (SSIMS) analysis captures the relationship between goal directions for an 8-directional reaching task and successfully segregates grasp types in a 3D grasping task in the absence of kinematic information. The algorithm enables exploration of virtually any type of neural spiking (time series) data, providing similarity-based clustering of neural activity states with minimal assumptions about potential information encoding models.

ps

pdf: publisher site pdf: author's proof DOI Project Page [BibTex]

pdf: publisher site pdf: author's proof DOI Project Page [BibTex]


Thumb md invgraphicsdemo
The Informed Sampler: A Discriminative Approach to Bayesian Inference in Generative Computer Vision Models

Jampani, V., Nowozin, S., Loper, M., V. Gehler, P.

In Special Issue on Generative Models in Computer Vision and Medical Imaging, 136, pages: 32-44, Elsevier, July 2015 (inproceedings)

Abstract
Computer vision is hard because of a large variability in lighting, shape, and texture; in addition the image signal is non-additive due to occlusion. Generative models promised to account for this variability by accurately modelling the image formation process as a function of latent variables with prior beliefs. Bayesian posterior inference could then, in principle, explain the observation. While intuitively appealing, generative models for computer vision have largely failed to deliver on that promise due to the difficulty of posterior inference. As a result the community has favored efficient discriminative approaches. We still believe in the usefulness of generative models in computer vision, but argue that we need to leverage existing discriminative or even heuristic computer vision methods. We implement this idea in a principled way in our informed sampler and in careful experiments demonstrate it on challenging models which contain renderer programs as their components. The informed sampler, using simple discriminative proposals based on existing computer vision technology achieves dramatic improvements in inference. Our approach enables a new richness in generative models that was out of reach with existing inference technology.

ps

arXiv-preprint pdf DOI Project Page [BibTex]

arXiv-preprint pdf DOI Project Page [BibTex]


Thumb md bottle noise
Leveraging Big Data for Grasp Planning

Kappler, D., Bohg, B., Schaal, S.

In Proceedings of the IEEE International Conference on Robotics and Automation, May 2015 (inproceedings)

Abstract
We propose a new large-scale database containing grasps that are applied to a large set of objects from numerous categories. These grasps are generated in simulation and are annotated with different grasp stability metrics. We use a descriptive and efficient representation of the local object shape at which each grasp is applied. Given this data, we present a two-fold analysis: (i) We use crowdsourcing to analyze the correlation of the metrics with grasp success as predicted by humans. The results show that the metric based on physics simulation is a more consistent predictor for grasp success than the standard ε-metric. The results also support the hypothesis that human labels are not required for good ground truth grasp data. Instead the physics-metric can be used to generate datasets in simulation that may then be used to bootstrap learning in the real world. (ii) We apply a deep learning method and show that it can better leverage the large-scale database for prediction of grasp success compared to logistic regression. Furthermore, the results suggest that labels based on the physics-metric are less noisy than those from the ε-metric and therefore lead to a better classification performance.

am

PDF data DOI Project Page [BibTex]

PDF data DOI Project Page [BibTex]


Likelihood and Consilience: On Forster’s Counterexamples to the Likelihood Theory of Evidence

Zhang, J., Zhang, K.

Philosophy of Science, Supplementary Volume 2015, 82(5):930-940, 2015 (article)

ei

DOI [BibTex]

DOI [BibTex]


Increasing the sensitivity of Kepler to Earth-like exoplanets

Foreman-Mackey, D., Hogg, D., Schölkopf, B., Wang, D.

Workshop: 225th American Astronomical Society Meeting 2015 , pages: 105.01D, 2015 (poster)

ei

Web link (url) [BibTex]

Web link (url) [BibTex]


Positive definite matrices and the S-divergence

Sra, S.

Proceedings of the American Mathematical Society, 2015, Published electronically: October 22, 2015 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Information-Theoretic Implications of Classical and Quantum Causal Structures

Chaves, R., Majenz, C., Luft, L., Maciel, T., Janzing, D., Schölkopf, B., Gross, D.

18th Conference on Quantum Information Processing (QIP), 2015 (talk)

ei

Web link (url) [BibTex]

Web link (url) [BibTex]


Blind multirigid retrospective motion correction of MR images

Loktyushin, A., Nickisch, H., Pohmann, R., Schölkopf, B.

Magnetic Resonance in Medicine, 73(4):1457-1468, April 2015 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Crowdsourced analysis of clinical trial data to predict amyotrophic lateral sclerosis progression

Küffner, R., Zach, N., Norel, R., Hawe, J., Schoenfeld, D., Wang, L., Li, G., Fang, L., Mackey, L., Hardiman, O., Cudkowicz, M., Sherman, A., Ertaylan, G., Grosse-Wentrup, M., Hothorn, T., van Ligtenberg, J., Macke, J., Meyer, T., Schölkopf, B., Tran, L., Vaughan, R., Stolovitzky, G., Leitner, M.

Nature Biotechnology, 33, pages: 51-57, 2015 (article)

ei

DOI [BibTex]

DOI [BibTex]


Probabilistic Interpretation of Linear Solvers

Hennig, P.

SIAM Journal on Optimization, 25(1):234-260, 2015 (article)

ei pn

Web PDF link (url) DOI Project Page Project Page [BibTex]


Thumb md screen shot 2015 08 22 at 22.13.35
Policy Learning with Hypothesis Based Local Action Selection

Sankaran, B., Bohg, J., Ratliff, N., Schaal, S.

In Reinforcement Learning and Decision Making, 2015 (inproceedings)

Abstract
For robots to be able to manipulate in unknown and unstructured environments the robot should be capable of operating under partial observability of the environment. Object occlusions and unmodeled environments are some of the factors that result in partial observability. A common scenario where this is encountered is manipulation in clutter. In the case that the robot needs to locate an object of interest and manipulate it, it needs to perform a series of decluttering actions to accurately detect the object of interest. To perform such a series of actions, the robot also needs to account for the dynamics of objects in the environment and how they react to contact. This is a non trivial problem since one needs to reason not only about robot-object interactions but also object-object interactions in the presence of contact. In the example scenario of manipulation in clutter, the state vector would have to account for the pose of the object of interest and the structure of the surrounding environment. The process model would have to account for all the aforementioned robot-object, object-object interactions. The complexity of the process model grows exponentially as the number of objects in the scene increases. This is commonly the case in unstructured environments. Hence it is not reasonable to attempt to model all object-object and robot-object interactions explicitly. Under this setting we propose a hypothesis based action selection algorithm where we construct a hypothesis set of the possible poses of an object of interest given the current evidence in the scene and select actions based on our current set of hypothesis. This hypothesis set tends to represent the belief about the structure of the environment and the number of poses the object of interest can take. The agent's only stopping criterion is when the uncertainty regarding the pose of the object is fully resolved.

am

Web Project Page [BibTex]

Web Project Page [BibTex]


Event-based Estimation and Control for Remote Robot Operation with Reduced Communication

Trimpe, S., Buchli, J.

In Proceedings of the IEEE International Conference on Robotics and Automation, May 2015 (inproceedings)

Abstract
An event-based communication framework for remote operation of a robot via a bandwidth-limited network is proposed. The robot sends state and environment estimation data to the operator, and the operator transmits updated control commands or policies to the robot. Event-based communication protocols are designed to ensure that data is transmitted only when required: the robot sends new estimation data only if this yields a significant information gain at the operator, and the operator transmits an updated control policy only if this comes with a significant improvement in control performance. The developed framework is modular and can be used with any standard estimation and control algorithms. Simulation results of a robotic arm highlight its potential for an efficient use of limited communication resources, for example, in disaster response scenarios such as the DARPA Robotics Challenge.

am

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


Towards denoising XMCD movies of fast magnetization dynamics using extended Kalman filter

Kopp, M., Harmeling, S., Schütz, G., Schölkopf, B., Fähnle, M.

Ultramicroscopy, 148, pages: 115-122, 2015 (article)

Abstract
The Kalman filter is a well-established approach to get information on the time-dependent state of a system from noisy observations. It was developed in the context of the Apollo project to see the deviation of the true trajectory of a rocket from the desired trajectory. Afterwards it was applied to many different systems with small numbers of components of the respective state vector (typically about 10). In all cases the equation of motion for the state vector was known exactly. The fast dissipative magnetization dynamics is often investigated by x-ray magnetic circular dichroism movies (XMCD movies), which are often very noisy. In this situation the number of components of the state vector is extremely large (about 105), and the equation of motion for the dissipative magnetization dynamics (especially the values of the material parameters of this equation) is not well known. In the present paper it is shown by theoretical considerations that – nevertheless – there is no principle problem for the use of the Kalman filter to denoise XMCD movies of fast dissipative magnetization dynamics.

ei

Web DOI [BibTex]

Web DOI [BibTex]


A New Perspective and Extension of the Gaussian Filter

Wüthrich, M., Trimpe, S., Kappler, D., Schaal, S.

In Robotics: Science and Systems, 2015 (inproceedings)

Abstract
The Gaussian Filter (GF) is one of the most widely used filtering algorithms; instances are the Extended Kalman Filter, the Unscented Kalman Filter and the Divided Difference Filter. GFs represent the belief of the current state by a Gaussian with the mean being an affine function of the measurement. We show that this representation can be too restrictive to accurately capture the dependencies in systems with nonlinear observation models, and we investigate how the GF can be generalized to alleviate this problem. To this end we view the GF from a variational-inference perspective, and analyze how restrictions on the form of the belief can be relaxed while maintaining simplicity and efficiency. This analysis provides a basis for generalizations of the GF. We propose one such generalization which coincides with a GF using a virtual measurement, obtained by applying a nonlinear function to the actual measurement. Numerical experiments show that the proposed Feature Gaussian Filter (FGF) can have a substantial performance advantage over the standard GF for systems with nonlinear observation models.

am

Web PDF Project Page [BibTex]


Thumb md tracking
The Coordinate Particle Filter - A novel Particle Filter for High Dimensional Systems

Wüthrich, M., Bohg, J., Kappler, D., Pfreundt, C., Schaal, S.

In Proceedings of the IEEE International Conference on Robotics and Automation, May 2015 (inproceedings)

Abstract
Parametric filters, such as the Extended Kalman Filter and the Unscented Kalman Filter, typically scale well with the dimensionality of the problem, but they are known to fail if the posterior state distribution cannot be closely approximated by a density of the assumed parametric form. For nonparametric filters, such as the Particle Filter, the converse holds. Such methods are able to approximate any posterior, but the computational requirements scale exponentially with the number of dimensions of the state space. In this paper, we present the Coordinate Particle Filter which alleviates this problem. We propose to compute the particle weights recursively, dimension by dimension. This allows us to explore one dimension at a time, and resample after each dimension if necessary. Experimental results on simulated as well as real data con- firm that the proposed method has a substantial performance advantage over the Particle Filter in high-dimensional systems where not all dimensions are highly correlated. We demonstrate the benefits of the proposed method for the problem of multi-object and robotic manipulator tracking.

am

arXiv Video Bayesian Filtering Framework Bayesian Object Tracking DOI Project Page [BibTex]


LMI-Based Synthesis for Distributed Event-Based State Estimation

Muehlebach, M., Trimpe, S.

In Proceedings of the American Control Conference, July 2015 (inproceedings)

Abstract
This paper presents an LMI-based synthesis procedure for distributed event-based state estimation. Multiple agents observe and control a dynamic process by sporadically exchanging data over a broadcast network according to an event-based protocol. In previous work [1], the synthesis of event-based state estimators is based on a centralized design. In that case three different types of communication are required: event-based communication of measurements, periodic reset of all estimates to their joint average, and communication of inputs. The proposed synthesis problem eliminates the communication of inputs as well as the periodic resets (under favorable circumstances) by accounting explicitly for the distributed structure of the control system.

am

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


Kernel methods in medical imaging

Charpiat, G., Hofmann, M., Schölkopf, B.

In Handbook of Biomedical Imaging, pages: 63-81, 4, (Editors: Paragios, N., Duncan, J. and Ayache, N.), Springer, Berlin, Germany, June 2015 (inbook)

ei

Web link (url) [BibTex]

Web link (url) [BibTex]


Calibrating the pixel-level Kepler imaging data with a causal data-driven model

Wang, D., Foreman-Mackey, D., Hogg, D., Schölkopf, B.

Workshop: 225th American Astronomical Society Meeting 2015 , pages: 258.08, 2015 (poster)

ei

Web link (url) [BibTex]

Web link (url) [BibTex]


Genome-wide analysis of local chromatin packing in Arabidopsis thaliana

Wang, C. Liu, C. Roqueiro, D. Grimm, D. Schwab, R. Becker, C. Lanz, C. Weigel, D.

Genome Research, 25(2):246-256, 2015 (article)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]

2014


Metric learning for temporal sequence alignment

Garreau, D., Lajugie, R., Arlot, S., Bach, F.

In Advances in Neural Information Processing Systems, pages: 1817-1825, 2014 (inproceedings)

Abstract
In this paper, we propose to learn a Mahalanobis distance to perform alignment of multivariate time series. The learning examples for this task are time series for which the true alignment is known. We cast the alignment problem as a structured prediction task, and propose realistic losses between alignments for which the optimization is tractable. We provide experiments on real data in the audio-toaudio context, where we show that the learning of a similarity measure leads to improvements in the performance of the alignment task. We also propose to use this metric learning framework to perform feature selection and, from basic audio features, build a combination of these with better alignment performance.

slt

Paper [BibTex]

2014


Paper [BibTex]


An Adaptive Particle-mesh Gravity Solver for ENZO

Passy, J., Bryan, G.

Astrophysical Journal, Supplement, 215, pages: 8, 2014 (article)

DOI [BibTex]

DOI [BibTex]


Estimating the binary fraction of central stars of planetary nebulae using the infrared excess method

Douchin, D., De Marco, O., Frew, D., Jacoby, G., Fitzgerald, M., Jasniewicz, G., Moe, M., Passy, J., Hillwig, T., Harmer, D.

In Asymmetrical Planetary Nebulae VI Conference, pages: 18, 2014 (inproceedings)

[BibTex]

[BibTex]