Quantitative Finance To apear

Efficient Factor GARCH Models and Factor-DCC Models

Kun Zhang KZHANG @ CSE.CUHK.EDU.HK
Laiwan Chan LWCHAN @ CSE.CUHK.EDU.HK
Department of Computer Science and Engineering

The Chinese University of Hong Kong

Hong Kong

Abstract

We reveal that in the estimation of univariate GARCH or multivariate generalized or-
thogonal GARCH (GO-GARCH) models, maximizing the likelihood is equivalent to
making the standardized residuals as independent as possible. Based on that, we pro-
pose three factor GARCH models in the framework of GO-GARCH: independent-factor
GARCH exploits factors that are statistically as independent as possible; factors in
best-factor GARCH have the largest autocorrelation in their squared values such that
their volatilities could be forecasted well by univariate GARCH; factors in conditional-
decorrelation GARCH are conditionally as uncorrelated as possible. A two-step method
for estimating these models is introduced, and it gives easy and reliable estimation.
Since the extracted factors may still have weak conditional correlations, we further pro-
pose factor-DCC models, as an extension to the above factor GARCH models with
dynamic conditional correlation (DCC) modelling the remaining conditional correla-
tions between factors. Experimental results on the Hong Kong stock market shows that
conditional-decorrelation GARCH and independent-factor GARCH have better gener-
alization performance than the original GO-GARCH, and that conditional-decorrelation
GARCH (among factor GARCH models) and its extension with DCC embedded (among
factor-DCC models) behave best.

Keywords: Factor GARCH model, Mutual information, Mutual independence, Condi-

tional uncorrelatedness, Autocorrelation, Dynamic conditional correlation



1. Introduction

It has been over 20 years since the autoregressive conditional heteroscedasticity (ARCH) model
was proposed (Engle, 1982). A natural and powerful extension of the ARCH model is the gen-
eralized ARCH (GARCH) model (Bollerslev, 1986). These models have been shown to be very
useful in modelling and forecasting the volatility of financial return series. Furthermore, financial
assets may be inter-correlated, and their correlations play an important role in financial manage-
ment, such as portfolio construction. It was then natural to generalize the GARCH models from
modelling the conditional variance of a univariate series to modelling the conditional covariance
matrix of multivariate series (Bollerslev et al., 1988); for a recent survey on multivariate GARCH
model, see Bauwens et al. (2006).

Conventionally univariate and multivariate GARCH models are estimated by maximum like-
lihood (ML) estimation, or quasi maximum likelihood (QML) estimation, which simply assumes
that the returns are conditionally normally distributed. The maximum likelihood of GARCH mod-
els is actually closely related to statistical dependence in standardized residuals.! In the literature,
after estimating univariate GARCH models, some statistical tests, such as the BDS test (Brock
et al., 1996), can be used to test the independence of standardized residuals, so that we can com-
pare the behavior of different formulations for the GARCH model. In this work, we reveal the
relationship between the mutual information of standardized residuals and the likelihood value
attained by GARCH models. We show that in the estimation of GARCH models, maximizing the
likelihood is equivalent to minimizing the mutual information of standardized residuals. Actually,
when we use different GARCH models to fit the given data, the likelihood is a direct indicator of
how independent the standardized residuals are.

Usually multivariate GARCH models involve quite a lot of parameters, and they are difficult
to estimate for high-dimensional data (Bauwens et al., 2006). Factor GARCH models (e.g., Engle
et al., 1990; Alexander, 2000; van der Weide, 2002) provide one way to efficiently parameterize
the GARCH model. In this paper, by considering the generalized orthogonal GARCH (GO-
GARCH) model (van der Weide, 2002) from an information-theoretic point of view, we propose
to use independent component analysis (ICA) and two other statistical methods to construct fac-
tor GARCH models in the framework of GO-GARCH. The proposed models can all be estimated
easily in two separate steps. In the first step the factors are estimated according to some statis-

tical criteria. In the second step we estimate the univariate GARCH model for each factor and

i. In the GARCH literature, the innovation normalized by its time-varying standard deviation is

defined as the standardized residual.



construct the conditional covariance matrix of return series. Due to the simplicity and efficiency
of parameter estimation, these models are suitable for high-dimensional data. Since the extracted
factors may still have weak conditional correlations, we show that the estimate of conditional
correlations between returns can be further improved by modelling the remaining time-varying
conditional correlations between factors with the dynamic conditional correlation (DCC) model.
This leads to factor-DCC models.

This paper is organized as follows. In Section 2 we show the relationship between statistical
dependence in standardized residuals and the data likelihood of the univariate GARCH models.
Section 3 reviews multivariate GARCH models and discusses the estimation the GO-GARCH
model by the minimization of mutual information. Three forms of factor GARCH models, which
exploit ICA and other techniques for factor extraction, are proposed and discussed in Section 4.
In Section 5 we further embed the DCC model into the factor models to improve the forecasting
performance. 10 stocks selected from Hong Kong stock market are used to compare the perfor-
mance of our proposed factor GARCH models, the orthogonal GARCH , GO-GARCH, the DCC

model, and the factor-DCC models in Section 6. Section 7 concludes this paper.

2. Estimation of Univariate GARCH Model Based on Mutual Information

2.1 Univariate GARCH Models

It is well known that financial return series are almost serially uncorrelated, but the squares of
the returns are often strongly correlated, as indicated by the phenomenon of volatility clustering.
Based on these facts, one can see that the return series are not serially independent, and that
the dependency in the return series is demonstrated by the autocorrelation of the squared values.
Consequently, the return magnitude is predictable to some extent.

Inspired by volatility clustering, the ARCH-type models (Engle, 1982; Bollerslev et al., 1992;
Bera & Higgins, 1993; Poon & Granger, 2003) were proposed to model the volatility of the return
series. A popular one is the GARCH(p,q) model (Bollerslev, 1986), which is described by the

following system,

Ty = U+ €, (D
€ = \/ htZt, (2)
q p
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where r; denotes the return at time ¢, u; denotes the conditional mean of r; conditional on infor-

mation at time ¢ — 1 and can be described by any type of regression models, ¢; is the innovation, h;



is the conditional variance of r; based on information up through time £ — 1, z; is i.i.d. with mean
zero and variance one, and restrictions w > 0, o; > 0, and §; > 0 are imposed to ensure that
h; is positive (actually the restrictions on parameters may be weaker, see Nelson & Cao, 1992).
In Engle’s original ARCH model (Engle, 1982), z; is assumed to be Gaussian distributed. The
main approach to parameter estimation in GARCH models is based on ML estimation. Although
there is a lot of empirical evidence that the standardized residual z; does not follow the Gaussian
distribution, the normality of z; is often assumed and produces the QML estimates (Bollerslev &

Wooldridge, 1992).

2.2 Estimation of Univariate GARCH Model by Mutual Information Minimization

Parameters in the GARCH models are adjusted to capture the autocorrelation in squared returns,
which reflects the dependency in the return series. Consequently, after eliminating the effect the
time-varying volatility modeled by GARCH models, the standardized residuals, z;, should be
much more serially independent. Therefore, we can estimate the parameters in GARCH models
by making z; serially as independent as possible. The statistical dependence can be measured by
mutual information.

Mutual information is a natural and canonical measure of statistical dependence. In informa-

tion theory, the mutual information between n random variables y1, ..., ¥, is defined as
I(Y1,.,Ya) = Y H(Y;) = H(Y), “

where Y = (Y1,...,Y,,)T, and H(-) denotes the (differential) entropy, defined as H(X) =
— [ p(x)log p(x)dz (Cover & Thomas, 1991). I(Y7, ..., Y, ) is always non-negative, and is zero
if and only if y; are mutually independent. Different from the coefficient of linear correlation,
which measures the linear dependency between two variables, mutual information can capture
both linear and nonlinear dependence, with no need to specify any form of dependency. Mu-
tual information has been applied to detect the dependency or to examine the predictability of
financial time series (Dionisio et al., 2003; Darbellay & Wuertz, 2000; Maasoumi & Racine,
2002).

In the GARCH(p,q) model (Eq. 1-3), we can see that the standardized residual z; is a function
of €,€;_1,---, denoted by

Zt:f(etaet—17"';9)7 (5)

where 0 is the parameter set containing the parameters in the GARCH formulation. In particular,

for the GARCH(p,q) model (Eq. 3), 0 = {w, o, ..., &g, B1, .., Bp }. Bollerslev (1986) showed that



the necessary and sufficient condition for z; to be covariance stationary is > ¢, a; + Y o, 3; <
1. Under this condition, the effect of €;_;, on h; (and z;) diminishes as &k increases.

Denote by z* the vector consisting of z; at different time indices, i.e. z* = (2, 2t_1, ..., 2- N )",
and similarly for r* and €*. The dependence in the process Z = {z;} can be measured by the

mutual information rate (Taleb et al., 2001), which is defined as

1(Z) = H(z) — H(Z), (6)

where H(Z) = limy %(_z:l) is the entropy rate of the process Z (Cover & Thomas, 1991). The

mutual information rate of the process Z can also be written as Z(Z2) = limy_.oo ﬁ - I(z*).
When N is sufficiently large, we can neglect the effect of ¢, _1,€:-n_2, - -, as they are very

early, and write Eq. 5 in matrix form:
z" = F(€;0), @)

where F denotes the mapping from €* to z*. Similarly, we denote the mapping from r* to €* by
g, ie.
€ =G(rv), 8)

where 1) contains the parameters in the regression model for u;. The overall mapping from r* to
z* is then F o G. We can estimate the parameters in the GARCH models by minimizing I(z*),
the mutual information between components of z*.

The Jacobian matrix of the mapping F is

Oz Oz .. Oz e -
87‘,5 613,1 87’},1\] t 81”15_1 81”,5_]\7
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Denote the determinant of J = by |J£|. Obviously |J£| = Hﬁio ht__li/ ?. No matter u; = 0 or is
described by a regression model, the Jacobian matrix Jg is always a upper triangular matrix with
the entries on its diagonal being 1, so |Jg| = 1. The determinant of the Jacobian matrix associated
with the overall transformation F o G is |J| = |Jrog| = [J£| - [Jg| = [T £#| = Hf\io h;_lz-/z. We
then have the following relationship between the joint density p,+(z*) and pe« (r*):

o _ Pee(T7)  pee(rY)
pz*(z )_ |J‘ - HN h_l/g'

1=0""t—1

(10)
As H(z*) = —E{log p,-(z*)}, we further have
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Consequently, the mutual information rate of the process {z;} is

1(Z) = H(x)—H(Z) = H(z)— lim L&)

N—oco N +1
1 1 H(r*)
- lim ——— =S Eloghy_; — li
(o) i g5 2 Ploghei = Jim 5]
1
= H(x)+ 5 Eloghi — H(R), (an

where R denotes the process {r;}. As H(R) does not depend on the parameters €, minimizing

Z(Z2) is equivalent to maximizing the following function (7" denotes the number of observations)

1
() = —T- [H(zt)+§Eloght} (12)
T 1 T
= D loglp(z)] — 5 Y _loghy, (13)
t=1 t=1

which is exactly the log-likelihood function for the observations ry, ..., rr. Note that z in Eq. 13
denotes the variable associated with z;.11

This reveals the fact that in the estimation of univariate GARCH models, maximizing the
data likelihood is equivalent to minimizing the statistical dependence in standardized residuals.
Although these two approaches have the same objective function, we should address their distinc-
tion. In ML estimation, the density of the standardized residuals, p,, must be correctly specified
in advance. However, in practice we do not have such information exactly. QML estimation sim-
ply assumes p, to be Gaussian. In the approach based on the minimization of mutual information,
P 1s not necessarily known as prior information, and it may be adaptively estimated from data
in the maximization of Eq. 13, as the so-called “semiparametric ARCH models” does in Engle
and Gonzalez-rivera (1991). Consequently this method may produce a larger likelihood value (or

more independent standardized residuals).

3. Estimation of GO-GARCH by Mutual Information Minimization

3.1 Multivariate GARCH Models

Since the financial return series may be correlated, in addition to the time-varying volatility of
each series, the time-varying correlations among them are also very useful and need to be modeled

and forecasted. For example, the time-varying correlations can help us to construct a short-term

ii. In the following we drop the time index ¢ in the subscript to denote the variable associated

with a time series.



portfolio. Hence there is a need to extend the univariate GARCH models to the multivariate case.
For a survey on multivariate GARCH models, see Bauwens et al. (2006); Long (2005).

Suppose we have n return series 73,7 = 1,...,n, which form a vector ry = (r1s,...,7ns)" .
Let €; = (€14, ..., €n¢)” be the zero-mean version of r;, obtained by subtracting the mean from r;.
Denote the conditional covariance matrix of r; by H;. The basic and general form for modelling
the multivariate conditional covariance matrix is the vech model (Bollerslev et al., 1988). Using
the vech operator to stack the lower triangular portion of a symmetric matrix into a column vector,
it models each element of H; as a linear combination of the lagged squared errors, cross-products
of errors, and the lagged elements of H;. As a special case of the vech model, the BEKK model
was proposed in Baba et al. (1991) and Engle and Kroner (1995). However, the number of
parameters in these models grows very rapidly as the data dimension increases. This causes
problems in parameter estimation when the data dimension is high.

In order to efficiently parameterize multivariate GARCH, some methods have been developed
based on univariate GARCH models, in two directions. The first is to construct the conditional co-
variance matrix by explicitly modelling both the volatility of each return series and the conditional
correlation matrix. For example, the constant conditional correlation (CCC) model of Bollerslev
(1990) assumes the conditional correlation to be constant and the time-varying behavior of con-
ditional covariances is due to the time-varying conditional variances. To relax the constant con-
ditional correlation assumption, Engle (2002), Christodoulakis and Satchell (2002), and Tse and
Tsui (2002) proposed the dynamic conditional correlation (DCC) model, the Correlated ARCH
(CorrARCH) model, and the variable conditional correlation (VCC) model, respectively. They
generalize the CCC model to allow the conditional correlation to be time dependent.

The second direction is to exploit the idea of factor models to construct multivariate GARCH
models. It is believed that there exist some common factors, which may be determined em-
pirically or constructed by some statistical methods, driving the evolution of the return series.
The idea of the multivariate factor GARCH model dates to Engle et al. (1990), in which only
a small number of common factors are empirically determined and believed to underly the ob-
served return series. In this model, the factors are not necessarily uncorrelated, and it is difficult

to determine what the factors are.

3.2 Orthogonal GARCH Models

Recently the orthogonal GARCH (O-GARCH) model was proposed by exploiting the principal
component analysis (PCA) technique to determine the factors (Ding, 1994; Alexander, 2000;

Alexander, 2001). The O-GARCH model allows n x n covariance matrices to be generated from



m (normally m < n) univariate GARCH processes, each of which models a principal component
of the data €;. In order to do that, we first use PCA to extract m principal components, i.e.
y: = Pl e, where y; = (y11, ..., Ymt)? consists of the m principal components, and P,, is
a n X m matrix consisting of the eigenvectors associated with the m largest eigenvalues of the
covariance matrix of €;. Next, we use a univariate GARCH model to estimate h,,,, the conditional
variance of each principal component, and construct the m x m time-varying diagonal matrix

3 = diag{hy,,, ..., hy,, }. Finally we can obtain the conditional covariance matrix of €; as
H,=P,%P’. (14)

In determining the factors in the O-GARCH model, we just use the unconditional covariance
matrix of the return series, and the conditional information is not considered. A requirement for
the validity of O-GARCH is that principal components are also conditionally uncorrelated. How-
ever, as the conditional covariance matrix of the financial return series is time-varying, the un-
conditional uncorrelatedness between principal components does not guarantee their conditional
uncorrelatedness. Recently, GO-GARCH was proposed as a generalization of O-GARCH (van
der Weide, 2002; Lanne & Saikkonen, 2005). In GO-GARCH, the orthogonality constraint of the

factor loading matrix is relaxed.

3.3 Estimation of GO-GARCH Models by Mutual Information Minimization

In GO-GARCH, the error series €; (which are the zero-mean version of the return series r;) are
assumed to be generated from some latent uncorrelated factors y; = (y1¢, ..., Ym¢)’ by linear

transformation (van der Weide, 2002):
€ = Ay, (15)

where m < n," y;; have unit variance, and the conditional covariance matrix of y; is assumed to
be diagonal:

3 = diag{hy,, ., Ry - (16)

Each factor is described as a GARCH(1,1) process:iV

hyit = (1 — QG = ﬁz) + Oéiyzt_l + ﬁihyi,t—r (17)

iii. In van der Weide (2002) and Lanne and Saikkonen (2005) it is assumed that m = n. Here the

case that m < m can also be included.
iv. The model proposed by Lanne and Saikkonen (2005) is slightly different—they assume that

there exist some factors with a constant volatility, rather than the time-varying one.



The conditional covariance matrix of €; is therefore given as
H, = A, AT, (18)

This model was estimated by QML estimation (van der Weide, 2002) or ML estimation with
standardized residuals modeled by the mixture of Gaussians (Lanne & Saikkonen, 2005). But
the latter is computationally quite intensive. Here we investigate the GO-GARCH model from
the information-theoretic viewpoint. This point of view explicitly relates the likelihood function
to the contemporaneous and temporal statistical dependence of standardized residuals. It allows
adaptive estimation of the distribution of the standardized residuals, as Lanne and Saikkonen
(2005) does. Furthermore, it inspires our proposal of the factor GARCH models in the framework
of GO-GARCH, which will be given in Section 4.

Denote the standardized residuals by z;, i.e. z;; = yith?;i/ 2 Let zt = (214, 0y Zmt) L. In
the GO-GARCH model, the observed error series generated by €; = Ay; = AZ% / 2zt. In order
to find the factors y;; uniquely from €, (the permutation of y;; does not matter), we assume that
the mixing matrix A is of full column rank. The factors y;; can then be recovered from €; by the
following linear transformation:

Yt = W€t7 (19)

where W is a m X n matrix. A can be constructed based on the estimated W. If m = n,
A = W~; otherwise A is the pseudo-inverse of W,i.e. A = W (WW7T)~1,

One way of selecting a small number of factors is to do dimension reduction by applying
PCA on €, and to extract m factors in the space spanned by m principal components of €;. PCA
can also be used to whiten the data. Denote the whitening matrix by V, which can be obtained by
eigenvalue decomposition (EVD) of the covariance matrix E{ese] }: V = ED~'/2ET, where
D is the diagonal matrix of the m largest eigenvalues of F{e;e] }, and the columns of the matrix

E are the corresponding unit-norm eigenvectors. Denote the whitened errors by €, i.e.
€ = Ve, (20)

Clearly E{€€7} = 1,,. W in Eq. 19 can be decomposed as W = WYV. Since I, =
E{yyi} = WE{éte}T}WT = WWT7, W is an orthogonal matrix. Now the parameters to
be estimated are the orthogonal matrix W and the parameters in univariate GARCH(1,1) models
{Oéz', 51'};11-

In Section 2 we have seen that univariate GARCH models actually aim to capture the temporal
dependence in a univariate return series. Moreover, multivariate GARCH models aim to capture

not only the temporal dependence in each return series, but also the contemporaneous dependence



between different return series. That is, multivariate GARCH makes z;; contemporaneously and

temporally as independent as possible. Let z* be a collection of standardized residuals:

* T
Zz = (thy Tty Bmyty Blt—1," " s Amt—1, y Z1t—Ny " 7Zm7t—N) y

where N is sufficiently large, and similarly for €*, which is the collection of whitened errors
defined in Eq. 20. To measure the statistical temporal and contemporaneous dependence in
the vector process Z = {z;}, we define the the mutual information rate of Z as Z(Z) =
limy 00 ﬁ - I(z*). Multivariate GARCH can be estimated by minimizing Z(Z).

Denote the mapping from €* to z* by F, i.e. z* = F(€"; ¢p), where ¢ denotes the parameter

set. One can calculate the Jacobian matrix of F:

J, W
S_| 0 J W |
0 0 Jt_N.W
where -~ ~
20 0
—-1/2 .
Jk: 0 hy2k/ T 0
0 o0 h;if_
Since p,-(z*) = pg"‘}'é*) and [J| = II7" HNOh]t/Z, we have
m N
1(z*)
7(2) = 1l lim [ H(zje i) — }
(Z) Mim e = NHOON—I—l ;g (2jt—i) — H(z")
~ {3 e - o)+ P )
= 1
= Z[ (zje) + Eloghyﬁ]— lim N7+1H( ). (21)
7=1

As the last term in the above equation does not depend on ¢, minimizing Z(Z) is equivalent to

maximizing the following function

NE

o) = |- Hiz - %Elog |
j=1
- Y E [ log p-, (251) — % log hyjt} . (22)
j=1

10



Below we give the likelihood function for €;. Since z; are assumed to be mutually in-

dependent, we have p,(z;) = [[ ps,(zi). Since & = WTyt = VVTEtl/ 2zt, we have

pe(&) = % The log-likelihood function of & is therefore
t
T m 1
log pe(é:) ;; [logpzi 2it) = 5 108 hy, | (23)

Clearly the likelihood function (Eq. 23) is the same as Eq. 22 (with the constant factor ignored),
which is derived by mutual information minimization.

In particular, if we simply adopt the standard Gaussian density for p.;, regardless of the true
distribution of standardized residuals, the above objective function (Eq. 23) turns to be the quasi
log-likelihood function in van der Weide (2002). When some factors have constant volatilities,
i.e. hj; = 1 for some j, the above objective function is reduced to that in Lanne and Saikkonen
(2005).

Estimation of GO-GARCH with QML is time-consuming, and can be problematic, especially
when the data dimension is high, for two reasons. First, in the estimation of GO-GARCH, the
update of W (or equivalently W) and {«, 3; }1", interferes with each other, which may cause es-
timation difficulties. Second, the quasi likelihood is quite flat in the neighborhood of its optimum
and ill-conditioned for multivariate GARCH models (Jerez et al., 2000). As an illustration, let us
consider the behavior of QML in a degenerate case, where all factors have a constant volatility.
The objective function of GO-GARCH turns to be that of the independent component analysis
(ICA) model, which is discussed in Section 4.1. This model is not identifiable by using QML,
while it can be identified by using the true ML (Hyvérinen et al., 2001).

Alternatively, we can estimate the factors and the univariate GARCH models in two separate
steps. We can find the statistical characteristics of the factors extracted in GO-GARCH, and de-
termine W and the factors by optimizing some statistical criterion regarding the factors in the first
step. In the second step we simply fit a univariate GARCH model, which may be a complex ex-
tension of the standard GARCH (Eq. 1-3), such as the exponential GARCH (EGARCH) (Nelson,
1991) and the threshold GARCH (TGARCH)), to these factors. Finally the conditional covariance
matrix is constructed according to Eq. 18. In this way parameters involved in both steps can be

estimated reliably and fast.

4. Three Factor Models in the Framework of GO-GARCH

Now we present three factor GARCH models in the framework of GO-GARCH by analyzing
the property of the factors in GO-GARCH. The proposed models are the independent-factor

11



GARCH (IF-GARCH) model, the best-factor GARCH (BF-GARCH) model, and the conditional-
decorrelation GARCH (CD-GARCH) model. Generally speaking, these models have the follow-

ing features:

e They can all be estimated in a convenient way, because W and parameters in univari-
ate GARCH models are estimated separately. Hence they are more suitable for high-
dimensional data. Reliability and low computation in the estimation of these models also
make it possible to couple these models with others to achieve better flexibility and perfor-

mance.

e Factors extracted in these models have clear statistical properties, so they may also be use-
ful in other financial analysis scenarios. Apart from the unconditional uncorrelatedness
constraint, different criteria are used to determine W in these models. In IF-GARCH,
W is determined by making the factors y;; as statistically independent as possible; in
BF-GARCH, each factor has the largest autocorrelation in its squared values such that
its volatility is forecasted well by univariate GARCH; CD-GARCH produces the factors

which are conditionally as uncorrelated as possible.

Below we present these models by discussing the rationale behind them, the uniqueness of solu-
tion, together with the method for parameter estimation. The second step in the estimation of the
proposed factor GARCH models is simply to estimate univariate GARCH for each factor, which

is very easy. So we focus on the first step, in which W and factors are estimated.

4.1 Independent-Factor GARCH Model
4.1.1 RATIONALE

If GO-GARCH is specified and estimated correctly, the standardized residuals z;; should be con-
temporaneously and temporally as independent as possible. On the other hand, if z;; are contem-
poraneously independent, the factors y;; must be mutually independent, since y;; is determined
by zi (k = t,t —1,...) and does not depend on z;j,j # 4. And as discussed below, under
weak assumptions, which usually hold for financial return series, W and y;; can be determined
by making the factors y;; as mutually independent as possible. This is exactly the objective of the
independent component analysis (ICA) technique (Hyvérinen et al., 2001).

ICA, as a generative model, is a statistical technique for revealing hidden factors that un-
derlie the observed signals. In ICA, we only have some observable variables €y, ..., €,,, which

are assumed to be linear mixtures of some unknown statistically independent source variables

12



51, ..., S With an unknown mixing matrix A. Let € = (ey, ..., €,,)7 and s = (51, ..., 5,,)7. The
latent data generation procedure is € = As. Under the assumption that A is of full column rank
and that at most one of the sources s; is normal," s; and A can be recovered by ICA. ICA of
the data € aims at finding the linear transform y = W e with components of y as independent as
possible, such that y provides an estimate of s (or equivalently WA is a generalized permutation
matrix). Note that the scaling and permutation of y; can be arbitrary, and in practice the variance
of y; is usually set to one.

ICA has been applied in some finance scenarios (Back, 1997; Kiviluoto & Oja, 1998; Cha &
Chan, 2000). In Chan and Cha (2001), ICA is used to construct factor models in finance, and in

particular, several factor selection criteria are given.

4.1.2 PARAMETER ESTIMATION

Various algorithms from different points of view have been developed for ICA (Hyvérinen et al.,
2001). For example, FastICA (Hyvéirinen & Oja, 1997) is a fixed-point algorithm for maximizing
the non-Gaussianity of y;+; JADE (Cardoso & Souloumiac, 1993) is based on joint diagonalization
of fourth order cross-cumulant matrices; the Infomax algorithm (Bell & Sejnowski, 1995) is
based on the information-maximization principle. Due to its simplicity and efficiency, we adopt

the FastICA algorithm in our experiments.

4.1.3 REMARK

IF-GARCH exploits ICA to enforce mutual independence between factors, since the standard-
ized residuals are approximately contemporaneously independent. In fact, for GO-GARCH, the
standardized residuals are just as independent as possible, and they may not be completely in-
dependent. Consequently, it is possible that IF-GARCH does not give the optimal estimate for
conditional covariances. ICA just exploits contemporaneous information of factors, while the

methods discussed below also take into consideration temporal information of the factors.

v. Note that uncorrelated and jointly normal variables are mutually independent, and that the un-
correlatedness does not change after any orthogonal transformation. Consequently, in order to
recover the original sources uniquely (with scaling and permutation indeterminacies ignored)

by ICA, one has to assume that at most one of the sources is normal (Hyvérinen et al., 2001).
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4.2 Best-Factor GARCH Model
4.2.1 RATIONALE

From Eq. 22 and Eq. 12, we can see that the objective function of GO-GARCH is actually the sum
of the likelihood of fitting each factor y;; with univariate GARCH . In order to maximize Eq. 22,
W should maximize the likelihood of fitting univariate GARCH to each factor, which can be
approximately achieved by maximizing the autocorrelation in squared values of each factor y;,
as shown below.

For a GARCH series, the maximum likelihood attained by univariate GARCH is related to
the autocorrelation in its squared values, given that the GARCH model is specified and estimated
correctly, as explained below. Looking at Eq. 11 and Eq. 12, we can see that the likelihood, I7(8),

is given by

ir(0) = T-[-H(R)—-I(Z)]
= T-[I(R)—Z(Z]—T- H(ry). (24)

Recall that Z(Z) and Z(R) denote the mutual information rate in the processes {z;} and {r},
respectively. The last term in Eq. 24 is determined by the density of the return and is approx-
imately a constant. If the GARCH model is specified and estimated correctly, the standardized
residual is almost serially independent and consequently Z(Z) ~ 0. From Eq. 24 we can see
that the larger the autocorrelation in squared returns, the larger Z(R), and as a consequence, the
likelihood I7-(8) is higher.

Now let us investigate how the linear transformation W changes the autocorrelation in squared
values of each series. Roughly speaking, the mixture of independent GARCH processes tends to

lose the GARCH effect, according to the following theorem.

Theorem 1 Suppose that g1y, ..., git are k zero-mean independent GARCH processes with no
linear time-correlations, and that they have finite kurtosis."' Denote their variances by o2, ..., 0,%
and let 0% = o3 + -+ + o,%. Denote by x; the sum of g;1,© = 1, ..., k. Under the condition that

4 4
o] ++o
% — 0 when k — oo, we have:

1. The autocovariance in squared values of f(;t) tends to vanish when k — oo.

2. The autocorrelation in squared values of x; tends to vanish when k — oo.

vi. Here we use the following definitions. Kurtosis of the zero-mean variable = is defined by

kurt(z) = % The excess kurtosis of z is #(x) = kurt(z) — 3.
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Proof: see Appendix.
44 ... 4
In fact the condition that % — 0 when k — oo is weak. It is used just to exclude the

case that most of o7 are very small. In an extreme case, one can see that when all o7 are equal,

0—‘11+...+0—;§
o4

= % and the condition is obviously satisfied. Interestingly, this theorem can be con-
sidered as a counterpart of the central limit theorem regarding temporal information. Hyvirinen
(2001) presented the uniqueness of the solution to N4 by maximizing the autocovariance of the
squared values of each factor (of unit variance) when the latent factors have autocorrelation in

squared values and are independent.

4.2.2 PARAMETER ESTIMATION

Hyvirinen (2001) gives the fixed-point update rule for W, the i-th row of W, with the fourth-
order cumulant (Eq. 34) as the objective function under the constraint var(y;;) = 1. We prefer
not to take it account the last term in Eq. 34, which is related to the autocorrelation of y;;. So
we aim to estimate the é-th factor y;; by maximizing cov(y;, y7, ), subject to var(y;;) = 1 and
the uncorrelatedness among estimated factors. This is equivalent to maximizing cov(yft, yzt_T)
under the conditions ||W;|| = 1 and w!W; = 0 (for j # 4). One can find the learning rule by

deriving the gradient of cov(y2, yzt_T) W.r.t. W;:
AW; oc B{eWw!l € (Wle )2} + E{&_,W! & (W] &)} (25)

In each iteration the lag 7 is randomly chosen between 1 and 7 with probability 1/3 for 1. If i > 1,
after each iteration of Eq. 25, w; is made orthogonal to w,,, p = 1, ...7 — 1, by the Gram-Schmidt

like procedure:

Ww; is then normalized to unit length: w; «— %
Alternatively we can update all rows of W in parallel. To do that, we need to update all w;
according to Eq. 25, followed by symmetric orthogonalization of W, until convergence. The

symmetric orthogonalization of W is accomplished by
W — (WWT)~ 12w, (26)

where (WWT)_l/ 2 is obtained from the EVD decomposition of WWT. Let the EVD decom-
position of WW7 be WW7 = EDE”. We have (WW7)~1/2 = ED~!/2ET.
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4.3 Conditional-Decorrelation GARCH Model
4.3.1 RATIONALE

In GO-GARCH it is assumed that the factors y;; are conditionally uncorrelated such that the
conditional covariance matrix of y; is diagonal (see Eq. 16). But we just explicitly enforce
unconditional uncorrelatedness between factors, and certainly unconditional uncorrelatedness can
not guarantee conditional uncorrelatedness. It may cause large error in the estimated covariance
matrix if we simply regard unconditional uncorrelatedness as conditional uncorrelatedness. In
order to reduce the error in modelling the conditional covariance matrix, it is very natural to
enforce conditional decorrelation between factors.

In Matsuoka et al. (1995) it was shown that if the latent factors are conditionally uncorrelated
and their local variances fluctuate somewhat independently of each other,"!! the factors (and the
matrix W) can be determined uniquely except for the trivial scaling and permutation indetermi-
nacies by making y;; conditionally uncorrelated. So one can estimate the factors by enforcing

conditional decorrelation between factors.

4.3.2 PARAMETER ESTIMATION

Matsuoka et al. (1995) gave an algorithm to estimate y;; and w by achieving conditional decor-
relation between y;:. A simpler version was given in Hyvirinen et al., 2001, chap. 18. But
in these algorithms, we need to re-calculate the local covariances of factors after each iteration,
which causes high computational load.

In fact, in order to achieve conditional uncorrelatedness between factors, after whitening of
the data, the orthogonal matrix W should make all local covariance matrices of the whitened re-
turn series jointly as diagonal as possible. Therefore, after estimating a series of local covariance
matrices, W can be estimated by applying simultaneous diagonalization to these matrices. In
our experiments, we adopt this method. We use the simultaneous diagonalization method given
in Cardoso and Souloumiac (1996), and the local covariance is estimated using the exponentially

weighted moving average (EWMA) with the smoothing constant A = 0.90.

vii. Mathematically speaking, the condition, which states that the local variances fluctuate some-
what independently of each other, means that for every pair of the factors, the ratio of their

local variances is not constant over time.
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4.3.3 REMARK

It should be mentioned that recently, an approach for modelling multivariate volatilities via con-
ditional uncorrelated components (CUC’s) was proposed by Fan et al. (2005). The CUC’s in
their approach are actually the same as the conditionally uncorrelated factors in our CD-GARCH
model. In addition, as they exploit the extended GARCH model, which has a more general setting
than conventional GARCH, to model the volatility of each CUC, their approach is more flexible
than CD-GARCH. The consistency of the estimate of W is also proved in their work. In this
paper we discuss CD-GARCH from a different viewpoint. It is proposed as one of the simple
factor GARCH models and compared to others extensively. Moreover, in order to improve the

model flexibility, one can combine the factor model with the DCC model, as shown in Section 5.

4.4 Discussion

Now we give a summary and comments on the models proposed above. The three models use
different criteria to find the factors and W. Under some conditions, we can unify these models.
In fact, Independent-factor GARCH, best-factor GARCH, and conditional-decorrelation GARCH

give the same result if the following conditions are satisfied:
1. The factors y;; are statistically independent of each other.
2. At most one of y;; is normally distributed.
3. All y;; have autocorrelation in their squared values and are temporally uncorrelated.
4. For every pair of y;;, the ratio of their local variances is not constant over time.

Under the above conditions, each of the three models can give a unique result for the factors
(except for the permutation and scaling arbitrariness of the outputs), which is an estimate of the
latent factors generating the return series. Therefore the estimated factors and the matrix W must
be the same for the three models (with permutation indeterminacy ignored).

We should emphasize that in practice the above conditions may not exactly hold. Conse-
quently, these models may produce different estimates for W, since they focus on information of
different aspects and exploit different objective functions. The choice of the model depends on
which criterion is most consistent with the characteristics of financial data. We know that finan-
cial return series exhibit the volatility clustering phenomenon and their covariances change over
time. In order to capture the nonlinear dependency between outputs, ICA algorithms use higher-

order statistics explicitly or implicitly, which may be sensitive to the chosen data period of the
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IF-GARCH BF-GARCH CD-GARCH
Criterion for | Factors are statistically | Each factor has the | Factors are conditionally
estimating as independent as possi- | largest autocorrelation in | as uncorrelated as possi-
factors ble (at most one factor is | squared values ble
normal.)
Estimation ICA (FastICA given | Eq. 25 for estimating W; | Simultaneous diago-
procedure by Hyvirinen and Oja | Eq. 18 for constructing | nalization (Cardoso &
(1997) is wused) for | H; Souloumiac, 1996) for
estimating W; Eq. 18 estimating W; Eq. 18
for constructing H, for constructing H;
Computation involve low computation
Remark provide the same result under certain conditions

Table 1: Summary of the three multivariate factor GARCH models.

nonstationary financial data and outliers. This may cause a problem in constructing independent
factor models in finance. Autocorrelation in squared values of a series is also sensitive to out-
liers (Alexander, 2001, chap. 4), so the result of BF-GARCH may also be sensitive to outliers. In
CD-GARCH, we do not exploit the information regarding the distributions of the factors. We just
utilize the second-order statistics averaged for all time instants. Hence it should be more robust
to outliers. Also recall that GO-GARCH explicitly assumes that the factors are conditionally un-
correlated. We therefore conjecture that CD-GARCH should describe the multivariate financial
return series best.

All these three models are estimated easily, and the estimation involves low computation. In
particular, IF-GARCH and CD-GARCH (based on simultaneous diagonalization of local covari-
ances) are computationally very efficient. Note that in the estimation of BF-GARCH, in each
iteration of the learning rule Eq. 25, the time lag 7 is randomly chosen, which may slower the
convergence a little. Table 1 summarizes the characteristics of these models. The behavior of
these models will be experimentally studied in Section 7.

In Section 3.3 we claimed that one can use PCA as preprocessing to reduce the number of
factors. In fact, even if we don’t use PCA, it is still possible to reduce the number of factors,
by analyzing the estimated A. Denote the i-th cloumn of A by a;. Clearly ||a;||? indicates the
total variance that the ¢-th factor contributes to all return series. We can reduce the number of

factors according to the order of ||a;||?>. As a consequence, large covariance matrices can be
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approximately generated by only a small number of factors. If necessary, one may resort to other
more complex criteria to determine the number of factors. For instance, Chan and Cha (2001)

exploited the minimum description length (MDL) principle to do that.

5. Factor-DCC Model: Factor Model coupled with DCC
5.1 The DCC Model

The DCC model, given by Engle (2002), is a generalization of CCC model (Bollerslev, 1990).
The CCC model assumes that the time-varying of conditional covariances is caused by the time-

varying of the conditional variance of each return series:
H; = D:RDq, 27)

where Dy = diag{+/hi;:} and h;; denotes the conditional variance of the i-th return.

The DCC model differs only in allowing R to be time-varying:
H; = D;R;D;. (28)

The conditional correlation matrix R, is determined by another matrix Q;, which is used to model
the dynamic correlation structure of the standardized residual z; by the univariate GARCH(1,1)
formulation:

Qi =(1—a—-pB)Q+az1z{ 1+ Qi1 (29)
where Q is the unconditional covariance matrix of z;. The (i, j)-th entry of the conditional
correlation matrix Ry, denoted by p; ; +, is estimated as

qi,j,t

e —— (30)
V4i,itq5,5,t

pi)jit =
where g; ;; is the (4, j)-th entry of Q.

5.2 Why is DCC Embedded?

van der Weide (2002) demonstrated that GO-GARCH produces time-varying conditional correla-
tion and that the conditional correlation is bounded. In practice, factor GARCH models may not
fully capture the dynamic behavior of the conditional correlation of return series. Consequently,
the factors may still have some remaining conditional correlation.

In order to model H; more accurately, we no longer treat 3; as a diagonal matrix, as shown
in Eq. 16, but model it with the DCC model. In this way the factor-DCC model is constructed,
as an extension of the corresponding factor-GARCH model. Clearly DCC would provide a better

19



estimate for 3J; than the diagonal matrix, and as a consequence, the capacity of factor GARCH
is extended by embedding DCC for modelling the conditional correlations between factors. In
other words, the factor-DCC model should have better flexibility than the corresponding factor
GARCH model. On the other hand, the performance of the extended model is also better than
that of DCC, as explained below.

In the factor GARCH models we proposed, the factors are estimated very conveniently such
that the recovery of factors can even be considered as a preprocessing step. After this step, the

factors are expected to exhibit the following features.

e The conditional correlation matrix of y; is close to the identity matrix and its variability is
greatly reduced. This is because the factors (especially those extracted in IFFGARCH and
CD-GARCH) are approximately conditionally uncorrelated.

e Compared to the original return series, the factors (especially those obtained in BF-GARCH)
would exhibit higher autocorrelation in squared values and can be modeled better with uni-

variate GARCH models.

According to these features, 3; should be modeled better by the DCC model (Engle, 2002) than
H;. In other words, the performance of DCC is improved by incorporating the linear transforma-

tion stage W.

5.3 Factor-DCC Model

Now we adopt the DCC model to describe the conditional covariance matrix between factors, i.e.
% = DiR¢Dy, @31

where D; = diag{\/@ } and R; denotes the conditional correlation matrix of y;. Ry is given
by Eq. 29 and Eq. 30. The conditional covariance matrix of return series is given by Eq. 18. The
structure of the factor-DCC is illustrated in Figure 1.

The factor-DCC model represents the conditional covariance matrix of the whitened data €,

as fIt = WTDthDtW. The quasi log-likelihood for €, is

[mlog(27) + log [Hy| + € H; ‘&)

|

|
N | —
N

lr =

&
Il
—

{[mopzm) + 3 (1oghy, +22)]

=1

I
|
N | —
N

i
5

+ [log IR¢| + z;‘FRt_lzt - thzt} }
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Factor extraction ' DCC for modeling the conditional
covariance matrix of factors

Figure 1: The factor-DCC model. The conditional covariance matrix H; = A, AT where X,
is the conditional covariance matrix of factors y;; and A is the pseudo-inverse of W.

3., is modeled by the DCC model.

Letly = —3 3, [mlog(2m) + 37 (log hy,, + 22)], and lc = —3 37, [log |Ry| + zf R; 'z, —
thzt]. The log-likelihood consists of Iy, and Io. Comparing [y with Eq. 23, one can see that [y
is exactly the quasi log-likelihood of the GO-GARCH model. Also note that [ is the objective
function of the DCC model (Engle, 2002). Analogously to the two-step approach for estimation
of the DCC model (Engle, 2002), we can also use the two-step approach to maximize 7. In the
first step it finds the parameters in the factor GARCH model which maximize [y,. With these
estimated values as given, in the second step DCC models the conditional covariance between
the factors, and the parameters in R; are estimated by maximizing [c.

Hence, by embedding the DCC model into our proposed factor models, we can get the IF-
DCC, BD-DCC, and CD-DCC models. For the reasons given in Section 5.2, the performance of
each extended model is expected to be better than that of the original factor model and that of the
DCC model. Since CD-GARCH provides approximately conditionally uncorrelated factors and
is expected to model the financial data well, we conjecture that CD-DCC model gives the best
performance among the three extended models.

The factor-DCC model can be thought of as a hierarchical model: in the first level the strong
conditional correlation between return series is expressed in terms of the weak conditional cor-
relation between factors, using the linear transformation; in the second level, the weak condi-
tional correlation between factors is calculated accurately by the DCC model. Consequently, the
conditional correlations between original return series are modeled more accurately using this

hierarchical structure.
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Stock Mean Std. Skewness | Excess First-order Box-Pierce
kurtosis autocorrela- LM (Lag
tion coeff. | p=5)
in  squared
returns
CHEUNG KONG 0.00071 0.0223 0.644 7.92 0.165 48.13*
(0001.HK)
CLP HOLDINGS 0.00052 0.0161 0.729 12.17 0.245 17.89*
(0002.HK)
HK & CHINA GAS 0.00063 0.0178 0.388 7.47 0.233 28.64*
(0003.HK)
HSBC  HOLDINGS 0.00091 0.0176 0.337 11.90 0.390 24.75*
(0005.HK)
HK ELECTRIC 0.00052 0.0162 0.212 9.66 0.327 25.49*
(0006.HK)
HANG LUNG 0.00047 0.0214 0.161 5.98 0.191 1.26
GROUP (0010.HK)
HANG SENG BANK 0.00081 0.0190 0.160 7.33 0.368 27.02*
(0011.HK)
HENDERSON LAND 0.00073 0.0243 0.558 5.50 0.189 26.02*
(0012.HK)
HUTCHISON —0.00073 | 0.0226 0.498 6.91 0.222 25.11*
(0013.HK)
CATHAY PAC AIR 0.00043 0.0240 0.168 5.38 0.128 18.53*
(0293.HK)

* Significant at 1% level.

Table 2: Return series used in the experiment and their statistics.

6. Experiment with Real Data: Empirical Study

In the experiment, 10 stock returns selected from the Hang Seng Index constitutes in the Hong
Kong stock market are used. We use the daily dividend/split adjusted closing prices started from
June 22th, 1990 to April 9th, 2004. Denoting the closing price by F;, the return is calculated as

B —-P

= 2
Tt o (32)

Each return series contains 3600 observations. For the few days when the price is not available,
we use the simple linear interpolation to estimate the price. Table 2 gives some statistics of
the daily returns of these stocks. From this table, we can see clearly that most stocks have the
GARCH effect.

Here we compare 10 multivariate GARCH models, which are the O-GARCH (Alexander,
2000), DCC model (Engle, 2002), GO-GARCH with QML (van der Weide, 2002), IF-GARCH,
BF-GARCH, CD-GARCH, and the factor-DCC models GO-DCC (GO-GARCH coupled with
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DCC), IF-DCC, BF-DCC, CD-DCC. The DCC model is chosen for comparison for two reasons.
First, other basic models, such as the the vech model (Bollerslev et al., 1988) and the BEKK
model (Engle & Kroner, 1995), have too many parameters and thus are not suitable for modelling
the conditional covariance matrix of high dimension. Second, the DCC model is a popular one
and has been shown to perform well in a number of situations (Engle, 2002). All experiments
in this paper are conducted using MATLAB. For the estimation of DCC, O-GARCH, and the
univariate GARCH model, we use the UCSD_GARCH toolbox developed by Sheppard (2002). In
the estimation of GO-GARCH, we use the MATLAB nonlinear constrained optimization toolbox
to optimize the QML. Other MATLAB source codes used in experiments are available from
http://www.cse.cuhk.edu.hk/~kzhang/factor_garch.

We use 3000 points from all 3600 observations for training, and the other 600 are used for
testing. We use two measures to evaluate the forecasting performance of these models. They are
(log-)QML and the Value-at-Risk (VaR) performance. The (log-)QML has been used to evaluate
the performance of GARCH models in Bollerslev et al. (1994):

T
QML = » logG(e:;0,Hy)

t=1

—

T
= §anog (27) + log |Hy| + €l H; '¢y].
t=1

We use the QML, rather than the true likelihood, because it is hard to specify the true conditional
distribution of returns and the QML provides an approximate for the true maximum likelihood.
Note that in Section. 3.3, we have shown the relationship between the likelihood attained and the
statistical dependence in standardized residuals. For some given multivariate return series, the
larger the likelihood function, the more independent the standardized residuals.

To save space, the estimated parameters for modelling the conditional covariance matrix of
the 10 stocks are not reported here, as the number of parameters is too large. Later we will give
the estimated parameter values together with the standard errors for 5-dimensional data. Table 3
presents the in-sample and out-of-sample QML values. Note that of course GO-GARCH by
maximizing QML gives the highest in-sample QML among the factor models, since it explicitly
maximizes the quasi likelihood. But it does not necessarily maximize the true likelihood. As we
care about the generalization behavior of the models, we would evaluate the GARCH models by
comparing their out-of-sample QML.

Among the first six GARCH models, GO-GARCH, CD-GARCH, IF-GARCH, and DCC give
similar performance. If we take into account of the computational load, obviously CD-GARCH

and IF-GARCH are plausible. Among the factor-DCC models, the CD-DCC model performs
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QML
Model Cpu time
In-sample Out-of sample
(seconds)
(3000 observations) (600 observations)

O-GARCH 85,158.4 17,547.8 4.32
DCC model 85,569.6 17,568.9 120.8
GO-GARCH (QML) 85,634.4 17,574.8 2 x 10%x
IF-GARCH 85,450.0 17,571.5 10.7
BF-GARCH 85,304.5 17,471.7 19.6
CD-GARCH 85,597.6 17,566.4 17.8
GO-DCC 85,763.3 17,635.4 2 x 10%x
IE-DCC 85,669.2 17,649.3 132.9
BF-DCC 85,632.7 17,608.4 142.4
CD-DCC 85,760.9 17,643.8 140.6

Table 3: Comparison of the 10 models with 10 stock returns. Algorithms are implemented using
MATLAB. *Estimation of GO-GARCH takes quite a long time, mainly for two reasons.
The first is the estimation difficulties discussed in Section 3.3. The second is that we
use the MATLAB nonlinear constrained optimization toolbox for parameter estimation

without providing the gradient explicitly.
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the best, with IF-DCC close behind. Each factor-DCC model gives better performance than
the corresponding factor model as well as the DCC model. We can see that by incorporating
the factor extraction procedure, the performance of DCC is greatly improved, with only slight
increase in computational time. This also verifies the usefulness of factor models for constructing
multivariate GARCH models. Note that the difference in QML for different models is not very
large, since the quasi likelihood function is almost flat in the neighborhood of its optimum (Jerez
et al., 2000).

Figure 2 shows the conditional correlation between the first and second return series esti-
mated by O-GARCH, CD-GARCH, and the CD-DCC model, respectively. We can see that the
conditional correlation estimated by CD-GARCH (Figure 2B) and that estimated by the CD-DCC
model (Figure 2C) are very similar. Their trend lies in a lower level after November, 1999, while
the result obtained by O-GARCH does not (Figure 2A). The conditional correlation between the
CD-GARCH factors y1; and y9; estimated by the DCC model is also given in Figure 2 (D), from
which we can see the correlation between 1, and 2, is comparatively small and oscillates around
0, which agree with our claims in Section 5.2.

In order to reduce the random effect and to compare these models more convincingly, we
conduct five more experiments. In each experiment we randomly select five stocks from all of
the 10 stocks used in the first experiment. Table 4 lists the parameter values estimated in the first
experiment with five stocks. The standard errors are given in the parentheses. They are computed
by the bootstrapping method described in Fan et al. (2005) (with 200 replications)."! We use the
Amari performance index P, (Cichocki & Amari, 2003) to measure the distance between two

matrices Wy and Wo. Let p;; = [W1W;1]U. P,,, is defined as

P = = o (S i ) (S -V @

Particularly, this performance index measures how close W1 W ! is to the generalized permu-
tation matrix. The smaller P, is, the closer W{ W, 1is to the generalized permutation matrix.

Permutation and scaling of row of W1 and W5 do not affect this measure. From the parameter

viii. Fan et al. (2005) gave the bootstrapping procedure for computing standard errors (or confi-
dence sets) of the parameters in factor GARCH models. For DCC and factor-DCC models,
the procedure is quite similar. In the bootstrap sampling procedure, we just need to obtain
the standardized residuals as H, Y 2(—:t, to draw the standardized residuals by sampling with
replacement, and to generate new observations according to the multivariate GARCH model

under study with the estimated parameters.
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Figure 2: (A) The conditional correlation between €1; and eo; estimated by O-GARCH. (B) That
estimated by CD-GARCH. (C) That estimated by the CD-DCC model. (D) The condi-
tional correlation between the CD-GARCH factors y;; and yo; estimated by the DCC

model.
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values in Table 4, one can see that some factors may be fitted better by an integrated GARCH
model. Table 5 gives the distance among W in different models. We can see that W in CD-
GARCH is close to that in GO-GARCH and IF-GARCH, meaning that the criteria for factor
extraction in these three models are consistent to a certain extent.

Table 6 shows the in-sample and out-of-sample QML for these five experiments. When
summed over all five cases, we can see clearly that among the factor GARCH models and the
DCC model, CD-GARCH and DCC are the best, and IF-GARCH is very close behind. For the
factor-DCC models, the CD-DCC model always performs best, followed by the IF-DCC model.
Note that the independent factor model is estimated very fast, so IF-GARCH and IF-DCC give
comparatively good results with low computation.

Now let us compare these models by investigating the forecasting performance of the 5%
VaR for portfolios with fixed weights. We consider an equally weighted portfolio and a hedge
portfolio. For constructing the hedge portfolio of 10 stocks, the weight for the first five stocks
is 0.2 and that for the others is -0.2. The weight vector for the hedge portfolio consisting of five
stocks is (0.5, 0.5, —0.3, —0.3, —0.4)T. In calculation of the VaR, the standardized residuals are

assumed to follow the normal distribution.
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Weo Wi Wgirp Wep

Wi;r | 0.3531
Wpgr | 04192 0.8347
Wep | 01818 0.2326  0.5447

Table 5: The distance among WGO, W IF, W BF, and WCD, measured by the Amari perfor-

mance index P,.,.

Two statistical tests are used to evaluate the VaR forecasting performance. They are the
Dynamic quantile (DQ) test by Engle and Manganelli (2004) and the Kupiec LR test given in Ku-
piec (1995). The DQ test examines the independence of a HIT from past HITs, from the predicted
VaR, or from any other variables, and HIT is defined as I(r; < VaR,) — «, where « is the VaR
level. In our experiments, we use five lags for past HITs and the current VaR. The Kupiec LR
test compares the empirical failure rate to its theoretical value. Tables 7 and 8 summarize the
in-sample VaRg g5 violations and the statistical test results, and Tables 9 and 10 give the out-
of-sample results. The models are compared in terms of the number of rejections at 1% or 5%
significant level.

One should be aware that the evaluation of GARCH models by examining the VaRs of a
set of given portfolios may not be very reliable. Engle and Manganelli (2004) claimed that al-
though GARCH might be useful for describing the evolution of volatility, it might provide an
unsatisfactory approximation when applied to tail estimation. Moreover, the sensitivity of the
VaR failure rates with respect to the distributional assumptions is found to be larger than that
with respect to the parametric specification for the multivariate GARCH models (Rombouts &
Verbeek, 2004).X However, when summed over all the cases, we can see that factor-DCC mod-
els give the best VaRg g5 prediction performance. And among the factor GARCH models, the
result of O-GARCH is not as good as that of others. These findings are especially obvious in the

out-of-sample case.

ix. Rombouts and Verbeek (2004) also proposed a semi-parametric model for the distribution of
the standardized residuals and found that it can improve the VaR forecasting performance.

However, this approach does not apply here since the data dimension is high.
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7. Conclusion

In this paper we consider the estimation problem of GARCH models from the information-
theoretic viewpoint. We reveal the relationship between the statistical dependence in standard-
ized residuals and the maximum likelihood when estimating univariate or multivariate GARCH
models. We show that maximizing the likelihood is equivalent to minimizing the statistical de-
pendence in standardized residuals. In particular, we focus on the framework of the general-
ized orthogonal GARCH and propose three efficient models in this framework. These models
are independent-factor GARCH, best-factor GARCH, and conditional-decorrelation GARCH.
Independent-factor GARCH exploits ICA to make factors mutually as independent as possible.
Best-factor GARCH gives the factors which have the largest autocorrelation in their squared
values such that their volatilities are forecasted well by univariate GARCH. And conditional-
decorrelation GARCH aims at ensuring that factors are not only unconditionally uncorrelated,
but also conditionally as uncorrelated as possible. These models exploit the data information
from different aspects to construct factors, and the factors are all estimated fast and feasibly and
they have clear statistical properties.

We further exploit the DCC model to estimate the weak conditional correlation between fac-
tors and develop factor-DCC models. We explain that such models give better performance than
the original factor GARCH and DCC. Experimental results on the Hong Kong stock market with
various GARCH models give the following findings: (1) among DCC and factor GARCH mod-
els, conditional-decorrelation GARCH, independent-factor GARCH, and DCC exhibit the best
generalization performance; (2) each factor-DCC model has better performance than DCC and
the corresponding factor GARCH model; (3) conditional-decorrelation GARCH (among factor
GARCH models) and its extension embedded with the DCC model (among factor-DCC models)
provide the best results. The independent-factor GARCH and its extension with DCC embedded
are also recommended since their performance is very close to the best and their estimation is

very fast.

APPENDIX

Proof of Thoerem 1: As g;;,i = 1, ..., k, are independent, the variance of x; is 02. According

to the property of cumulants (Nikias & Mendel, 1993),* cumulants of the sum of statistically

x. The fourth-order cross-cumulant of the zero-mean series y;; is given by

cum(Yit, Yits Yit—rs Yit—7) = E{yiQtv yi%t—‘l'} - E{yz?t}E{yiQ,t—T} - Q(E{yityi,t—T})Q (34)
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independent variables equal the sum of the cumulants of the individual variables. Consequently,

for any 7, we have

COV|:( Tt )2 ( Tt—r )2}
Std(l’t) ’ Std(.’Et)
= ﬁcum(l‘taxtaxthvxth)
k
1 .
= = Z cum(git, git, Git—r Git—r) (@S Git, ..., gt are independent)
o

=1

_ git \2 ; Git—7 \2
I ZU COV[ std gzt)) ’(std(git)) }

- , ko o4
< max {cov[( Jit )2, it 2} } . Zl;ial — 0, when k — oo.
i std(git) std(git) o

Therefore (1) is true. Note that for zero-mean variable z, var(z?) = E{z*} — E[2?]? = E[2%]?-

#(x) + 2E[x?]2. We further have

1
corr(}, a7_;) =

k
1
= 2 Z gzt corr gztagzt ’T')

k
i var(gg)

< 2 42 :
< miaX[COrr(gztagz,t—T)] var(z2)
k
B 2 9 .Zz 10K(glt)+221 19
= meCLX[COI’I’(thagz,t—T)] oAR $t)+204
b ofR(gn) +2508 ot

= maX[COI'I'(gigtagiz,t—T)]' ) 119@ 4Z e

i 2iz1 iR (gi) + 201

2

< maxeorr(gh, g, )] - — 2 BON T2 g when k — ox.

i ’ max; K (gn)+2 ka 4

i=194

This means that the autocorrelation of 22 also tends to zero as k — oo. [J
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