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Abstract— In recent work, we have provided evidence that
fronto-parietal γ-oscillations of the electromagnetic field of
the brain modulate the sensorimotor-rhythm. It is unclear,
however, what impact this effect may have on explaining
and addressing within-subject performance variations of brain-
computer interfaces (BCIs). In this paper, we provide evidence
that on a group-average classification accuracies in a two-class
motor-imagery paradigm differ by up to 22.2% depending on
the state of fronto-parietal γ-power. As such, this effect may
have a large impact on the design of future BCI-systems. We
further investigate whether adapting classification procedures
to the current state of γ-power improves classification accuracy,
and discuss other approaches to exploiting this effect.

I. INTRODUCTION

While brain-computer interfaces (BCIs) based on motor
imagery can be employed by most healthy subjects with
only brief calibration periods [1]–[3], there exists a large
variation in performance across as well as within subjects.
Consider Figure 1, showing a typical range of performance
across 193 subjects in a two-class motor-imagery paradigm
(adapted from [4]). As can be seen here, between five and ten
percent of subjects do not perform substantially above chance
level, the bulk of subjects performs moderately well, and only
a few subjects achieve excellent performance. Besides this
across-subject variation, there also exists a substantialwithin-
subject performance variation. Figure 2 shows the trial-wise
performance of a representative subject over the course of an
experimental session in a two-class motor-imagery paradigm.
Here, each cross represents one trial of motor imagery of
either the left or the right hand, and the value on the y-axis
represents the certainty of the employed machine-learning
algorithm in classifying this trial (the derivation of this
certainty measure is described in Section II). The green
region denotes correct classification, while crosses in the
red region represent misclassified trials. In spite of a rather
good performance of on average 76.67%, this subject showed
large variations in performance across time. While initially
she performed almost perfectly, with hardly any trials in
the red region, performance declined continuously. After
approximately ten minutes into the experimental session,
classification accuracy reached chance level. Towards the end
of the experimental session, however, performance improved
again. Such performance variations within as well as across
subjects pose a substantial challenge to research on BCIs, as
a successful commercialization of this technology can hardly
be envisioned without robust performance across subjects
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Fig. 1. Across-subject performance variation in a two-classmotor-imagery
paradigm (adapted from [4]).

as well as across time. It is thus of utmost importance
to study and understand the neuro-physiological causes of
performance variations in BCIs, and utilize these insightsto
develop systems that are robust to such variations.

In recent work, we have provided evidence for the signif-
icance ofγ-oscillations, i.e., oscillations of the electromag-
netic field roughly above 50 Hz, for explaining and under-
standing performance variations in motor-imagery [5], [6].
More specifically, we have argued in [6] that a fronto-parietal
network of γ-oscillations exerts a modulatory influence on
the sensorimotor-rhythm. Here, we re-analyze this effect with
regard to its significance for research on BCIs. We provide
evidence that, depending on the state ofγ-power in the
fronto-parietal network, classification accuracy differsby up
to 22.2% on a group-average. As such, the effect described
here may have a large impact on the performance and
future design of BCIs based on motor imagery. Furthermore,
we investigate whether training classifiers independentlyfor
different states ofγ-power improves classification accuracy.
We do not find any evidence in support of this hypothesis,
which suggests that the influence ofγ-oscillations on the
sensorimotor-rhythm is not merely a covariate-shift.

The remainder of this paper is structured as follows. In
Section II, we describe the experimental paradigm, recorded
data, and machine-learning procedures employed in this
study. We then present the experimental results in Section
III. In Section IV, we discuss the relevance of the presented
results for research on BCIs.
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Fig. 2. Performance of a representative subject over the course of an
experimental session. Crosses in the green region denote correctly classified
trials and crosses in the red region classification errors. Interpolated with a
fifth-order polynomial.

II. METHODS

Due to space constraints and similarity of the methods
employed in this study to earlier work, we only describe the
essential steps here. For a more detailed description, we refer
the interested reader to [5] and [6].

A. Experimental Paradigm

Subjects participated in a classical two-class BCI-
paradigm, involving motor imagery of the left and the
right hand. Subjects were placed in a comfortable chair
approximately 1.5 m in front of a computer screen, and
were asked to alternate between kinesthetic motor imagery of
either hand and relaxed wakefulness according to instructions
on the screen. Each trial started with a rest period lasting
between 3.5 to 4.5 s, in which a gray fixation cross was
displayed centrally on the screen. Then, a gray block on
either the left- or right-hand side of the screen instructed
subjects to initiate motor imagery of the respective hand.
After 6 s the block disappeared again, indicating the end of
one trial and start of the subsequent baseline.

Each subject performed two sessions of 30 trials per con-
dition in pseudo-randomized order with a brief intermission
between sessions, resulting in a total of 120 trials per subject.

B. Experimental Data

During the experiment, EEG was recorded at 121 channels
with a sampling rate of 500 Hz, using a QuickAmp am-
plifier with a built-in common average reference. Electrode
impedances were ensured to be below 10 kΩ at the start
of the first session. Channels exceeding this threshold were
switched off by manually connecting them to the ground
channel of the amplifier. Fourteen healthy subjects (five
female, mean age of 25.1 years with a standard deviation
of 3.4 years) participated in this study, four of which had
previously participated in studies on motor imagery.

C. Data Analysis

To classify trials of each subject as motor imagery of either
the left or the right hand, the following procedure was em-
ployed. First, the data was spatially filtered using a Laplacian
setup [7]. Then, for each trial log-bandpower during the first
5.5 s of motor imagery was computed in frequency bins of
2 Hz width ranging from 7–39 Hz for 18 channels covering
left and right sensorimotor areas, using a FFT in conjunction
with a Hanning window. These bandpower features were
then used to train a linearν-support vector machine (SVM)
[8]. To avoid overfitting, a 12-fold cross-validation procedure
was employed, and parameter selection of the SVM was
carried out by 10-fold cross-validation on each of the 12
outer folds. The resulting continuous-valued output of the
SVM for each trial was then multiplied by -1 for each
trial of left-hand motor imagery. In this way, we obtained
a measure of motor-imagery performance in which large
positive values reflect easy to classify trials, small values
represent uncertain decisions, and negative values represent
incorrectly classified trials (cf. Figure 2). In [6], we haveused
this metric to identify brain activity that is correlated with
motor-imagery performance. Using Independent Component
Analysis (ICA) in conjunction with source localization meth-
ods, we uncovered a fronto-parietal network in whichγ-range
oscillations (between 55–85 Hz) are significantly negatively
correlated with motor-imagery performance (cf. Figure 4).
Here, we investigate to which extentγ-power in this net-
work affects single-subject classification accuracy. To do
so, we computedγ-power in the fronto-parietal network
on a single-subject level as done in [6]. Briefly, we first
employed ICA to separate the recorded EEG of each subject
into (ideally) statistically independent components, manually
rejected artifactual ICs by visual inspection, and identified
ICs showing a significant (p≤ 0.05) negative correlation of
γ-power and the performance metric introduced here, only
using data from the first experimental session of each subject.
The cortical sources contributing to these ICs (averaged
across subjects) are shown in Figure 4. The first experimental
session is subsequently called the training set. Then, we
computedγ-power in this fronto-parietal network for each
trial of the second experimental session, subsequently called
the test set, by first scaling theγ-power of each IC by its
correlation with motor-imagery performance on the training
set, and then taking the average across all ICs identified
as potentially relevant on the training set. In this way, we
computed a single scalar value of fronto-parietalγ-power
for each trial in the test set. Importantly, the separation of
our data into a training- and a test set ensured that any
effects reported here are not due to overfitting. For a more
detailed description of this procedure please refer to [6].
For each subject, we then computed classification accuracy
on the test set as a function ofγ-power. We employed a
sliding window encompassing 10% of all trials in the test set,
and investigated how classification accuracy changed when
sliding this window from the 10% of trials with lowest- to
the 10% trials with highestγ-power.



D. Classifier Adaptation

In the above procedure, a classifier is trained in each cross-
validation fold on a subset of data chosen independently of
the state ofγ-power. It may be beneficial, however, to train
different classifiers for subsets of trials that correspondto
different states ofγ-power. We explored this possibility by
sorting trials of each subject into two halves of 60 trials each.
The first half contained trials of lowest- and the second half
contained trials of highestγ-power. Then, we retrained our
classifier, again employing a 12-/10-fold cross-validation on
the outer- and inner-fold, respectively, on each of these two
subsets of trials independently. To ensure that a compari-
son of these classification accuracies with the non-adaptive
classifier is not confounded by the number of trials in the
training set, we repeated our initial classification procedure
ten times for each subject, this time choosing 60 trials per
subject randomly, i.e., independently of the current stateof
γ-power, and then averaged classification accuracies across
the ten iterations. Subsequently, this approach is termed the
baseline classification scheme. Comparing the mean classi-
fication accuracies of the adaptive- and the baseline scheme
then provides information whether adapting classifiers to the
current state ofγ-power increases performance of the BCI.

III. RESULTS

Classification accuracies achieved by each subject when
training with the initial classification scheme are shown
in the first row of Table I. As typical in BCIs, accuracy
varies substantially between subjects, with S5 not performing
substantially above chance level and S2 performing almost
perfectly. Out of these fourteen subjects, four subjects (S5,
S11, S13, and S14) did not show any ICs with a significant
correlation ofγ-power with motor-imagery performance on
the training set. These subjects thus had to be excluded from
further analysis. Regarding the impact of fronto-parietalγ-
power on performance, the continuous line in Figure 3 shows
the group-average of classification accuracy as a function of
γ-power on the test set. In agreement with [6],γ-power cor-
relates negatively with classification accuracy. Importantly,
differences in accuracy are quite substantial. While for the
10% of trials with highestγ-power average performance is
on chance level (51.4%), classification accuracy improves
by 11.1% to 62.5% when only considering the 10% of trials
with lowest γ-power. Maximum differences even amount to
22.2%. As there is only a limited number of trials available
in the test set, the dashed line in Figure 3 shows the graph
obtained when considering trials from both experimental
sessions. Here, a more smooth dependence of classification
accuracy onγ-power can be observed, with 21.5% improve-
ment from high to lowγ-power. This second graph should
be interpreted with caution though, as overfitting effects may
have an impact here.

Regarding the classifier adaption, the second and third
row of Table I show the classification results when training
classifiers on subsets of trials sorted according toγ-power
(Adapt. Acc.) and when training classifiers on subsets of
trials chosen independently ofγ-power (Baseline Acc.).
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Fig. 3. Classification accuracy across subjects as a function of subject-
specific fronto-parietalγ-power (normalized across all trials of each subject).

Interestingly, on average both approaches differ by only
0.8%. The significance of this result is discussed in the next
section.

IV. DISCUSSION

In this paper, we have demonstrated thatγ-oscillations
in a fronto-parietal network have a large influence on per-
formance of BCIs based on motor-imagery. As such,γ-
oscillations may be considered as a cause of non-stationarity
in motor-imagery paradigms. Adapting classification proce-
dures to such non-stationarities is an active field of research
in machine learning [9], and has also been addressed in
the context of BCIs [10], [11]. The focus of these studies,
however, is on the problem of covariate-shift adaptation. In
covariate-shift adaptation, it is assumed that the distribution
of features changes between training- and test sets, yet
the distribution of class labels conditioned on the features
remains invariant. In this case, training classifiers indepen-
dently on subsets of trials belonging to different input distri-
butions is likely to outperform classifiers trained on a mixture
of input distributions [12] (assuming that the size of the
training set remains constant). We have provided evidence,
however, that classifiers trained on subsets of trials corre-
sponding to different states ofγ-power do not outperform
classifiers trained on subsets of trials chosen independently
of γ-power. While we can not rule out that more sophisticated
adaptation schemes improve performance, we hypothesize
that the effect of fronto-parietalγ-power on BCIs based on
motor-imagery is not confined to a covariate-shift.

This hypothesis implies that states of low fronto-parietal
γ-power are beneficial for BCI performance independently
of the marginal distribution of features derived from sensori-
motor areas. As we have further provided evidence in [5] and
[6] that fronto-parietal regions modulate sensorimotor areas,
i.e., that theγ-oscillations described here are an actual cause
of performance variations, it may be beneficial to provide
subjects with feedback on their current state of fronto-
parietal γ-power. This may enable subjects to train how to



Subject S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 Group

Accuracy [%] 76.7 96.7 86.7 76.7 55.0 75.0 87.5 68.3 65.0 60.0 57.5 65.8 70.8 61.7 71.7
Adapt. Acc. [%] 66.7 90.0 72.5 70.8 - 55.0 81.7 56.7 50.8 61.7 - 64.2 - - 67.0

Baseline Acc. [%] 70.9 87.7 68.8 71.7 - 59.8 82.3 52.1 62.4 62.3 - 60.0 - - 67.8

TABLE I

CLASSIFICATION RESULTS. AccuracyREFERS TO THE ORIGINAL CLASSIFICATION SCHEME, Adapt. Acc.TO THE SCHEME IN WHICH CLASSIFIERS ARE

TRAINED ON SUBSETS OF TRIALS SORTED ACCORDING TOγ -POWER, AND Baseline Acc.TO THE BASELINE SCHEME IN WHICH CLASSIFIERS ARE

TRAINED ON SUBSETS OF TRIALS CHOSEN RANDOMLY.

A B

Fig. 4. Frontal (A) and parietal (B) cortical origins ofγ-oscillations correlated with motor-imagery performance (adapted from [6]).

induce mental states that result in good BCI-performance.
As the behavioral correlate of fronto-parietalγ-power in
motor imagery is unknown at this point, it is unclear how
subjects may achieve such mental states. It should be noted
that interventional approaches might also be considered, e.g.,
stimulating fronto-parietal areas by transcranial alternating
current stimulation (tACS).

Finally, it should be pointed out that even though subjects
in early to middle stages of amyotrophic lateral sclerosis
(ALS) are capable of operating a BCI [13], to date no
communication with a completely locked-in subject has been
reported. If the results reported here (and in [5] and [6]) on
healthy subjects can be reproduced on patient populations
with ALS, this may provide new insights into the failure
to communicate with such patients and suggest potential
solutions.
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