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Abstract

Nonlinear ICA may not result in nonlinear
blind source separation, since solutions to
nonlinear ICA are highly non-unique. In
practice, the nonlinearity in the data genera-
tion procedure is usually not strong. Thus it
is reasonable to select the solution with the
mixing procedure close to linear. In this pa-
per we propose to solve nonlinear ICA with
the “minimal nonlinear distortion” principle.
This is achieved by incorporating a regular-
ization term to minimize the mean square
error between the mixing mapping and the
best-fitting linear one. As an application,
the proposed method helps to identify lin-
ear, non-Gaussian, and acyclic causal models
when mild nonlinearity exists in the data gen-
eration procedure. Using this method to sep-
arate daily returns of a set of stocks, we suc-
cessfully identify their linear causal relations.
The resulting causal relations give some in-
teresting insights into the stock market.

1. Introduction

Independent component analysis (ICA) aims at recov-
ering independent sources from their mixtures, with-
out knowing the mixing procedure or any specific
knowledge of the sources. If the sources are lin-
early mixed, under weak assumptions, ICA can re-
cover the original sources with the trivial permuta-
tion and scaling indeterminacies. ICA is currently a
popular method for blind source separation (BSS) of
linear mixtures. However, nonlinear ICA does not nec-
essarily lead to nonlinear BSS. Hyvärinen and Pajunen
(1999) showed that solutions to nonlinear ICA always
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exist, and that they are highly non-unique. In fact,
nonlinear BSS is impossible without additional prior
knowledge on the mixing model, since the indepen-
dence assumption is not strong enough in the general
nonlinear mixing case (Jutten & Taleb, 2000).

If we constrain the nonlinear mixing mapping to have
some particular forms, the indeterminacies in the re-
sults of nonlinear ICA can be reduced dramatically,
and as a consequence, in these cases nonlinear ICA
may lead to nonlinear BSS. But sometimes, the form
of the nonlinear mixing procedure may be unknown.
Consequently, in order to model arbitrary nonlinear
mappings, one may need to resort to a flexible non-
linear function approximator, such as the multi-layer
perceptron (MLP) or the radius basis function (RBF)
network, to represent the nonlinear separation system.
In this situation, in order to achieve BSS, nonlinear
ICA requires extra constraints or regularization.

Almeida (2003) used the MLP to model the sepa-
ration system and trains the MLP by information-
maximization (Infomax). Moreover, smoothness pro-
vided by the MLP was believed to be a suitable reg-
ularization condition to achieve nonlinear BSS. But it
seems not sufficient, as shown by the counterexample
in Jutten and Karhunen (2003). In Tan et al. (2001),
a RBF network is utilized to represent the separation
system, and partial moments of the outputs are used
for regularization. The matching between the rele-
vant moments of the outputs and those of the origi-
nal sources was expected to guarantee a unique solu-
tion. But the moments of the original sources may be
unknown. In addition, if the transformation from the
original sources to the recovered signals is non-trivial,1

it seems that this regularization could not help to re-
cover the original sources. Variational Bayesian non-
linear ICA (Valpola, 2000) utilizes the MLP to model
the nonlinear mixing transformation. By resorting

1Roughly speaking, a trivial transformation of y =
(y1, y2, · · · , yn)T is a component-wise invertible transfor-
mation on a permuted version of yi (Jutten & Taleb, 2000).
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to the variational Bayesian inference technique, this
method can do model selection and avoid overfitting.
If we can find some additional knowledge about the
nonlinear mixing transformation, the results of non-
linear ICA will be much more meaningful and reliable.

Although we may not know the form of the nonlinear-
ity in the data generation procedure, fortunately, the
nonlinearity in the generation procedure of natural sig-
nals is usually not strong. Hence, provided that the
nonlinear ICA outputs are mutually independent, we
would prefer the solution with the mixing transforma-
tion as close as possible to linear. This information can
help to reduce the indeterminacies in nonlinear ICA
greatly, and will be incorporated to solve the nonlin-
ear ICA problem in this paper. In this paper we utilize
the MLP to represent the separation system, and we
should address that the analysis also applies if other
flexible nonlinear models are adopted.

The minimal nonlinear distortion (MND) of the mix-
ing system is achieved by the regularization technique.
The objective function is the mutual information be-
tween outputs penalized by a regularization term mea-
suring the level of “closeness to linear” of the mixing
system. The mean square error (MSE) between the
nonlinear mixing mapping and its best-fitting linear
one provides such a term. A related regularizer is the
smoothness regularizer exploiting second-order partial
derivatives. We show that this regularizer actually in-
dicates the local “closeness to linear” of the nonlinear
function averaged at every point.

2. Nonlinear ICA with Minimum
Nonlinear Distortion

2.1. Nonlinear ICA

Assume that the observed data x = (x1, · · · , xn)T are
generated from an independent random vector s =
(s1, · · · , sn)T by a nonlinear transformation x = F(s),
where F is an unknown real-valued n-component mix-
ing function. Here for simplicity, we have assumed that
the number of observed variables equals that of the
original independent variables. The general nonlinear
ICA problem is to find a mapping G : R

n → R
n such

that y = G(x;θ) has statistically independent compo-
nents. Nonlinear ICA is an ill-posed problem and its
solutions are highly non-unique. In order to achieve
nonlinear BSS, which aims at recovering the original
independent sources si, we must have additional prior
information or suitable regularization constraints.

2.2. With Minimum Nonlinear Distortion

Inspired by the fact that in practice the nonlinearity
in the data generation procedure is usually not very

strong, we propose the “minimal nonlinear distortion”
(MND) principle to alleviate the ill-posedness of the
nonlinear ICA problem. That is, under the condition
that the separation outputs yi are mutually indepen-
dent, we prefer the solution with the corresponding
mixing transformation F as close as possible to linear.

Now we need a measure of “closeness to linear” of a
mapping. Given a nonlinear mapping F , its deviation
from the affine mapping A∗, which fits F best among
all affine mappings A, is an indicator of its “close-
ness to linear”, or the level of its nonlinear distortion.
The deviation can be measured in various ways. The
MSE is adopted here, as it greatly facilitates subse-
quent analysis. Consequently, the “closeness to linear”
of F = G−1 can be measured by the MSE between G−1

and A∗. We denote this measure by RMSE(θ). Let
x∗ = (x∗1, · · · , x∗n)T be the output of the affine trans-
formation from y by A∗. Let ỹ = [y; 1]. RMSE(θ)
can then be written as the MSE between xi and x∗i :

RMSE(θ) = E{(x − x∗)T (x − x∗)} , where (1)

x∗ = A∗ỹ, and A∗ = argA minE{(x − Ay)T (x − Ay)}
Here A∗ is a n × (n + 1) matrix.2 Figure 1 shows

the separation system G together with the generation
process of RMSE . With RMSE measuring the level
of nonlinear distortion, nonlinear ICA with MND is a
constrained optimization problem; it aims to minimize
the mutual information between outputs, i.e. I(y),
subject to RMSE(θ) ≤ t, where t is a pre-assigned
parameter. This is equivalent to minimizing

J = I(y) + λRMSE(θ) (2)

where λ is the regularization parameter.
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Figure 1. Separation system G (solid line) and generation
of RMSE (dashed line). RMSE =

∑n
i=1 v

2
i , where vi =

xi − x∗i . Here it is assumed that x and y are zero-mean;
consequently x∗ = A∗y and A∗ is n× n (see Footnote 2).

3. With G modelled by a MLP

MND can be incorporated in many nonlinear ICA
methods to avoid unwanted solutions. In particular,
here we adopt the MLP to represent the de-mixing

2If E(y) = E(x) = 0, x∗ can be obtained as x∗ = A∗y
instead, and here A∗ is a n× n matrix.
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mapping G, just as the MISEP method (Almeida,
2003) does. This method is an extension of the Info-
max method for linear ICA (Bell & Sejnowski, 1995).
Figure 2 shows the structure used in this method.
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Figure 2. Network structure used in Infomax and MISEP.
G is the separation system, and ψi are the nonlinearities
applied to the separated signals.

With the Infomax principle, parameters in G and ψi

are learned by maximizing the joint entropy of the
outputs of the structure in Figure 2, i.e. H(u) =
H(x)+E{log |detJ|}, where J = ∂u

∂x is the Jacobian of
the transformation from x to u. As H(x) does not de-
pend on the parameters in G and ψi, maximizing H(u)
is equivalent to the minimization of −E{log |detJ|}.
The resulting learning rule for θ, the parameters in G,
is the same as that obtained by minimizing I(y). It
was derived in Almeida (2003), in a manner similar to
the back-propagation algorithm.

The MLP adopted in this paper has linear output
units and a single hidden layer with activation function
h. Direct connections between the inputs and output
units are also permitted. Let a = (a1, · · · , aM )T and
z = (z1, · · · , zM )T be the inputs and outputs of the
hidden units, and W and b denote the weights and
biases, respectively. We use superscripts to distinguish
the locations of these parameters. The output of the
G network in Figure 2 takes the form:

y = W(d) · x + W(2) · z + b(2), where (3)
zi = h(ai), and a = W(1)x + b(1)

3.1. Learning Rule

Now we incorporate MND into the above nonlinear
ICA method. The objective function becomes Eq. 2.
The learning rule for θ to minimize the first term in
Eq. 2 has been considered in Almeida (2003); hence
here we just give the gradient of RMSE w.r.t θ.

According to Eq. 1, we have

∂RMSE

∂A∗ = −2E{(x − A∗ỹ)ỹT } (4)

Setting the derivative to 0 gives A∗:

E{(x − A∗ỹ)ỹT } = 0

⇐⇒ A∗ = E{xỹT }[E{ỹỹT }]−1 (5)

We can see that due to the adoption of MSE, A∗ can
be obtained in closed form, which greatly simplifies the
derivation.

RMSE can then be written as

RMSE = Tr
(
E{(x − A∗ỹ)(x − A∗ỹ)T })

= −Tr
(
E{A∗ỹxT }) + const

= −Tr
(
E{xỹT }[E{ỹỹT }]−1E{ỹxT }) + const

Since yi are independent from each other, they
are uncorrelated. Moreover, we can easily make
yi zero-mean by adjusting b(2), the biases in
the output layer. Consequently, E{ỹỹT } =
diag{E(y2

1), E(y2
2), · · · , E(y2

n), 1}, and RMSE becomes

RMSE = −
n∑

j=1

n∑
i=1

E2(xjyi)
E(y2

i )
+ const (6)

Define K = (K1, · · · ,Kn)T with its i-th element being

Ki = 2
n∑

j=1

[E2(xjyi)
E2(y2

i )
yi − E(xjyi)

E(y2
i )

xj

]
(7)

We then have ∂RMSE

∂yi
= E{Ki}. Using the chain rule,

also noting Eq. 3, the gradient of RMSE w.r.t. W(2)

can be obtained:

∂RMSE

∂W(2)
= E

{ n∑
i=1

Ki · ∂yi

∂W(2)

}
= E{K · zT } (8)

where z = (z1, · · · , zM )T is the output of the hidden
layer of the MLP. Let H = diag{h′(a1), · · · , h′(aM )}.
After tedious derivation, we have

∂RMSE

∂W(1)
= E{H · W(2)T · K · xT } (9)

∂RMSE

∂W(d)
= E{K · xT } (10)

∂RMSE

∂b(2)
= E{K} (11)

∂RMSE

∂b(1)
= E{H · W(2)T · K}. (12)

RMSE , given in Eq. 1, is inconsistent with certain scal-
ing properties of the observations x. To avoid this, one
may need to normalize the variance of the observations
xi as preprocessing, if necessary.

3.2. Determination of the Regularization
Parameter λ

We suggest initializing λ with a large value λ0 at the
beginning of training and decreasing it to a small con-
stant λc during the learning process. A large value for
λ at the beginning helps to reduce the possibility of
getting into unwanted solutions. As training goes on,
the influence of the regularization term is reduced, and
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G has more freedom. Theoretically, the determination
of λc depends on the level of nonlinear distortion in the
mixing procedure. If the nonlinear distortion is con-
siderable, we should use a very small value for λc to
give the G network enough flexibility. If the variance of
the observations xi is normalized, typical values used
in our experiments are λ0 = 5 and λc = 0.01.

4. Relation to Previous Works

The MISEP method has been reported to solve some
nonlinear BSS problems successfully, including sepa-
rating a real-life nonlinear image mixture (Almeida,
2005; Almeida, 2003). Actually, in these experiments,
MND seems to be utilized implicitly, though not ex-
actly. First, direct connections between inputs and
output units were incorporated in the G network.
They can quickly adapt the linear part of G. Second,
in Almeida (2005), the G network was initialized with
an identity mapping, and during the first 100 epochs,
it was constrained to be linear. Early stopping was
also applied, and hence G is expected to be not far
from linear. We would like to mention that in this pa-
per we formulate MND as a general principle, claim
its validity and usefulness for solving nonlinear ICA
problems, and give the corresponding regularizer.

In the kernel-based nonlinear BSS method (Harmel-
ing et al., 2003), the data are first mapped to a high-
dimensional kernel feature space. Next, a BSS method
based on second order temporal decorrelation is per-
formed. In this way a large number of components are
extracted. When the nonlinearity in data generation
is not too strong, the MND principle provides a way to
select a subset of output components corresponding to
the original sources. Assume that the outputs yi are
zero-mean and of unit variance. From Eq. 6 we can
see that one can select yi with large

∑n
j=1

E2(xjyi)

E(y2
i )

=∑n
j=1E

2(xjyi) =
∑n

j=1 var(xj) · corr2(xj , yi).

The smoothness regularizer exploiting second-order
derivatives (Tikhonov & Arsenin, 1977; Poggio et al.,
1985) is also related to the MND principle, as shown
below.

4.1. Smoothness: Local Closeness to Linear

RMSE , given in Eq. 1, indicates the deviation of the
mapping F from the affine mapping which fits F glob-
ally best. In contrast, one may enforce the local “close-
ness to linear” of the mapping averaged at every point.
This actually leads to the smoothness regularizer ex-
ploiting second-order derivatives, as shown below.

For a one-dimensional sufficiently smooth function
g(x), its second-order Taylor expansion in the vicin-

ity of x is g(x + ε) ≈ g(x) +
(

∂g
∂x

)T · ε + 1
2εT Hxε.

Here ε is a small variation of x and Hx denotes the
Hessian matrix of g. Let �ij = ∂2g

∂xi∂xj
. If we use the

first-order Taylor expansion of g at x to approximate
g(x + ε), the square error is

∣∣∣
∣∣∣g(x + ε) − g(x) −

( ∂g
∂x

)T

· ε
∣∣∣
∣∣∣
2

≈ 1
4

∣∣∣∣εT Hxε
∣∣∣∣2 =

1
4

( n∑
i,j=1

�ijεiεj

)2

=
1
4

( n∑
i=1

�iiε
2
i +

n∑
i,j=1,

i�=j

(
√

2�ij)(
√

2εiεj)
)2

≤ 1
4

( n∑
i=1

�2
ii + 2

n∑
i,j=1,

i�=j

�2
ij

)( n∑
i=1

ε4i + 2
n∑

i,j=1,
i�=j

ε2i ε
2
j

)

=
1
4
||ε||4 ·

( n∑
i=1

�2
ii + 2

n∑
i,j=1,

i�=j

�2
ij

)

=
1
4
||ε||4 ·

n∑
i,j=1

�2
ij (13)

The above inequality holds due to the Cauchy’s in-
equality. We can see that in order to make g locally
close to linear at every point in the domain of x, we
just need to minimize

∫
Dx

∑n
i,j=1 �2

ijdx. This regu-
larizer has been widely used for achieving the smooth-
ness constraint in many problems (Tikhonov & Ars-
enin, 1977; Poggio et al., 1985). When the mapping
is vector-valued, we need to apply this regularizer to
each output of the mapping.

Originally we intend to do regularization on the mixing
mapping F , but it is difficult to evaluate ∂2xl

∂yi∂yj
. In-

stead, we do regularization on G, the inverse of F . The
regularization term in Eq. 2 then becomes Rlocal(θ) =∫

Dx

∑n
i=1,j=1 Pijdx, where Pij �

∑n
l=1

(
∂2yl

∂xi∂xj

)2.

There are totally n2(n+1)
2 different terms

(
∂2yl

∂xi∂xj

)2 in
the integrand. For simplicity and computational rea-
sons, sometimes one may drop the cross derivatives in
the integrand, i.e.

(
∂2yl

∂xi∂xj

)2 with i �= j, and conse-
quently obtain the curvature-driven smoothing regu-
larizer proposed in Bishop (1993).

5. Experiments with Synthetic Data

5.1. Methods and Performance Evaluation

In this section we investigate the performance of the
proposed nonlinear ICA method using synthetic data.
The following six methods (schemes) were used to sep-
arate various nonlinear mixtures. 1. MISEP: The
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MISEP method (Almeida, 2003) with θ randomly ini-
tialized. 2. Linear init.: MISEP with G initialized as
a linear mapping. This was achieved by adopting the
regularization term Eq. 1 with λ = 7 (which is very
large) in the first 50 epochs. 3. MND: MISEP incor-
porating the MND principle (Section 3). The regular-
ization parameter λ decayed from λ0 = 5 to λc = 0.01
in the first 350 epochs. After that λ was fixed to λc.
4. Smooth (I): MISEP incorporating the smoothness
regularizer (Section 4.1). λ decayed from 1 to 0.004 in
the first 350 epochs. 5. Smooth (II): Same as Smooth
(I), but λ was fixed to 0.007. 6. VB-NICA: Varia-
tional Bayesian nonlinear ICA (Valpola, 2000). PCA
was used for initialization. After obtaining nonlinear
factor analysis solutions using the package, we applied
linear ICA, performed by FastICA (Hyvärinen, 1999),
to achieve nonlinear BSS. In addition, in order to show
the necessity of exploiting nonlinear ICA methods for
separating nonlinear mixtures, linear ICA (FastICA
was adopted) was also used to separate the nonlinear
mixtures. To reduce the random effect, all the meth-
ods were repeated for 40 runs, and in each run the
MLP was randomly initialized.

In this section, we just consider the 2-source-2-mixture
case. For comparison, the MLP without direct con-
nections and that with direct connections were both
adopted to represent G. Like in Almeida (2003), the
MLP has 20 “arctan” hidden units, 10 of which are
connected to each of yi. We used the signal to noise
ratio (SNR) of yi relative to si, denoted by SNR(yi),
to assess the separation performance of si. In addi-
tion, to take into account possible trivial transforma-
tions between si and yi (for the definition of trivial
transformations, see Footnote 1), we applied a flexible
nonlinear transformation h to yi to minimize the MSE
between h(yi) and si. The SNR of h(yi) relative to
si was used as another performance measure. In our
experiments h was implemented by a two-layer MLP
with eight “tansig” hidden units and a linear output
unit.

5.2. Experimental Results

In experiments both super-Gaussian and sub-Gaussian
sources were used. Three kinds of nonlinear mixtures
were investigated. They are distorted source (DS) mix-
tures, post-nonlinear (PNL) mixtures (Taleb & Jutten,
1999), and generic nonlinear (GN) mixtures generated
by a MLP. The DS mixtures xi were generated accord-
ing to x1 = a11s1 + f1(s2), x2 = f2(s1) + a22s2, where
fi are invertible nonlinear functions. We call them DS
mixtures since each observation is a linear mixture of
nonlinearly distorted sources. Each signal has 1000
samples. Figure 3(a) shows the scatter plot of the DS

mixtures xi used here. To see the level of nonlinear
distortion in the mixing transformation, we give the
scatter plot of the affine transformation of si which
fits xi best, shown by gray points. PNL mixtures were
generated by a linear mixing procedure of si followed
by a mild component-wise invertible nonlinear trans-
formation. We used a 2-2-2 MLP with “arctan” hidden
units to generate the GN mixtures. The hidden units
also have biases. All weights in the MLP were ran-
domly generated. They are not large such that the
resulting nonlinear distortion is not very strong. The
scatter plot of the PNL mixtures and that of the GN
mixtures used in our experiments are given in Fig-
ure 3(b) and (c), respectively.
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Figure 3. (a) Scatter plot of the DS mixtures, generated
from two super-Gaussian sources. (b) That of the PNL
mixtures. The sources are a uniformly distributed white
signal and a sinusoid waveform. (c) That of the GN
mixtures, generated from the first sources in (a) and (b).
Points in gray are linear mixtures of si which fit xi best.

We found that the separated results in the two chan-
nels have a similar SNR, due to space limitation,
here we just give the SNR in the first channel. Fig-
ures 4 and 5 compare the boxplot of SNR(y1) and
SNR(h(y1)) for the DS mixtures with different meth-
ods. In Figure 4, the MLP has no direct connections
between inputs and output units, while in Figure 5 the
MLP has direct connections. We can see that in this
case the methods MND, Smooth(I), and Smooth(II)
give very high SNR, and at the same time, produce
very few unwanted results. Moreover, the MLP with
direct connections behaves better than that without
direct connections. The performance of VB-NICA is
not good. But It should be noted that VB-NICA may
not exhibit its potential powerfulness in the experi-
ments, since the source number is given and no noise
is considered.

In separating the PNL mixtures, we found that the
MLP with direct corrections also behaves better. But
for the GN mixtures, the MLP without direct connec-
tions produces slightly better results. The separation
results of these mixtures with the MLP without direct
connections are given in Figures 6 and 7. Obviously,
in these two cases MND gives the best performance,
and the smoothness regularizer behaves poorly. Linear
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initialization seems not helpful for separating the PNL
mixtures, while it helps to separate the GN mixtures
to some degree. Among all these three kinds of non-
linear mixtures, the PNL mixtures are most difficult
to be separated by the MLP structure.
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Figure 4. Boxplot of the SNR of separating the DS mix-
tures by the MLP without direct connections between in-
puts and output units. (a) SNR(y1). (b) SNR(h(y1)).
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Figure 5. Separating the DS mixtures by the MLP with
direct connections. (a) SNR(y1). (b) SNR(h(y1)).
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Figure 6. Separating the PNL mixtures by the MLP with-
out direct connections. (a) SNR(y1). (b) SNR(h(y1)).

6. Application to Causality Discovery
in the Stock Market

6.1. Introduction

It is well known that financial returns are not indepen-
dent of each other. Their relations can be described
in different ways. For example, in risk management,
correlations are used to describe the relations and help
to construct portfolios. The business group, which is
a collection of firms bound together in some formal
or informal ways, focuses on ties between financial as-
sets. Here we are interested in how stock returns are
affected by each other. The return of a particular stock
may be influenced by those of other stocks, for many
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Figure 7. Separating the GN mixtures by the MLP without
direct connections. (a) SNR(y1). (b) SNR(h(y1)).

reasons, such as the ownership relations and financial
interlinkages. According to the efficient market hy-
pothesis, such influence should be reflected in stock
returns immediately. In this part we aim to discover
the causal relations among selected stocks by analyz-
ing their daily returns.

Traditionally, causality discovery algorithms for con-
tinuous variables usually assume the Gaussianity of
the variables. Under this assumption, only the correla-
tion structure of variables is considered and all higher-
order information is neglected. As a consequence, one
would obtain some possible causal diagrams which are
equivalent in their correlation structure, and could not
find the true causal directions. Recently, it has been
shown that the non-Gaussianity distribution of the
variables allows us to distinguish the explanatory vari-
able from the response variable, and consequently, to
identify the full causal model. In particular, Shimizu
et al. (2006) proposed an elegant and efficient method
for identifying the linear, non-Gaussian, acyclic causal
model (LiNGAM) by exploiting ICA.

6.2. Causality Discovery by ICA: Basic Idea

The LiNGAM model assumes that the causal relations
among observed variables xi can be written in ma-
trix form: x = Bx + e, where x = (x1, · · · , xn)T ,
e = (e1, · · · , en)T , and B can be permuted (by simul-
taneous equal row and column permutations) to strict
lower triangularity if one knows the causal order of
xi. ei are independent disturbances, and at most one
of them is Gaussian. Let W = I − B, we then have
e = Wx, this is exactly the ICA separation procedure.
As B can be permuted to strict lower triangularity, it
is required that W can be permuted to lower triangu-
larity. For details, see Shimizu et al. (2006).

6.3. By Nonlinear ICA with MND

The above method may fail to do causality discovery
when nonlinear distortion or noise exists in the data
generation procedure. Let us consider the general case
of nonlinear distortion often encountered in observed
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data, provided that it is smooth and mild. We use the
MLP structure described in Section 3 to model the
nonlinear transformation from the observed variables
xi to the disturbance variables ei. This structure is a
linear transformation W(d) coupled with an ordinary
MLP, denoted by φ(x).

Due to the structure of the transformation from x
to e, we have e = W(d)x + φ(x), and consequently
x = (I − W(d))x − φ(x) + e. As it is difficult to
analyze the relations among xi implied by the nonlin-
ear transformation φ(x), we expect that φ(x) is weak
enough such that its effect can be neglected. The lin-
ear causal relations among xi can then by discovered
by analyzing W(d).

In order to do causality discovery, the separation sys-
tem e = W(d)x + φ(x) is expected to exhibit the
following properties. 1. The outputs ei are mutu-
ally independent, since independence of ei is a cru-
cial assumption in LiNGAM. This can be achieved
since nonlinear ICA always has solutions. 2. W(d) is
sparse enough such that it can be permuted to lower
triangularity. This can be enforced by incorporating
the L1 (Hyvärinen & Karthikesh, 2000) or smoothly
clipped absolute deviation (SCAD) penalty (Fan &
Li, 2001) on the entries of W(d). 3. The nonlinear
mapping φ(x) is weak enough such that we just care
about the linear causal relations indicated by W(d).
To achieve this, we adopt nonlinear ICA with MND
presented in Sections 2 and 3. In addition, we initial-
ize the system with linear ICA results and use early
stopping: W(d) is initialized to the linear ICA separa-
tion matrix, and the initial values for weights in φ(x)
are around 0; early stopping means that we stop the
training process once the LiNGAM property holds for
W(d). After the algorithm terminates, var(φi(x))

var(ei)
can

be used to measure the level of nonlinear distortion in
each channel, if needed.

6.4. Data

The Hong Kong stock market has some structural fea-
tures different from the US and UK markets. One
typical feature is that the concentration of market ac-
tivities and equity ownership in relatively small group
of stocks, which probably makes causal relations in the
Hong Kong stock market more obvious. However, we
should be aware that it is probably very hard to dis-
cover the causal relations among the selected stocks,
since financial data are somewhat non-stationary, the
data generation mechanism is not clear, and there may
exist some confounder variables.

We aim at discovering the causality network among
14 stocks selected from the Hong Kong stock mar-

ket.3 The selected 14 stocks are constituents of Hang
Seng Index (HSI).4 They are almost the largest com-
panies in this stock market. We use the daily divi-
dend/split adjusted closing prices from Jan. 4, 2000
to Jun. 17, 2005, obtained from the Yahoo finance
database. For the few days when the stock price is
not available, the simple linear interpolation is used to
estimate the price. Denoting the closing price of the
ith stock on day t by Pit, the corresponding return
is calculated by xit = Pit−Pi,t−1

Pi,t−1
. The observed data

are xt = (x1t, · · · , x14,t)T . Each return series contains
1331 samples.

6.5. Empirical Results

We first tried to do causality discovery on xt by ap-
plying standard ICA. Both FastICA and the natural
gradient ICA algorithm were adopted. We used the
LiNGAM software5 to permutate W and to obtain
the matrix B. B seems unlikely to be lower-triangular;
in fact, the ratio of the sum of squares of its upper-
triangular entries to that of all entries is at least 0.24,
which is very large. We may conclude that the data x
do not satisfy the LiNGAM model.

We then adopted the method discussed in Section 6.3.
The SCAD penalty (Fan & Li, 2001) is applied to en-
tries of W(d) with λSCAD = 0.04. The regularization
parameter for nonlinear ICA with MND (Eq. 8∼12)
is λ = 0.14. After 195 epoches, W(d) satisfies the
LiNGAM assumption and the training process was
terminated. The nonlinear distortion level var(φi(x))

var(ei)
is 0.0485, 0.0145, 0.0287, 0.2075, 0.0180, 0.0753, 0,
0.0001, 0.0193, 0.0652, 0.0146, 0.0419, 0.0544, and
0.0492, respectively, for the 14 outputs ei. From them
we can see that nonlinear distortion is very weak. By
inspection of their kurtoses, we found that all ei are
non-Gaussian. By analyzing the learned W(d), we ob-
tained the linear causal relations among these stocks,
shown in Figure 8.

From Figure 8 we have some interesting findings. 1.
The ownership relation tends to cause a causal rela-
tion. If A is a holding company of B, there tends to
be a causal relation from B to A. There are two signifi-
cant relations x8 → x5 and x10 → x1. In fact, x5 owns
some 60% of x8, and x1 holds about 50% of x10. 2.
Stocks belonging to the same subindex tend to be con-
nected together. For example, x2, x3, and x6, which
are linked together, are the only three constituents of

3They are not listed here; see the legend in Figure 8.
4except that Hang Lung Development Co. Ltd

(0010.hk) was deleted from HSI on Dec. 2, 2002.
5It is available at

http : //www.cs.helsinki.fi/group/neuroinf/lingam/.



Nonlinear ICA with Minimal Nonlinear Distortion

Hang Seng Utilities Index. x1, x9, and x11 are con-
stituents of Hang Seng Property Index. 3. Large bank
companies are the cause of many stocks, meaning that
the international impact to the Hong Kong stock mar-
ket is probably reflected through large banks. Here x5

and x8 are the two largest banks in Hong Kong. 4.
Stocks in Hang Seng Property Index tend to depend
on many other stocks, while they hardly influence oth-
ers. Here x1, x9, and x11 are in Hang Seng Property
Index. These findings also indicate that the indepen-
dent factor model may provide a reasonable way to
explain the generation of stock returns.

x1: Cheung Kong (0001.hk)
x2: CLP Hldgs (0002.hk) 
x3: HK & China Gas (0003.hk) 
x4: Wharf (Hldgs) (0004.hk)
x5: HSBC Hldg (0005.hk), 
x6: HK Electric (0006.hk) 
x7: Hang Lung Dev (0010.hk) 
x8: Hang Seng Bank (0011.hk)
x9: Henderson Land (0012.hk)
x10: Hutchison (0013.hk)  
x11: Sun Hung Kai Prop (0016.hk) 
x12: Swire Pacific ’A’ (0019.hk)
x13: Bank of East Asia (0023.hk) 
x14: Cathay Pacific Air (0293.hk)  

Figure 8. Casual diagram of the 14 stocks.

7. Conclusion

We have proposed the “minimal nonlinear distortion”
principle for solving the nonlinear ICA problem. This
principle helps to reduce the indeterminacies in so-
lutions of nonlinear ICA and to overcome the ill-
posedness of nonlinear ICA. With this principle, the
solution whose nonlinear mixing system is close to lin-
ear is preferred. Experimental results with synthetic
data show that when the data are generated with mild
nonlinear distortion, the proposed method produces
good and reliable results for separating various non-
linear mixtures. The successful application of the pro-
posed nonlinear ICA method to causality discovery in
the Hong Kong stock market illustrates the applica-
bility of the method and the validity of the “minimal
nonlinear distortion” principle for some real-life prob-
lems. The result also supports the validity of the in-
dependent factor model in finance.
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