Fronto-Parietal Gamma-Oscillations are a Cause of Performance
Variation in Brain-Computer Interfacing
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Abstract—In recent work, we have provided evidence that
fronto-parietal y-oscillations of the electromagnetic field of 40
the brain modulate the sensorimotor-rhythm. It is unclear,
however, what impact this effect may have on explaining Bt N =193 1
30
25
20

and addressing within-subject performance variations of brain-
computer interfaces (BCIs). In this paper, we provide evidence
that on a group-average classification accuracies in a two-class
motor-imagery paradigm differ by up to 22.2% depending on
the state of fronto-parietal y-power. As such, this effect may
have a large impact on the design of future BCI-systems. We
further investigate whether adapting classification procedures
to the current state of y-power improves classification accuracy,
and discuss other approaches to exploiting this effect.

. INTRODUCTION 5t )

While brain-computer interfaces (BCIs) based on motor 0
imagery can be employed by most healthy subjects with
only brief calibration periods [1]-[3], there exists a larg
variation in performance across as well as within subjectgig. 1. Across-subject performance variation in a two-ctassor-imagery
Consider Figure 1, showing a typical range of performancearadigm (adapted from [4]).
across 193 subjects in a two-class motor-imagery paradigm
(adapted from [4]). As can be seen here, between five and ten
percent of subjects do not perform substantially aboveahanas well as across time. It is thus of utmost importance
level, the bulk of subjects performs moderately well, anly on to study and understand the neuro-physiological causes of
a few subjects achieve excellent performance. Besides thisrformance variations in BCls, and utilize these insigbats
across-subject variation, there also exists a substamtizih-  develop systems that are robust to such variations.
subject performance variation. Figure 2 shows the trigewi  In recent work, we have provided evidence for the signif-
performance of a representative subject over the course of @ance ofy-oscillations, i.e., oscillations of the electromag-
experimental session in a two-class motor-imagery panadig netic field roughly above 50 Hz, for explaining and under-
Here, each cross represents one trial of motor imagery efanding performance variations in motor-imagery [5].. [6]
either the left or the right hand, and the value on the y-axi§lore specifically, we have argued in [6] that a fronto-patiet
represents the certainty of the employed machine-learnimgtwork of y-oscillations exerts a modulatory influence on
algorithm in classifying this trial (the derivation of this the sensorimotor-rhythm. Here, we re-analyze this efféitt w
certainty measure is described in Section Il). The greemgard to its significance for research on BCls. We provide
region denotes correct classification, while crosses in trevidence that, depending on the state ygpower in the
red region represent misclassified trials. In spite of aemath fronto-parietal network, classification accuracy diffessup
good performance of on average 76.67%, this subject show#s22.2% on a group-average. As such, the effect described
large variations in performance across time. While iniiall here may have a large impact on the performance and
she performed almost perfectly, with hardly any trials irfuture design of BCls based on motor imagery. Furthermore,
the red region, performance declined continuously. Aftewe investigate whether training classifiers independefotly
approximately ten minutes into the experimental sessiodifferent states of-power improves classification accuracy.
classification accuracy reached chance level. Towardsithe eWe do not find any evidence in support of this hypothesis,
of the experimental session, however, performance improvevhich suggests that the influence pfoscillations on the
again. Such performance variations within as well as acrosgnsorimotor-rhythm is not merely a covariate-shift.
subjects pose a substantial challenge to research on BCls, aThe remainder of this paper is structured as follows. In
a successful commercialization of this technology canljardSection Il, we describe the experimental paradigm, recbrde
be envisioned without robust performance across subjeaiata, and machine-learning procedures employed in this

M. Grosse-Wentrup is with the Max Planck Institute for Bigilkcal Cyber- study. We.then preser_n the experimental results in Section
netic.s, Department Empirical Inference, Spemannstr. 38, & ZWbingen, Il In Section 1V, we discuss the relevance of the presented
Germanynor i t zgw@ eee. or g results for research on BCls.
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C. Data Analysis

To classify trials of each subject as motor imagery of either
the left or the right hand, the following procedure was em-
ployed. First, the data was spatially filtered using a Lapiac
setup [7]. Then, for each trial log-bandpower during the firs
5.5 s of motor imagery was computed in frequency bins of
2 Hz width ranging from 7—-39 Hz for 18 channels covering
left and right sensorimotor areas, using a FFT in conjunctio
with a Hanning window. These bandpower features were
then used to train a linear-support vector machine (SVM)
[8]. To avoid overfitting, a 12-fold cross-validation pracege
was employed, and parameter selection of the SVM was

0 10 20 carried out by 10-fold cross-validation on each of the 12
Time [min] outer folds. The resulting continuous-valued output of the
! . _ SVM for each trial was then multiplied by -1 for each
Fig. 2. Performance of a representative subject over theseoaf an . . . .
experimental session. Crosses in the green region denottprclassified trial of left-hand motor imagery. In this way, we obtained
trials and crosses in the red region classification erroterpolated with a @ measure of motor-imagery performance in which large
fifth-order polynomial. positive values reflect easy to classify trials, small value
represent uncertain decisions, and negative values mayres
incorrectly classified trials (cf. Figure 2). In [6], we haysed
Il. METHODS this metric to identify brain activity that is correlated ttvi
Due to space constraints and similarity of the method@otor-imagery performance. Using Independent Component

employed in this study to earlier work, we only describe thénalysis (ICA) in conjunction with source localization rhet
essential steps here. For a more detailed description, fee re?ds, we uncovered a fronto-parietal network in whjetange

Trial-wise Classification Performance

the interested reader to [5] and [6] OSCi||ati0nS (betWeen 55—85 HZ) are Signiﬁcantly negative
correlated with motor-imagery performance (cf. Figure 4).
A. Experimental Paradigm Here, we investigate to which extegtpower in this net-

Subiect ticioated i lassical t | 5 CIWork affects single-subject classification accuracy. To do
ubjects ~participated Ih a classical two-class S0, we computedy-power in the fronto-parietal network
paradigm, involving motor imagery of the left and the

‘aht hand. Subi laced i tortable ch on a single-subject level as done in [6]. Briefly, we first
right and. | uljZCtS \_/ve:ce pacfe in a comiortable ¢ aimployed ICA to separate the recorded EEG of each subject
approximately 1.5 m in front o a computer SCreen, ang, (ideally) statistically independent components, oally
were asked to alternate between kinesthetic motor imadery

ither hand and relaxed wakeful di . : |%jected artifactual ICs by visual inspection, and idesdifi
either hand and relaxe Wwakeluiness according to |'nsn|n|$t|_ ICs showing a significantp(< 0.05) negative correlation of
on the screen. Each trial started with a rest period lasti

bet 3510 45 S | hich fixcati power and the performance metric introduced here, only
etween 2.5 10 4.5 S, In which a gray Tixation cross wa sing data from the first experimental session of each subjec

d!splayed centrally.on the screen. Then, a gray block %fhe cortical sources contributing to these ICs (averaged
elthgr the le.ftf or r|ght—har_1d side of the screen '_nStrUCte(gcross subjects) are shown in Figure 4. The first experirhenta
subjects to initiate m°‘°r imagery c_)f t.he.res.pectlve han fession is subsequently called the training set. Then, we
After 6 s the block disappeared again, indicating the end %
one trial anc_i start of the subsequen_t baseline. . trial of the second experimental session, subsequentigdcal
_I_Eac_h subject performe_d two SEssIons of 3_0 tr_|als PEr Colke test set, by first scaling thepower of each IC by its
dition in pseut_:lo—randoml_zeq order with a brlgf mtermlss[o correlation with motor-imagery performance on the tragnin
between sessions, resulting in a total of 120 trials pemsbj got ang then taking the average across all ICs identified
as potentially relevant on the training set. In this way, we
computed a single scalar value of fronto-parieggbower
During the experiment, EEG was recorded at 121 channdisr each trial in the test set. Importantly, the separatibn o
with a sampling rate of 500 Hz, using a QuickAmp am-our data into a training- and a test set ensured that any
plifier with a built-in common average reference. Electrodeffects reported here are not due to overfitting. For a more
impedances were ensured to be below ID & the start detailed description of this procedure please refer to [6].
of the first session. Channels exceeding this threshold wefer each subject, we then computed classification accuracy
switched off by manually connecting them to the groundn the test set as a function gtpower. We employed a
channel of the amplifier. Fourteen healthy subjects (fiveliding window encompassing 10% of all trials in the test set
female, mean age of 25.1 years with a standard deviati@md investigated how classification accuracy changed when
of 3.4 years) patrticipated in this study, four of which hadliding this window from the 10% of trials with lowest- to
previously participated in studies on motor imagery. the 10% trials with highesy-power.

omputedy-power in this fronto-parietal network for each

B. Experimental Data
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D. Classifier Adaptation Aol Training & Test Set

In the above procedure, a classifier is trained in each cross-  ;
validation fold on a subset of data chosen independently of ».
the state ofy-power. It may be beneficial, however, to train
different classifiers for subsets of trials that correspemd
different states ofy-power. We explored this possibility by
sorting trials of each subject into two halves of 60 trialstea
The first half contained trials of lowest- and the second half
contained trials of highest-power. Then, we retrained our
classifier, again employing a 12-/10-fold cross-validatom
the outer- and inner-fold, respectively, on each of these tw
subsets of trials independently. To ensure that a compari-
son of these classification accuracies with the non-adaptiv 05
classifier is not confounded by the number of trials in the
training set, we repeated our initial classification prased
ten times for each subject, this time choosing 60 trials pgfig. 3. classification accuracy across subjects as a funticsubject-
subject randomly, i.e., independently of the current stdte specific fronto-parietay-power (normalized across all trials of each subject).
y-power, and then averaged classification accuracies across
the ten iterations. Subsequently, this approach is termed t
baseline classification scheme. Comparing the mean claskiterestingly, on average both approaches differ by only
fication accuracies of the adaptive- and the baseline sche@&%. The significance of this result is discussed in the next
then provides information whether adapting classifiersieo t Section.
current state of/-power increases performance of the BCI.
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IV. DISCUSSION

Il RESULTS In this paper, we have demonstrated tlyabscillations

Classification accuracies achieved by each subject whén a fronto-parietal network have a large influence on per-
training with the initial classification scheme are showrformance of BCls based on motor-imagery. As sugh,
in the first row of Table I. As typical in BCIs, accuracy oscillations may be considered as a cause of non-statignari
varies substantially between subjects, with S5 not peiifigm in motor-imagery paradigms. Adapting classification proce
substantially above chance level and S2 performing almodtires to such non-stationarities is an active field of resear
perfectly. Out of these fourteen subjects, four subject (Sin machine learning [9], and has also been addressed in
S11, S13, and S14) did not show any ICs with a significarthe context of BCls [10], [11]. The focus of these studies,
correlation ofy-power with motor-imagery performance onhowever, is on the problem of covariate-shift adaptation. |
the training set. These subjects thus had to be excluded framavariate-shift adaptation, it is assumed that the digtion
further analysis. Regarding the impact of fronto-parigtal of features changes between training- and test sets, yet
power on performance, the continuous line in Figure 3 showhe distribution of class labels conditioned on the feature
the group-average of classification accuracy as a function cemains invariant. In this case, training classifiers irtep
y-power on the test set. In agreement with [Blpower cor- dently on subsets of trials belonging to different inputrilis
relates negatively with classification accuracy. Impdifyan butions is likely to outperform classifiers trained on a migt
differences in accuracy are quite substantial. While for thef input distributions [12] (assuming that the size of the
10% of trials with highest~power average performance istraining set remains constant). We have provided evidence,
on chance level (51.4%), classification accuracy improvdsowever, that classifiers trained on subsets of trials eorre
by 11.1% to 62.5% when only considering the 10% of trialsponding to different states gfpower do not outperform
with lowest y-power. Maximum differences even amount toclassifiers trained on subsets of trials chosen indepelydent
22.2%. As there is only a limited number of trials availableof y-power. While we can not rule out that more sophisticated
in the test set, the dashed line in Figure 3 shows the grapldaptation schemes improve performance, we hypothesize
obtained when considering trials from both experimentahat the effect of fronto-parietgl-power on BCls based on
sessions. Here, a more smooth dependence of classificatiantor-imagery is not confined to a covariate-shift.
accuracy ory-power can be observed, with 21.5% improve- This hypothesis implies that states of low fronto-parietal
ment from high to lowy-power. This second graph should y-power are beneficial for BCI performance independently
be interpreted with caution though, as overfitting effecesym of the marginal distribution of features derived from sefso
have an impact here. motor areas. As we have further provided evidence in [5] and

Regarding the classifier adaption, the second and thifé] that fronto-parietal regions modulate sensorimot@aar
row of Table | show the classification results when training.e., that they-oscillations described here are an actual cause
classifiers on subsets of trials sorted accordingHmower of performance variations, it may be beneficial to provide
(Adapt. Acc.) and when training classifiers on subsets afubjects with feedback on their current state of fronto-
trials chosen independently of-power (Baseline Acc.). parietal y-power. This may enable subjects to train how to



Subject

| S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10| S11 | S12 | S13| S14 | Group

Accuracy [%] 76.7 | 96.7 | 86.7 | 767 | 550 | 750 | 875
Adapt. Acc. [%] 66.7 | 90.0 | 725 | 708 - 550 | 817
Baseline Acc. [%]| 709 | 87.7 | 688 | 717 - 598 | 823

TABLE |

683 | 650 | 600 | 575 | 658 | 708 | 617 717
56.7 | 50.8 | 617 - 64.2 - - 67.0
521 | 624 | 623 - 60.0 - - 67.8

CLASSIFICATION RESULTS ACCUraCyREFERS TO THE ORIGINAL CLASSIFICATION SCHEMEAdapt. ACCTO THE SCHEME IN WHICH CLASSIFIERS ARE
TRAINED ON SUBSETS OF TRIALS SORTED ACCORDING T@-POWER AND Baseline AccTO THE BASELINE SCHEME IN WHICH CLASSIFIERS ARE

induce mental states that result in good BCl-performance4] C. Guger, G. Edlinger, W. Harkam, I.

TRAINED ON SUBSETS OF TRIALS CHOSEN RANDOMLY

Fig. 4. Frontal (A) and parietal (B) cortical origins gfoscillations correlated with motor-imagery performanceafsdd from [6]).

As the behavioral correlate of fronto-parietglpower in
motor imagery is unknown at this point, it is unclear how
subjects may achieve such mental states. It should be noted
that interventional approaches might also be considergd, e [
stimulating fronto-parietal areas by transcranial akéng
current stimulation (tACS).

Finally, it should be pointed out that even though subject%]
in early to middle stages of amyotrophic lateral sclerosis
(ALS) are capable of operating a BCI [13], to date no
communication with a completely locked-in subject has beeri®!
reported. If the results reported here (and in [5] and [6]) on
healthy subjects can be reproduced on patient populatiorig]

with ALS, this may provide new insights into the failure

(6]

to communicate with such patients and suggest potentigb,
solutions.
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