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Abstract Independence of Conditionals (IC) has recently been proposed as a basic rule for
causal structure learning. If a Bayesian network represents the causal structure, its Condi-
tional Probability Distributions (CPDs) should be algorithmically independent. In this paper
we compare IC with Causal Faithfulness (FF), stating that only those conditional indepen-
dences hold true that are implied by the causal Markov condition. The latter is a basic pos-
tulate in common approaches to causal structure learning.

The common spirit of FF and IC is to reject causal graphs for which the joint distribution
looks ‘non-generic’. The difference lies in the notion of genericity: FF sometimes rejects
models just because one of the CPDs is simple, for instance if the CPD describes a determi-
nistic relation. IC does not behave in this undesirable way. It only rejects a model when there
is a non-generic relation between different CPDs although each CPD looks generic when
considered separately. Moreover, it detects relations between CPDs that cannot be captured
by conditional independences. IC therefore helps in distinguishing causal graphs that in-
duce the same conditional independences (i.e., they belong to the same Markov equivalence
class).

The usual justification for FF implicitly assumes a prior that is a probability density on
the parameter space. IC can be justified by Solomonoff’s universal prior, assigning non-zero
probability to those points in parameter space that have a finite description. In this way, it
favours simple CPDs, and therefore respects Occam’s razor.

Since Kolmogorov complexity is uncomputable, IC is not directly applicable in prac-
tice. We argue that it is nevertheless helpful, since it has already served as inspiration and
justification for novel causal inference algorithms.
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Fig. 1 Example causal model.

1 Introduction

Inferring causal relations by observation is at the heart of scientific reasoning. Although
there is still some general scepticism about whether causal conclusions can be drawn from
passive observations alone (e.g., without randomized interventions), the field of causal
inference has developed postulates that link observations to causal statements and developed
algorithms based on these postulates (Spirtes et al, 1993; Pearl, 2000). Here we compare two
postulates, one that is widely accepted in the causal inference community and one that has
been formulated by Janzing and Schölkopf (2010) after it had implicitly been stated by
Lemeire and Dirkx (2006), and that we wish to advertise further. The main contribution of
this paper lies in the comparison of the postulates.

Both postulates refer to the following popular scenario: given the variablesX1, . . . , Xn,
infer the causal relation after observing the joint distribution P (X1, . . . , Xn). In practice,
of course, one has only m points in Rn that are i.i.d. drawn from P (X1, . . . , Xn), but the
‘infinite sample limit’ of knowing P (X1, . . . , Xn) is often used to simplify the discussion.
Following (Spirtes et al, 1993; Pearl, 2000), a causal structure is formalized by a Directed
Acyclic Graph (DAG) with X1, . . . , Xn as nodes. A basic postulate (which is also crucial
and taken for granted in this article) is the causal Markov condition which states that a DAG
G is only acceptable as a possible causal hypothesis if every node is statistically independent
of its non-descendants conditioned on its parents. This is, up to a technical condition (Lau-
ritzen, 1996), equivalent to saying that the Joint Probability Distribution (JPD) factorizes
into the following conditional probabilities

P (X1, . . . , Xn) =
n∏
j=1

P (Xj |Parents(Xj)) , (1)

with Parents(Xj) ⊂ {X1, . . . , Xn} \Xj denoting the parents of variable Xj in G. The
Conditional Probability Distributions (CPDs) P (Xj |Parents(Xj)) define the free parame-
ters corresponding toG. For instance, the causal structure in Fig. 1 induces the factorization

P (A,B,C,D) = P (A)P (B|A)P (C|A)P (D|B,C) .

The DAG and the CPDs together define a Bayesian network. The causal Markov condition,
however, is not sufficient to uniquely identify the causal DAG from the JPD because there
are many different DAGs that render the JPD Markovian. In particular, every complete DAG
(one having

(
n
2

)
arrows) is consistent with any JPD. Therefore, additional postulates are

required to select a smaller set from the huge set of DAGs that are allowed by the causal
Markov condition.
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Causal faithfulness (FF) (Spirtes et al, 1993) states that only those conditional inde-
pendences that are imposed by the causal Markov condition hold. The idea is that addi-
tional independences are non-generic in the sense that they only occur for specific choices
of CPDs, i.e., the free parameters of the Bayesian network. We challenge this reasoning and
the implicit prior assumption on which it relies. We argue that a certain type of violation of
faithfulness is quite likely to occur in nature.

In contrast, we propose the principle of algorithmic independence of CPDs, or Indepen-
dence of Conditionals (IC) for short, saying that the shortest description of the JPD is given
by the causal CPDs, i.e., the CPDs that occur in the factorization with respect to the causal
DAG. Here description length is understood in the sense of Kolmogorov complexity. Like
FF, IC also allows hypothetical causal DAGs to be ruled out on the basis that the observed
JPD is ‘non-generic’ for the corresponding graphs. Despite this common spirit of both prin-
ciples, the implications differ. We will explain why we trust IC more than FF, even though
FF is more practical since IC relies on the uncomputable notion of Kolmogorov complexity.
Since we are discussing first principles of causal inference, we cannot provide formal argu-
ments in favour of IC, but we can describe examples which we hope will convince the reader
that the implications of IC are more plausible than those of FF. We believe that IC, although
it is not a practical method itself, is a useful basis for deriving new causal inference rules.

The paper is structured as follows. Sections 2 and 3 describe FF and IC, respectively, in
detail. Section 4 explains the common idea behind both principles and describes distribu-
tions that are ruled out by both of them. Section 5 explores the differences between them,
with respect to their justification and their implications. The examples where a factorization
is accepted by IC but rejected by FF and vice versa are the crucial part of this paper (in-
cluding the argument of why we think that IC yields more rational conclusions). Section 6
describes possible extensions of the fundamental idea of IC to causal models other than
DAGs.

2 Faithfulness

We first recall faithfulness.

2.1 Formal statement

As already mentioned, every distribution that admits the factorization (1) with respect to a
DAG G satisfies the following condition with respect to G:

Parental Markov condition: Every variable is conditionally independent of its non-descendants
(except for itself), given its parents.

The Markov condition is a purely mathematical condition describing the relation be-
tween a DAG and a joint distribution of its nodes, while the causal Markov condition is a
postulate that links statistical observations to causal semantics; it states hat only those DAGs
can be causal hypotheses that render the observed distributions Markovian.

It can be shown that the conditional independences that are explicitly stated by the
parental Markov condition imply other conditional independences. To describe the set of
all independences that follow from Eq. (1), we need to introduce some notation and termi-
nology. The ternary operator .⊥⊥. | . denotes the statistical independence of the first two
operands when conditioned on the third operand. Single random variables are denoted by
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capital letters and sets of variables by boldface capital letters. Next we introduce the concept
of d-separation (Lauritzen, 1996):

d-separation: A path1 is said to be blocked by Z if it contains a collider → · ← whose
descendants are not in Z or a non-collider→ · → or← · → or← · ← that is in Z. X and Y
are d-separated by Z if every path between X and Y is blocked by Z. d-separation is denoted
by the ternary operator . ⊥ . | .:

X ⊥ Y |Z .

If X and Y are not d-separated by Z, we call them d-connected by Z. Then we have:

Global Markov condition: For any disjoint sets X,Y,Z of variables for which X and Y are
d-separated by Z, we have

X⊥⊥Y |Z .

The global Markov condition is equivalent to the parental one (Lauritzen, 1996). Now we
are able to formally state FF:

Definition 1 (faithfulness) A JPD is called faithful with respect to a DAG G if for all dis-
joint subsets X, Y and Z

X⊥⊥Y |Z ⇔ X ⊥ Y |Z .

Causal faithfulness is the postulate that every JPD is faithful with respect to the true
causal DAG.

In other words, a JPD and a DAG are faithful to one another if all and only the conditional
independencies true in the JPD are entailed by the Markov condition applied to the DAG.
Note that faithfulness is a purely mathematical condition that describes the relation between
any JPD and any DAG, while causal faithfulness links the observed probability distribution
to the true causal DAG. Whenever this causes no confusion, we will use the term faithfulness
and the abbreviation FF also for causal faithfulness.

The set of DAGs for which the observed JPD is faithful is called the Markov equivalence
class. The idea of conditional independence based causal inference algorithms is to output
the Markov equivalence class as the set of possible causal hypotheses (Spirtes et al, 1993).

2.2 Justification for FF

The faithfulness condition can be thought of as the assumption that conditional indepen-
dencies are due to causal structure rather than to ‘accidents’ of parameter values. This is
motivated by the following reasoning. For variables with a finite range, there is a canonical
parameterization of CPDs by describing P (xj |paj) for all possible values xj of Xj and
all possible values paj of Parents(Xj). For instance, if Xj is a binary variable having
k binary parents, every CPD P (Xj |Parents(Xj)) is defined by a point in a (2k − 1)-
dimensional subset of [0, 1]2

k

(specifying the probabilities P (Xj = 1|paj) for each of the
2k possible values of the parents). Depending on the number of parents and their ranges,
every CPD P (Xj |Parents(Xj)) is thus specified by a point in some compact subset
Sj ⊂ Rmj . The entire JPD is thus determined by specifying a point in the Cartesian product
S := ×nj=1Sj . It has been shown that the subset of points that yield an unfaithful distri-
bution has zero volume, i.e., it has Lebesgue measure zero (Meek, 1995). The conclusion

1 A path is a set of consecutive edges (independent of the direction) that do not visit a vertex more than
once.
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Fig. 2 Four example Bayesian networks: (a) and (b) represent P (X,Y ), and (c) and (d) represent
P (X,Y, Z).

that unfaithfulness therefore happens with zero probability is correct if one assumes that the
points in Sj are chosen according to some probability density on S (which is, by definition,
equivalent to saying that sets of Lebesgue measure zero have zero probability).

2.3 Minimality

For reasons that will become clear, we also mention a condition that is weaker than faithful-
ness:

Definition 2 (MIN) Minimality of a factorization A DAG G is minimal for a JPD if the
JPD is Markovian and if for every node Xi the following condition holds: for every parent
p of Xi

Xi 2 p | Parents(Xi) \ p (2)

The ternary operator . 2. | . denotes statistical dependence of the first two operands when
conditioned on the third operand. It is clear that for faithful distributions the DAG is minimal
because no parent ofXj is d-separated fromXj by the other parents. To see that minimality
is strictly weaker than faithfulness, we observe that for every variable ordering X1, . . . , Xn
there is a DAG that renders the JPD minimal. We start with the complete DAG containing
all edges (Xi, Xj) for i < j. For every Xj , we remove edges pointing to Xj until every
remaining parent is dependent on Xj , given the other parents of Xj .

For two dependent variables X and Y , the DAGs (a) and (b) in Fig. 2 are both minimal
and they render the JPD faithful. For a case where minimality holds but faithfulness is vio-
lated, we consider a JPD generated by (c). In the generic case, we obtain X⊥⊥Y as the only
independence. Although the complete DAG shown in (d) does not render the JPD faithful
becauseX⊥⊥Y is not implied by this DAG, it is still minimal: one can easily check that none
of the arrows can be removed without violating the Markov condition. These examples show
that Def. 2 (MIN) defines a local minimality criterion for the number of arrows. FF can be
regarded as a criterion for a global minimum, since it has been proven that if a faithful DAG
exists, it is the Markovian DAG with the least number of edges (Lemeire et al, 2011b).

In the context of minimality, we should briefly discuss the intention of causal inference
again. We have actually stated that we are interested in identifying the ‘true causal DAG’,
but there is also a reasonable way to weaken this purpose: assume we have identified a DAG
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that coincides with the true one except for containing additional arrows. We should ask
whether this error is harmful. On the one hand, it may be confusing if the list of direct causes
of a variable contains variables whose influence is zero (as opposed to the assumptions
made by Zhang and Spirtes (2011)). On the other hand, the extended DAG together with
the joint distribution still contains the information on which arrows are true ones, because
each P (Xj |Parents(Xj)) shows which of the potential parents really influence Xj ; the
‘extended’ causal Bayesian network makes the same predictions regarding how variables
change under interventions. The semantics of the extended DAG G is no longer to represent
the true causal structure but a set of possible causal structures, namely all DAGs that can
be obtained by removing edges from G. Causal inference algorithms that output such a
DAG G are still helpful when augmented by a statistical testing procedure that removes the
additional edges. Since the latter is a purely statistical problem, one could argue that the
actual causal problem consists in the first step. Sometimes it may be convenient to work
with complete DAGs and leave it to the description of the CPDs to specify which direct
influences are zero. For instance, if the order X1, . . . , Xn corresponds to the time order of
observations, it is quite natural to connect each Xi with every Xj corresponding to a later
time instance (j > i) because they are potential effects.

3 Independence of conditionals (IC)

IC postulates that the set of CPDs corresponding to a causal DAG is generic in the sense
that no CPD contains information about another one. Here information is understood in the
sense of algorithmic information which is defined in terms of Kolmogorov complexity. We
first introduce the basic concepts.

3.1 Introduction to algorithmic information theory

For a binary string s ∈ {0, 1}∗ the algorithmic information K(s) (or ‘Kolmogorov com-
plexity’) is defined as the length of the shortest program on a universal prefix-free Turing
machine that generates s and then stops (Solomonoff, 1960; Kolmogorov, 1965; Chaitin,
1966, 1975). Prefix-free means that the program has to be given with respect to an encoding
where no allowed program code is the prefix of another one. Thus, the program does not
require an extra symbol indicating its end. This fact has several important implications, for
instance for the definition of the universal prior (see Sec. 5.1).

Two strings s, t are called algorithmically dependent whenever compressing them jointly
is more economical than compressing them independently. The algorithmic mutual informa-
tion is defined as (Chaitin, 1975)

I(s : t) := K(s) +K(t)−K(s, t) ,

where the pair (s, t) is implicitly identified with a single string via some given standard
bijection between {0, 1}∗ × {0, 1}∗ and {0, 1}∗. We also need the additivity rule for the
joint Kolmogorov complexity (Chaitin, 1975):

K(s, t)
+
= K(t) +K(s|t∗) , (3)

where K(s|t∗) denotes the conditional Kolmogorov complexity of s, given the shortest
compression t∗ of t. As usual in algorithmic information theory, +

= denotes equality up to a
constant that is independent of the string s, but does depend on the Turing machine.
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The above definition of independence generalizes in a straightforward way to the joint
independence of n strings:

Definition 1 (Algorithmic Independence)
Binary strings s1 . . . sn are algorithmically independent if

K(s1, . . . , sn)
+
=

n∑
i

K(si) . (4)

Note that here and throughout the paper we consider the number n of strings as a constant.
Accordingly, in the following the number n of nodes will also be considered as a constant.

Here we need to comment on how to interpret the sign +
=. For a fixed set of strings s1, . . . , sn,

the term ‘up to a constant’ does not make sense, it only acquires a meaning in theoretical
statements such as ‘if s1, . . . , sn satisfy a certain condition, then they are algorithmically
independent’, because every sj then plays the role of a string valued variable. For fixed
strings, we have to interpret +

= in the sense of ‘up to a small number’ without further speci-
fying what ‘small’ means. This arbitrariness in setting a threshold is similar to the freedom
of choosing the significance level in a statistical dependence test.

According to the following postulate (which is a straightforward generalization of Lemma 5
in Janzing and Schölkopf (2010) to more than two objects) every algorithmic dependence
requires a causal explanation.

Causal principle: If s1, . . . , sn are binary words that describe n objects in nature and

K(s1, . . . , sn)�
n∑
j=1

K(sj), ,

then at least some of the n objects are causally related.

We will see that this principle is also the basis for using IC as causal inference rule.

3.2 Formal statement of the IC condition

Since we are interested in the algorithmic dependence of CPDs, the strings in Eq. 4 are now
the descriptions of the CPDs.

Definition 2 (Independence of Conditionals)
The conditional probability densities CPD1, . . . , CPDn corresponding to a DAG G with
n nodes are said to satisfy Algorithmic Independence of Conditionals, or Independence of
Conditionals (IC) for short, if

K(CPD1, . . . , CPDn)
+
=

n∑
i=1

K(CPDi) , (5)

where K(CPDi) for CPDi = P (Xi|Parents(Xi)) is the length of the shortest program
that computes the probability or probability density P (xi|pai) from the input (xi, pai),
with xi and pai outcomes of Xi and Parents(Xi) respectively.

By ‘causal IC condition’ we mean the postulate that IC holds for the observed JPD
whenever the true causal structure can be described by the DAGG and the CPDs correspond
to mechanisms that are independently ‘designed’ by nature.
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Fig. 3 Causal model with linear influences described by parameters α, β, γ, δ.

Like the distinction between faithfulness and causal faithfulness, causal IC is a postulate for
causal reasoning whereas IC is a purely mathematical relation between a DAGG and a JPD.
Whenever this causes no confusion, we will simply use IC for ‘causal IC’.

Note that Definition 2 implicitly assumes that the set of parents of Xi is already known,
but this amount of information is in O(1) since we assume n to be a constant. Moreover,
it is assumed that the JPD, and hence every CPD, has a finite description. If the variables
have a finite domain, all rational probability values are allowed; irrational values are only
possible if there is a finite rule defining them. For infinite domains, the finiteness of the
description is certainly a stronger restriction. One could argue that the ‘true’ probability
values will not satisfy this condition since generic real values are uncomputable, that is,
they have an infinite description. The computable values define a set of Lebesgue measure
zero in parameter space. However, we argue that, regardless of what the ‘true’ values are,
science always works with finite descriptions2.

We will later also use the following equivalent formulation of IC. Since all CPDs to-
gether describe the joint distribution (JPD) and, conversely, every CPD can be computed
from the JPD if the DAG is given (which is, again, only a constant amount of informa-
tion), the left hand side of (5) is always equal to K(JPD). In other words, neglecting the
information required to describe the DAG, IC holds if and only if the shortest description
of the joint distribution is given by separate descriptions of the conditionals (Janzing and
Schölkopf, 2010):

K(P (X1, . . . , Xn))
+
=

n∑
i=1

K(P (Xi|Parents(Xi))) . (6)

4 Similarities between FF and IC

We first discuss the similarities between both principles.

4.1 Common spirit: rejecting non-generic adjustments

Although IC and FF sound like completely different inference principles, the common idea is
to reject causal structures for which the CPDs satisfy non-generic relations. To describe this,

2 Note that model selection procedures that are based on the minimum description length principle auto-
matically define a probability distribution having finite description length (Grünwald, 2007).
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consider the DAG in Fig. 3 and consider the case where A and D are independent because
the influence via B compensates for the influence via C. To simplify the mathematics, we
assume that all CPDs are given by linear structure equations:

B = αA+ UB , (7)

C = βA+ UC , (8)

D = γB + δC + UD , (9)

where UB , UC and UD are unobserved disturbances or ‘noise’ terms that are jointly sta-
tistically independent and independent of A. Then the two influences of A on D cancel
for

αγ = −βδ , (10)

which is an unlikely coincidence if all real-valued parameters are chosen independently
(according to some continuous distribution on R). Obviously, FF rejects the causal DAG
in Fig. 3 because A and D are not d-separated by the empty set and thus should not be
independent.

To see that the DAG is also rejected by IC, we observe that the CPDs P (B|A), P (C|A),
and P (D|B,C) are described by the structure coefficients α, β, γ and δ as well as the dis-
tributions of the noise variables UB , UC , UD , respectively. Describing the JPD by separate
descriptions of P (A), P (B|A), P (C|A), P (D|B,C) is therefore redundant because the
parameter γ in P (D|B,C) can be computed from the other CPDs via Eq. 10. This way of
reasoning is made precise and more general by the following theorem.

Theorem 3 For a given DAG G, let the set of possible CPDs P (Xj |Parents(Xj)) be pa-
rameterized by some set Sj := {λj1, . . . , λ

j
kj
} of parameters. Assume that the parameter

values for some specific choice CPD1, . . . , CPDn of conditional probality densities sa-
tisfy a functional relation in the sense that θ1 = f(θ2, . . . , θk), where f is some function
and θ1, . . . , θk are parameters taken from at least two different sets Sj . Assume furthermore
that θ1 corresponds to CPD1 (without loss of generality). Then the following condition im-
plies violation of IC:

K(f)
+
< K(θ1|CPD\θ1,∗1 ) , (11)

where CPD\θ11 denotes the parameters of CPD1 without θ1 (recall that the asterisk de-
notes the shortest compression).

Note that we do not assume that the set of possible parameter combinations (λj1, . . . , λ
j
kj
)

is a cartesian product of the range of every single parameter λji . Therefore, knowing the
other parameters of CPD1 could reduce the set of possible θ1, but Eq. (11) ensures that the
description of θ1 still requires non-negligible length.

Proof Since θ1 can be computed from the other parameters using f we have

K(θ1|(f, θ2, . . . , θk)∗)
+
= 0 ,

which implies

K(θ1|(θ2, . . . , θk)∗)
+
≤ K(f) . (12)

This is due to the general rule

K(a|c∗)
+
≤ K(a, b|c∗) +

= K(b|c∗) +K(a|(b, c)∗)
+
≤ K(b) +K(a|(b, c)∗) ,
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where the second equality is due to K(x, y) = K(x) +K(y|x∗) (Gacs et al, 2001). From
Eq. 11 and Eq. 12 it follows that:

K(θ1|θ2, . . . , θk)
+
< K(θ1|CPD\θ1,∗1 ) (13)

Violation of IC can now be derived as follows. We first use Eq. 3. Further comments on the
derivation are given after the equations.

K(CPD1, . . . , CPDn) (14)
+
= K(CPD1|(CPD2, . . . , CPDn)

∗) +K(CPD2, . . . , CPDn) (15)

+
≤ K(CPD1|(CPD2, . . . , CPDn)

∗) +
n∑
i=2

K(CPDi) (16)

+
= K(CPD

\θ1
1 |(CPD2, . . . , CPDn)

∗) (17)

+K(θ1|(CPD\θ11 , CPD2, . . . , CPDn)
∗) +

n∑
i=2

K(CPDi) (18)

+
≤ K(CPD

\θ1
1 ) +K(θ1|(θ2, . . . , θk)∗) +

n∑
i=2

K(CPDi) (19)

+
< K(CPD

\θ1
1 ) +K(θ1|(CPD\θ11 )∗) +

n∑
i=2

K(CPDi) (20)

+
= K(CPD1) +

n∑
i=2

K(CPDi) (21)

For Ineq. 17 we separate θ1 from the remaining parameters of CPD1. Ineq. 19 follows
because we drop some information from the conditioning set. For Ineq. 20 we use Eq. 13.
For Eq. 21, we recombine the description of CPD1 (using Eq. 3). �

Due to condition (11), the theorem only states significant violation of IC if the function
is significantly simpler than the information that the parameter θ1 contains about CPD1. If
θ1 has a simple description, like θ1 = 0.5 or θ1 = π, for instance, this is not the case. This
already suggests the following general difference between IC and FF: while FF can already
be violated if some parameters of a single CPD are non-generic, IC only excludes the case
where the parameter vectors of different CPDs are related by a simple rule, although they
are complex themselves. Sec. 5 will elaborate on this difference.

4.2 Both FF and IC are sanity checks of the model class

IC and FF are not only principles for selecting the best model from the set of all possible
DAGs, they can also be used to check whether the true causal structure can be represented
by a DAG at all. If no factorization of the JPD satisfies FF or IC, this might indicate that the
system’s structure must be described by a different type of model.
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Fig. 4 A Markov network (a) and three Bayesian networks describing the same system (b-d).

As an example, consider four variables,A,B, C andD that influence each other via the
following cyclic (‘non-recursive’) linear equations:

B = βA+ EB

C = γB + EC

D = δC + ED

A = αD + EA ,

where the noise variables EA, EB , EC , ED are jointly statistically independent. Assume a
dynamical evolution where the noise terms remain constant and A,B,C,D are updated ac-
cording to these equations (this scenario has been referred to as ‘deterministic equilibrium’
by Lauritzen and Richardson (2002)). Whenever |αβγδ| < 1, one can show that the unique
stationary distribution is given by the structure equation

A
B
C
D

 =


1 0 0 −α
−β 1 0 0
0 −γ 1 0
0 0 −δ 1


−1

EA
EB
EC
ED

 = Γ−1


EA
EB
EC
ED

 ,

where the last equation holds by definition of the matrix Γ . To derive the conditional in-
dependences induced by these equations, we first consider the cross covariance matrix of
(A,B,C,D). It is given by

Σ = Γ−1ΣEEΓ
−T ,

where Γ−T denotes the transpose of the inverse of Γ and ΣEE the cross-covariance matrix
of the noise variables (EA, . . . , ED). We then obtain Σ−1 = ΓΣ−1

EEΓ
T . By assumption,

ΣEE is diagonal, and hence alsoΣ−1
EE . One can easily check thatΣ−1 therefore has zeros at

positions that relate the variables A and C, meaning that they are conditionally independent
given all the remaining variables, namely B and D. Likewise, we have zeros at positions
relating B and D. We thus obtain the conditional independences

A ⊥⊥ C |{B,D}
B ⊥⊥ D |{A,C} .

There is no DAG that faithfully represents these relations.
Fig. 4 (b) to (d) show examples of DAGs that are allowed by the Markov condition

but violate FF since no DAG can represent both independences while also obeying Markov.
However, the independences can be represented by a different type of model, namely Markov
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Fig. 5 Example of a meta-mechanism (evolution) which makes the latitude at which a person lives indepen-
dent of its amount of vitamin D.

networks. A Markov network is an undirected graph where two nodes are adjacent if and
only if they are conditionally dependent, given all other nodes. The above independences
correspond to the Markov network in 4 (a).

As a reviewer correctly commented, the Markov network cannot be considered a des-
cription of the system’s causal structure. The causal structure of the generative process
should capture the system dynamics leading to the above fixpoint, as is done by dynamic
Bayesian networks for instance. But the Markov network captures the relational structure
among the variables better than a DAG does.

The fact that no DAG on these four variables represents the dependences faithfully cor-
rectly suggests to the observer that the underlying causal structure cannot be described by
any DAG. Likewise, Theorem 3 shows that IC is violated if the CPDs satisfy atypical rela-
tions that induce additional conditional independences, provided that the CPDs themselves
are sufficiently complex.

To give a second example apart from cyclic causal structures, note that also latent com-
mon causes may lead to a violation of FF and IC. So, both FF and IC can also be used as a
sanity check of the model class under consideration.

4.3 Limitations of causal IC and causal FF due to meta-mechanisms

Meta-mechanisms are mechanisms that determine other mechanisms, they set the parame-
ters of other mechanisms. In the case of Bayesian networks, meta-mechanisms might govern
several CPDs and adjust their values, which may result in an atypical parameter configu-
ration and hence a possible violation of IC or of FF. This is illustrated by the following
example.

Consider people living at different latitudes and the amount of vitamin D created by
the body, as shown in Fig. 5. Melanin is a pigment that protects us against harmful UV
radiation. On the other hand, we need a limited amount of UV radiation to produce the
necessary amount of vitamin D (http://en.wikipedia.org/wiki/Melanin). To
ensure this, evolution has given humans different amounts of melanin, which is reflected by
skin colour, relative to the amount of sun light to which they are exposed. The skin colour
is mainly affected by latitude. This results in a nearly constant level of vitamin D creation
that is independent of the latitude at which we live. If the influences can be linearly approx-
imated, Eq. (10) describes the constraint needed to arrive at the independence. Here, the
meta-mechanism is biological evolution, which develops the mechanisms in a joint process
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rather than that each mechanism P (Xj | Parents(Xj)) has been ‘chosen’ independently.
Evolution has controlled the Latitude → Melanin relation such that the parameters cal-
ibrated until the influences of Latitude on V itamin D were neutralized, and hence there
is unfaithfulness. Assuming that unfaithfulness is due to Eq. (10), Theorem 3 describes the
conditions under which we also obtain a violation of IC. A violation of IC and FF gives an
indication for the presence of a meta-mechanism.

Another meta-mechanism explaining specific parameterizations is a ‘designer’. One can
think of a system built by an engineer who deliberately tunes the system in such way that
some related variables become independent. The causal graph is then unfaithful to the sys-
tem, but the unfaithfulness points to an interesting fact, namely that there is a plan behind the
system; the system is intentionally unfaithful in order to meet certain requirements. Meta-
mechanisms were already considered by Korb and Nyberg (2006) to explain violations of
faithfulness. The presence of meta-mechanisms in socio-economic and medical cases is also
reported by Cartwright (1999).

When postulating that IC holds for the true causal DAG, we assume that the CPDs
are independently ‘designed’, which explicitly excludes meta-mechanisms. Observing al-
gorithmic dependences between the CPDs either shows that the corresponding DAG is not
the causal one or that some meta-mechanism made the CPDs dependent. Note (as already
pointed out by Janzing and Schölkopf (2010)) that this reasoning is consistent with the
‘causal principle’ mentioned at the end of Sec. 3.1. Although this may sound a bit unfa-
miliar, we now consider each CPD as an ‘object’. Assume, for instance, that X → Y is
the true causal DAG. Then P (Y |X) describes the causal mechanism, a ‘machine’ that gen-
erates y-values according to P (Y |x) if the input is x. Likewise, P (X) corresponds to a
‘machine’ that generates x-values. Observing dependences between P (X) and P (Y |X)
shows a causal relation between the two machines.

5 Differences between FF and IC

This section is devoted to the discussion of the differences between FF and IC. We start
by describing the different foundations of FF and IC. Then, we discuss their differences
in causal inference. Given a JPD, the conditions FF and IC accept or refute factorizations
as valid causal hypotheses. This is illustrated by Fig. 6. Sec. 5.2 provides examples for
causal hypotheses that are rejected by FF and accepted by IC. We argue that we consider
the acceptance by IC to be more rational. Sec. 5.3 shows how causal inference can be done
based on IC in structures rejected by FF. Sec. 5.4 describes examples that are accepted by
FF but rejected by IC. We explain why we also trust IC in these cases, i.e., that IC correctly
rules out the factorizations as valid causal hypotheses. This shows that IC sometimes rules
out some of the hypotheses in a Markov equivalence class. Sec. 5.5 describes a case rejected
by FF and accepted by IC, where both answers are right in an appropriate sense. The overall
goal of this section is to show that the implications of IC are more convincing than those of
faithfulness, with respect to those DAGs that are accepted as well as those that are rejected.
A blind reviewer correctly pointed out that IC and FF cannot be strictly ordered in terms of
strength. We argue, instead, that IC is more convincing than FF since it yields more plausible
conclusions in all our examples. Since we are talking about first principles, there cannot be
a formal argument about which one is better or more fundamental.
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Fig. 6 The subsets FF and IC denote the factorizations for which FF and IC, respectively, hold for a given
JPD.

5.1 Different foundations: uniform prior versus Solomonoff prior

Faithfulness can be justified by a generative model where first the causal DAG on the given
variablesX1, . . . , Xn is randomly drawn (from some probability distribution over all DAGs
with n nodes) and then each CPD is randomly drawn from a uniform distribution on the set
of CPDs corresponding to the respective node and its parent set (here, the ‘uniform’ distri-
bution is defined as the Lebesgue measure with respect to the canonical parameterization
mentioned in Sec. 2.2). Then, unfaithful distributions occur with probability zero because
they define a set of Lebesgue measure zero in parameter space. The same argument holds
true if the parameters are drawn from some prior distribution that has a density in parameter
space.

Like FF, IC can also be justified by a model where the parameter vector for each
CPD is independently drawn, but not from a density in parameter space. Instead, IC uses
Solomonoff’s prior (Solomonoff, 1964), which we now introduce. The idea is to initialize
the input band of a Turing machine by randomly setting each bit to 0 or 1 with equal pro-
bability. This random process actually generates infinite random strings, but some of them
correspond to programs of finite length because the prefix-free encoding tells the Turing ma-
chine where to stop reading. Some of these programs halt and thus generate an output string
s. The probability of obtaining s as output, given that the random input encodes a valid
program that eventually stops, is known as Solomonoff’s prior. It is also given by Levin
(1974)

Pr(s)
×
= 2−K(s) ,

where ×= denotes a multiplicative constant that we ignore in the sequel. Solomonoff’s prior is
an elegant implementation of Occam’s Razor since it favours simple structures. Strings with
high regularities like 10101010101010 are considered more likely than generic (random)
strings of the same length. This is because the structure is not interpreted as a rare coinci-
dence. Instead, it is generated from a short input via a simple process. It has been shown that
Bayesian inference using Solomonoff’s prior is able to learn every structure underlying the
observations (Solomonoff, 1964), which has also been used as a basis for so-called universal
artificial intelligence (Hutter, 2007).

Now we describe how to apply Solomonoff’s prior for causal inference. Assume we
observe that the JPD is Markovian with respect to the DAG G and we are supposed to
infer whether G is a plausible causal hypothesis or not. Let CPDj with j = 1, . . . , n
be the conditionals corresponding to G and θj be a binary string encoding the parameter
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vector describing CPDj . By slightly abusing notation, let K(CPDj) := K(θj) be the
Kolmogorov complexity of θj .

If G is the true causal DAG, we assume that each CPD is independently drawn from the
prior probability distribution

Pr(CPDj) :=
1

Zj
2−K(CPDj) ,

with
Zj :=

∑
CPD′

j

2−K(CPD′
j) ,

where the sum runs over all binary words CPD′j that encode a possible conditional proba-
bility distribution P ′(Xj |Parents(Xj)). Hence, the probability of obtaining a certain JPD
is given by

Pr(JPD)
×
=

n∏
j=1

2−K(CPDj) .

On the other hand, if we do not have any information about the causal structure of the
process that generated the JPD, we use the prior probability

Pr(JPD)
×
= 2−K(JPD) ,

whereK(JPD) denotes the Kolmogorov complexity of the string that encodes JPD, given
an appropriate parameterization of the set of joint distributions. This is just Solomonoff’s
prior applied to the set of all JPDs. Note that

K(JPD)
×
= K(CPD1, . . . , CPDn) ,

because describing the JPD is equivalent to describing all CPDs. Here, we have implicitly
assumed that the parameterizations of the set of all JPDs is compatible with the Cartesian
product of all parameterizations of the CPDs in the sense that they can be translated into
each other by a rule of negligible Kolmogorov complexity. Whenever

K(CPD1, . . . , CPDn)�
n∑
j=1

K(CPDj) ,

the independent generation of the CPDs is significantly less likely than a process that gene-
rated the JPD jointly. Thus, G is rejected provided that we exclude meta-mechanisms, see
the discussion in Subsec. 4.3.

The following subsections provide examples that suggest that Solomonoff’s prior is
more plausible than the uniform one.

5.2 FF rejects many structured CPDs

This section argues that not all violations of faithfulness are unlikely. To provide the in-
tuition, first consider again the DAG in Fig. 3 and assume UB = 0 for the noise in the
structural equations of Eq. 7. This implies that B is a function of A, that is, B = f(A).
It follows that B⊥⊥D|A and B⊥⊥C|A since A has all information about B. Neither of
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the independencies follow from the Markov condition and both render the distribution un-
faithful. To simplify the discussion, assume that the noise is a Gaussian distribution with
zero mean and standard deviation σ. The conditional P (B|A) is then described by the pair
(α, σ) ∈ R × R+

0 , where the noiseless case corresponds to the line R × {0}, which has
Lebesgue measure zero. Nevertheless, noiseless relations do occur in nature (at least ones
with negligible noise). We think a higher than zero probability should be assigned to the case
σ = 0 because this is a special case. To show that the ‘Lebesgue measure zero argument’ is
unconvincing, we just have to observe that the set of all linear models has zero measure in
the set of all possible probability distributions, after we have parameterized the latter in an
appropriate way. Likewise, the set of Gaussian distributions has zero measure in the set of
all distributions. Nevertheless, such kinds of special (conditional or marginal) distributions
fit many observations in nature. To give a further example, let us parameterize the set of
distributions of a binary variable by λ ∈ [0, 1]. Then we want to assign non-zero probability
to special cases like λ = 0, λ = 0.5, λ = 1 because determinism is possible. Likewise,
unbiased coins should not be excluded either.

One may argue that our arguments are spoiled by the fact that no mechanism in nature
is exactly deterministic, no distribution is exactly Gaussian, and so on, which would justify
assigning zero prior probability to these cases. However, knowing that every mathemati-
cal concept can at most be a useful approximation of nature, we prefer to use a prior like
Solomonoff’s that assigns non-zero probability to special points in parameter space (like
λ = 0) instead of designing a complicated density that is peaked around this value. For the
special case of the distribution of a binary variable, it has been argued by Rathmanner and
Hutter (2011) why densities on the parameter values λ do not provide reasonable inferences
and that Solomonoff’s prior works better.

To show also that causal inference benefits from the preference of simple CPDs, consider
deterministic relations. Consider, for instance, the causal DAG X → Y → Z and assume
that Y = f(X) for some function f . We observe

Y⊥⊥Z |X ,

which violates faithfulness. The reason that no DAG satisfies FF is that the CPD P (Y |X)
itself is ‘non-generic’ (Lemeire et al, 2011a), but there need not to be a non-generic relation
between the CPDs.

5.3 Causal inference in unfaithful structures

IC, on the other hand, has the advantage that not only does it accept such a determinis-
tic model, it also helps to identify the direct causes and causal directions in this regime.
In Lemeire et al (2011a) we show that the model Y ← X → Z is equivalent to the correct
model X → Y → Z from the point of view of conditional independencies (although none
of the models is faithful). The identification of the correct model is based on the principle
that P (Z|X) is defined by Y = f(X) and P (Z|Y ). If f(X) and P (Z|Y ) are set inde-
pendently and causal IC holds, then P (Z|Y ) will in most cases be simpler than P (Z|X)
since the latter contains the complexity of f on top of the complexity of P (Z|X). Hence,
the simplest CPD can be regarded as the causal CPD. This method allows the identification
of the correct direct cause of Z.

Next, for the above example X → Y → Z, IC can sometimes tell us the causal di-
rection. This is shown by the following toy example, where we restrict the attention to the
relation between X and Y . Assume that we observe that X is uniformly distributed in the
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Fig. 7 Joint density p(x, y) of a real-valued random variable Y and a binary variable X . The marginal
distribution p(y) is Gaussian. The causal hypothesis Y → X is plausible: the conditional p(x|y) corresponds
to setting x = 1 for all y above a certain threshold. On the other hand, X → Y is rejected by IC because
p(y|x) and p(x) share algorithmic information: given p(y|x), only specific choices of p(x) reproduce the
Gaussian p(y), whereas generic choices of p(x) would yield ‘odd’ densities of the type on the right. The
figures are taken from (Janzing et al, 2009)

interval [0, 1] and that f : [0, 1] → [0, 1] is a strictly monotonously increasing function. If
f is differentiable with a differentiable inverse, the distribution of Y is given by the density

p(y) =
d

dy
f−1(y) .

The causal direction Y → X would be prohibited by IC. Observe

K(P (X,Y ))
+
= K(f) ,

since K(P (X))
+
= 0. For the backward direction we obtain

K(P (Y )) +K(P (X|Y ))
+
= K(f) +K(f−1)

+
= 2K(f)

+
> K(P (X,Y )) .

Hence, P (Y ) and P (X|Y ) are not independent; their forms both depend on f .
As shown by Daniusis et al (2010) and Janzing et al (2012), P (Y ) still contains in-

formation on f−1 when P (X) is not the uniform distribution. Intuitively speaking, this is
because peaks of the density p(y) often co-occur with regions of large slope of f−1. An
inference method is presented that is based on this observation. Of course, it does not use
algorithmic dependence between P (Y ) and P (X|Y ), but a computable kind of dependence
that has strongly been inspired by the above ideas. A modification using linear relations be-
tween high-dimensional variables X and Y has been described by Janzing et al (2010) and
Zscheischler et al (2011).

5.4 IC selects within Markov equivalence classes

One fundamental limitation of conditional independence based causal inference is given by
the fact that it is impossible to distinguish causal DAGs that belong to the same Markov
equivalence class. For two statistically dependent variables X and Y , for instance, both
causal explanations X → Y and Y → X are allowed by causal FF. Janzing and Schölkopf
(2010) and Janzing et al (2009) give examples where IC excludes one of the DAGs because
P (X) and P (Y |X) are algorithmically dependent. We briefly report one of the most intu-
itive examples. Assume that p(y) is the probability density of a Gaussian distribution and
the supports of p(y|x = 0) and p(y|x = 1) are (−∞, y0] and [y0,∞), respectively, as
shown in Fig. 7, left.
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One can easily think of a causal mechanism whose output x is 1 for all inputs y above
a certain threshold y0, and 0 otherwise. Assuming X → Y , we would require a mecha-
nism that generates outputs y from inputs x according to p(y|x). Given this mechanism,
there is only one distribution p(x) of inputs for which p(y) is Gaussian (Fig. 7, right, shows
what kind of output is obtained by ‘detuning’ p(x). Hence, the description of p(x) is short
when p(y|x) is given. Note that Janzing et al (2009) describe a causal inference method
that indeed infers the correct causal direction for this case and whose justification has been
inspired by IC. Janzing and Steudel (2010) show that IC provides a justification for a causal
inference method that has already been successfully implemented on multiple real data sets
with known ground truth (Hoyer et al, 2008; Peters et al, 2011b,a). They are based on addi-
tive noise models that we now sketch. Assume that Y is a function of X up to an additive
noise term E that is statistically independent of X , that is,

Y = f(X) + E with E⊥⊥X .

Then Hoyer et al (2008) show that, in the generic case, there is no additive noise model in
the opposite direction such that

X = g(Y ) + Ẽ with Ẽ⊥⊥Y .

If P (X,Y ) has an additive noise model from X to Y then one rejects Y → X . This kind
of reasoning is justified by IC, provided that the complexity of P (Y ) is sufficiently high
(this excludes, for instance, the bivariate Gaussian case, where the method obviously fails).
More specifically, Janzing and Steudel (2010) show that the algorithmic mutual information
between P (Y ) and P (X|Y ) is close to K(P (Y )) up to some small terms.

5.5 IC accepts local non-minimality

We have argued in 2.3 that it does no harm to violate minimality by drawing a DAG that
contains additional edges, that is, some variables have additional causes that actually have
no influence on them. For instance, if X⊥⊥Y , the DAG X → Y violates minimality, which
is rejected by FF. IC, on the other hand, accepts the DAG provided that P (X) and P (Y |X)
(which is equal to P (Y )) are algorithmically independent.

This behavior of IC can be tolerated provided that the corresponding causal inference
algorithm is augmented by a statistical testing procedure that removes redundant parents (see
our remarks in subsection 2.3). This is an example where both FF and IC yield reasonable
results although they do not coincide. According to one’s taste, minimality could also be
used on top of IC.

6 Outlook: a more general version of IC

IC has been proposed in this text as a principle to infer causal relations (whether A causes
B). Yet, a graphical causal model also provides a description of the structure of the underly-
ing physical mechanisms governing a system under study (Lemeire et al, 2011b). The state
of each variable, represented by a node in the graph, is generated by a stochastic process
that is determined by the values of its parent variables in the graph. Each CPD corresponds
to a separate, autonomous part of the system; processes corresponding to different CPDs
do not interact. The modularity property (‘model components corresponds to independent
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Fig. 8 Example multiple output mechanism.

parts’) makes it possible to reason about changes to the system (Pearl, 2000). A mechanism
in the system can be replaced by another without affecting the rest of the system. Hence,
a CPD in the model can be replaced by another without affecting the rest of the model.
As such IC provides a condition to verify whether model components provides a ‘natural’
decomposition of the system.

The following rough ideas may give a first hint in the direction of generalizing the IC
condition so that it can be applied to other model classes. IC can be restated in a more ab-
stract way by saying that model components should be algorithmically independent. The
acronym can then be used as ‘Independence of Components’. The following example of a
so-called ‘multiple output mechanism’ shows that this principle goes beyond factorizations
given by Bayesian networks. Consider a chemical reaction between substances A and B
which results in two new substancesX and Y . This is modeled by a causal graph as depicted
in Fig. 8(a) and quantified with two CPDs as shown in Fig. 8(b). But since the chemical reac-
tion is one indivisible mechanism producingX and Y together, Fig. 8(c) better describes the
decomposition of the system, since we cannot regard the CPDs P (X|A,B) and P (Y |A,B)
as two separate independent and autonomous mechanisms. We should model it as one indi-
visible mechanism. Such a multiple output mechanism might be identifiable by violation of
the IC condition for the Bayesian network representation. In some cases, the description of
P (X | A,B) will be related to that of P (Y | A,B). The description of P (X,Y | A,B)
will be shorter than the separate descriptions of both CPDs taken together. Note that the
example relates to the chemical factory given by Cartwright (2002, p.436), but she uses it as
a counterexample of the Markov condition.

In Sec. 6 we proposed Markov networks as an alternative model class. According to
a Markov network, described by an undirected graph G, the JPD factorizes as (Lauritzen,
1996)

P (X1, . . . , Xn) =
∏

C∈cl(G)

φ(C) ,

where cl(G) denotes the cliques of G (that is, subsets of nodes that are fully connected) and
φ(C) is a ‘potential’ corresponding to the clique C. Applying our abstract IC onto Markov
networks - the potentials φ(C) ought to be algorithmically independent - might offer a useful
condition to infer a meaningful decomposition of the system into potentials.

7 Conclusions

We have argued that the principle of algorithmically Independent Conditionals (IC) is a
helpful basis for causal inference. Our examples suggest that its implications are more plau-
sible than those of Faithfulness (FF). IC relies on a prior that not only allows simple CPDs
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(as opposed to FF which often rules them out) but even prefers them. Causal inference that
is based on IC therefore respects Occam’s razor better than FF.

However, one should keep in mind that IC is not a practical inference method, in partic-
ular because Kolmogorov complexity is uncomputable. Instead, we consider its role more as
being a ‘gold standard’ for causal inference from statistical data. We have argued that seve-
ral practical inference algorithms have already been inspired and justified by IC; to develop
further practical methods along this line is a challenging goal for the future.
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