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Abstract

We propose a new inference rule for estimating causal structure that underlies the observed
statistical dependencies among n random variables. Our method is based on comparing the
conditional distributions of variables given their direct causes (the so-called “Markov kernels”)
for all hypothetical causal directions and choosing the most plausible one. We consider those
Markov kernels most plausible, which maximize the (conditional) entropies constrained by
their observed first moment (expectation) and second moments (variance and covariance with
its direct causes) based on their given domain.

In this paper, we discuss our inference rule for causal relationships between two variables in
detail, apply it to a real-world temperature data set with known causality and show that our
method provides a correct result for the example.

1 Introduction

Causal inference plays a significant role in many areas of science, finance and industry. But how
can causal knowledge be discovered automatically from non-experimental data? Given correlations
among observed random variables there is in principle no method to identify causal relationships
between the variables uniquely. Nevertheless there are some interesting inference rules [6, 9] that
provide at least some hints on a causal relationship. The formal basis of these approaches are
graphical models [5], where the random variables are the nodes of a directed acyclic graph (DAG)
and an arrow from variable X to Y indicates that there is a direct causal influence from X to Y .
The definition of “direct causal effect” from X to Y refers to a hypothetical intervention where all
variables in the model except from X and Y are adjusted to fixed values and one observes whether
the distribution of Y changes while X is adjusted to different values. As clarified by Pearl in full
detail [6], the change of the distribution of Y in such an intervention cannot be derived from the
joint distribution of all variables without defining a causal graph. The relation indicating whether
there is a causal effect from X to Y is inherently asymmetric, because if X causes Y then intervening
to change the value of X can change the disbribution of Y but intervening to change the value of Y

cannot change the distribution of X, whereas statistical dependency defines a symmetric relation.

In Pearl’s approach, the Markov condition is the essential axiom that unifies a causal structure
and statistical dependencies among the variables. This assumption is based originally on the idea
of the philosophers Reichenbach [7] and Salmon [8]. The Markov condition can be stated simply:
Conditional on all its direct causes, a variable X is independent of every other variable except its
effects. The intuition behind the causal Markov assumption is quite plausible: Ignoring a variable’s
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effects, all the relevant probabilistic information about a variable that can be obtained from a
system is contained only in its direct causes. When one gives DAGs a causal interpretation, it then
becomes necessary to argue that the Markov condition is in fact the correct connection between
causal structure and probabilistic independence. A causal inference rule formulated by Pearl [6],
Spirtes, Glymour and Scheines [9] is based on the principle to choose among all “possible” DAGs (in
the sense that they satisfy the Markov condition) a causal graph that explains exactly (if possible)
these conditional independencies that are entailed by the Markov condition or as many of them as
possible.

However, any causal inference based on the Markov condition needs a threshold value for the
decision of the statistical independency, which is chosen somehow arbitrarily. Moreover, there
are often many distinct causal structures where the rules above do not allow to prefer one of
them to the others. In an extreme case that there are no (conditional) independent relations
among the observed variables, a causal inference based on the Markov condition is inapplicable,
because the only possible causal structures are the complete acyclic graphs and there is no simplicity
criterion that allows to prefer one of the n! complete acyclic graphs on n variables to the others. In
particular, one cannot determine the causal direction between two variables X,Y if only these two
are observed, because both hypothetical causal directions (X → Y and Y → X) can in principle
generate all joint distributions. Our proposal is to try to capture the asymmetry of causality
by the shape of conditional distributions on a hypothetical “true” causal graph. The hope is,
roughly speaking, that the conditional distribution of an effect given all its causes is typically a
“smoother” distribution than the distribution of the effect itself, and a cause itself has typically
a much “smoother” distribution than any conditional distribution of the cause given some of its
effects. Therefore, our approach will allow us to obtain some hints about causality despite the
absence of conditional independencies. In particular, one could get some ideas to determine the
causal direction already in case of only two observed variables.

2 Markov kernels of causal directions

We begin by introducing the concept of Markov kernels corresponding to a hypothetical causal
direction. A Markov kernel formalizes the distribution of an effect given all its direct causes with
respect to a given hypothetical causal graph G. We characterize the joint distribution on n random
variables (X1, · · · , Xn) by all values

P (x1, · · · , xn)

where (x1, · · · , xn) run over all possible values of (X1, · · · , Xn) and interpret them as probabilities
or probability densities according to whether it is a discrete or continuous variable. In general, the
possible values of every variable in all our discussion might be either continuous or discrete. For the
sake of simplicity and general computability, we assume in the following that the domain of each
variable is discrete and finite, since data in the real world are mostly given with finite accuracy
on a finite domain. For a continuous variable, the only change required is a suitable discretization
with a proper scale where appropriate. Due to the causal Markov condition the joint measure can
be factorized into

P (x1, · · · , xn) =

n
∏

j=1

P (xj |paj)

where paj is a tuple of values of all kj parents of Xj in G. We call the conditional probabilities in
the product the Markov kernels of P with respect to G.

Actually, we only need to focus on complete acyclic causal graphs K’s which are defined by
an ordering of the nodes and drawing arrows from each node to all its successors. One can easily
identify any causal graph G as an embedded subgraph in a suitable K by checking for each node Xj

the set of its parents in K which can be dropped without changing the Markov kernels P (xj |paj)
and consequently the joint distribution P . We call an ordering of variables a true causal direction if
the corresponding complete graph K contains the true graph G as a subgraph. As a causal ordering
consists of causal connections between a variable and all its parents, we will restrict our attention

2



in the following to identifying true causal directions between only two variables, which in general
might be one- or multidimensional. Our method of estimating causation between two variables is
based on the plausibility of the shape of the Markov kernels corresponding to a hypothetical causal
direction.

3 Criteria for plausible Markov kernels

We allow ourselves to assume some “smoothness” conditions on Markov kernels and to make sense
of the shapes of some plausible Markov kernels. We employ here the constrained maximum entropy
approach to define smooth Markov kernels. Constrained entropy maximization is a widely used
method for estimating a probability distribution. Collins, Downson and Wragg provided in [2, 3]
a mathematical framework of the maximum Shannon entropy approach to assign a probability
distribution on the basis of a limited number of moments. Although the intention is rather different
in our setting, we refer to these articles for the mathematical framework. Furthermore, as the
first and second moment can be estimated quite well from few data points, we determine the most
plausible Markov kernel as follows: Given the (joint) distribution of all its parents P (Paj), the most
plausible Markov kernel of a variable Xj is the conditional probability that maximizes its conditional
entropy constrained on the expectation and variance of Xj as well as the cross-covariance of Xj

with all its parents Paj .

3.1 Plausible Markov kernel of causes

We consider the solution of the following optimization as the most plausible Markov kernel P (X) of
a vectorial cause variable X = (X(1), · · · , X(dx)) with a domain Sx ⊆ IRdx in the causal direction
X → Y .

optimize max
P (X)

−
∑

x P (x)·ln (P (x)) (Entropy of P (X))

subject to P (x) ≥ 0 ∀x ∈ Sx (Non-negativity)
∑

x P (x) = 1 (Normalization)
∑

x x · P (x) = µ (1st moment)
∑

x x(i) · x(j) · P (x) = γij ∀i, j = 1, · · · , dx (2nd moment)

Here Sx denotes the domain of X, µ the first moment vector and γ ≡ (γij) the second moment
matrix of X. These values are estimated on the basis of the observed data. In a one-dimensional
case (dx = 1), µ is just the expectation and γ the second moment of X.

3.2 Plausible Markov kernel of effects

To determine a plausible Markov kernel P (Y |X) for an effect variable Y = (Y (1), · · · , Y (dy)) in the
causal direction X → Y with Sy ⊆ IRdy , we maximize the entropy of the conditional distribution
of Y given X constrained by the expectation vector, the within-block covariance of Y as well as the
cross-covariance of Y with its direct cause X. We consider the solution of the following optimization
as the most plausible Markov kernel for Y .

optimize max
P (Y |X)

−
∑

x

∑

y P (x) ·P (y|x)·ln(P (y|x)) (Entropy of P (Y |X))

subject to P (y|x) ≥ 0 ∀(x, y) ∈ Sx × Sy (Non-negativity)
∑

y P (y|x) = 1 ∀x ∈ Sx (Normalization)
∑

x

∑

y y ·P (x)·P (y|x) = µ (1st moment)
∑

x

∑

y y(i) ·y(j) ·P (x)·P (y|x) = γij (2nd moment)
∑

x

∑

y y(k) ·x(l) ·P (x)·P (y|x) = ηkl (2nd mixed moment)

∀i, j, k = 1, · · · , dy and l = 1, · · · , dx
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In this context the (joint) distribution of the cause variable P (X) is given. Sy denotes the domain
of Y , µ∈ IRdy the first moment vector of Y , γ ≡ (γij)∈ IRdy×dy the second moment matrix (within-

block covariance) of Y and η ≡ (ηkl)∈ IRdy×dx the second mixed moment matrix (cross-covariance)
of X and Y . Actually, in the optimization we need not take account of the non-negativity condition
explicitly , because the logarithms in the objective function already implies this condition. The
same applies also for the optimization problem in Section 3.1.

3.3 Analytic solutions for plausible Markov kernels

It is known that the optimization problems described in Subsections 3.1 and 3.2 are strictly convex
[1], which ensures the existence of a unique optimal solution for them. In case of the continuous
limit, these optimization problems can be formulated analogously. The only change required is a
substitution of integration for summation when appropriate. In some special cases we can even
find a closed-form solution. An example is the plausible Markov kernels for a causation between a
binary variable X = {−1,+1} and a one-dimensional real-valued variable Y .

For one hypothetical causal direction X → Y , the plausible Markov kernels take the form of a
Bernoulli distribution for the discrete cause X and Gaussian distributions with different expecta-
tions but the same variance for the continuous effect Y .

Q(x−1) = p and Q(x+1) = 1 − p

Q(Y |x−1) ∝ N
(

µ−1, σ
2
)

and Q(Y |x+1) ∝ N
(

µ+1, σ
2
)

.

For the other hypothetical causal direction Y → X, the plausible Markov kernels are in form of a
Gaussian distribution for a continuous cause Y and a family of hyperbolic tangent functions for a
discrete effect X.

R(Y ) ∝ N
(

µ, σ2
0

)

R(x−1|Y ) =
1

2
−

1

2
tanh(λy + ν) and R(x+1|Y ) =

1

2
+

1

2
tanh(λy + ν).

The derivations are available in Appendix A. Note that for the causal direction Y → X, the cause
variable Y shows a unimodal Gaussian distribution, whereas for the other direction X → Y the
plausible Markov kernels lead to a bimodal mixture Gaussian distribution for effect variable Y as its
marginal distribution. That means, if we observe a variable with a mixture Gaussian distribution, it
is more plausible to consider it as effect, because to regard the reverse as “true” causation, one must
accept an unusual or contrived distribution as a natural or plausible Markov kernel. Therefore, the
plausibility of Markov kernels might help us to guess the “true” causal direction.

However, due to the existence of awkward normalizing constants it is typically non-trivial to
present an analytic solution for plausible Markov kernels in a closed form of some smooth function
families. For example, the computation of P (X|Y ) requires for each given value y of Y a constraint
that the probability or density of X should sum or integrate to 1, which will be awkward, if the set of
possible values of Y becomes very large or infinite. Fortunately, if we admit a suitable discretization
on a given continuous domain, the plausible Markov kernels can be always determined for a finite
value set numerically.

4 Estimating causal direction based on maximum likelihood

Beginning with statistical information from data and all possible hypothetical complete causal
graphs, we now turn to the subject of causal inference. Each hypothetical complete causal graph
defines a unique causal ordering. For every hypothetical causal ordering X1, · · · , Xn, we compute
a set of plausible Markov kernels P (Xj |Paj) (j = 1, · · · , n) by maximizing the conditional entropy
H(Xj |Paj) subject to a known joint distribution of all parents (direct causes) Paj and the cross-
covariance of the effect Xj with all its direct causes as well as the first and second moment of
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the effect Xj . Although such an approach is applied often to estimate distributions from data, a
plausible Markov kernel should be regarded rather as a function with a causal interpretation, which
comes from prior knowledge or assumption. It characterizes the likely impact of any intervention
on a hypothetical causal graph. The intuition behind such entropy maximization is to complete the
linear part of the effect of Paj on Xj by fixing it with the maximal uncertainty, since we consider,
like the authors of [4], a linear causal relationship as a simplest form of causality.

We obtain the joint distribution of variables with hypothetical causal ordering X1, . . . , Xn by,
first, constrained maximization of the entropy H(X1), next of the conditional entropy H(X2|X1),
followed by H(X3|X2, X1) and so on. The sum of all conditional entropies is the joint entropy and
the constraints on expectations, variances and covariances coincide for all different causal orderings.
But due to the order of maximizing it can happen that we obtain different joint distributions

PorderingX1,··· ,Xn
= P (Xn|Xn−1, · · ·X1) · · ·P (X3|X2, X1) · P (X2|X1) · P (X1)

with the same constraints. Here the order of maximizing conditional entropies matters. Having cal-
culated the joint distributions from plausible Markov kernels based on all possible causal orderings,
we apply the maximum likelihood approach to decide on these different orderings. We choose an
ordering (causal graph) as “true”, if its derived plausible Markov kernels lead to a joint distribution
that has the maximum log-likelihood score by given observed data. The log-likelihood score tells us
how strong the data support the hypothesis of causal ordering in the context of plausible Markov
kernels.

In particular, for estimating the causal direction between only two observed variables X,Y

we start out with both hypothetical causal orderings and calculate the plausible Markov kernels
{Q(X),Q(Y |X)} corresponding to X → Y (causal ordering X,Y ) and the plausible Markov kernels
{R(Y ),R(X|Y )} corresponding to Y → X (causal ordering Y,X). For the hypothetical causal
direction X → Y we obtain a joint distribution

QX→Y = Q(Y |X)·Q(X)

and we get for the other hypothetical causal direction Y → X

RY →X = R(X|Y )·R(Y ).

Note that generally
QX→Y 6= RY →X

in a causal context of plausible Markov kernels. For example, one can show that the inequality
holds in the case described in Section 3.3 whensoever correlations between variables are observed
(see Appendix A for some more detail). By given data, we calculate the log-likelihood scores for
Q (based on X → Y ) and R (based on Y → X) respectively and choose the causal direction with
larger log-likelihood as “true”. This way, we hope to pick up not the symmetric dependency but
the asymmetric causality between X and Y .

5 Real-world temperature data example

To test the effectiveness of our method, we examined the causation between dates of the year
(Date) and daily average temperatures (Temperature) as an example. Common sense tells us that
the seasonal cycle is a cause of temperature variation (Figure 1), not vice versa.

Figure 1: Causation from Date to Temperature
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A real data set of daily average temperatures in Furtwangen (Black Forest, Germany) from
Jan. 1, 1979 to Jan. 31, 2004 with 9162 entries was analyzed. Due to the cyclic property of dates
of the year, we assign the unit circle, a proper subset of IR2, to the domain of the variable Date
(X,Y ) with SDate =

{

(x, y)|x2 + y2 = 1
}

. This value set can be parameterized, for example, by

x = cos
(

2π
366k

)

and y = sin
(

2π
366k

)

with k=1, · · · , 366 (maximum days per year).

Consequently, the first moment of Date is a two dimensional vector and states the expectations
in X and Y . The second mixed moment of Date is also a two dimensional vector, which defines
cross-covariance between (X,Y ) and Temperature. The second moment of Date is a symmetric
matrix, which fixes the within-block covariance of (X,Y ). Table 1 summarizes all the statistical
features from the data which we need for our optimization described in Sections 3.1 and 3.2.

Date Temperature

(X, Y ) (degree Celsius)

Value set
�
(x, y)|x2 + y2 = 1 � ⊆ IR2 [−23, 25] ⊆ IR

1st moment (0.0022,−0.0009) 5.7053

2nd moment � 0.5019 0
0 0.4981 � 84.6079

2nd mixed moment (−3.9702,−1.4548)

Table 1: Temperature data of Furtwangen

Figure 2: Plausible Markov kernels Q(Date) and Q(Temperature|Date) of causation Date →
Temperature

Figure 3: Hypothetical joint distribution QDate→Temperature based on causation Date →
Temperature

With these constraints we computed the plausible Markov kernels for both hypothetical causal
directions. Note that in all figures the variable Date is parameterized in k. Because of the non-
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uniform sampling of Date (there are often only 365 days in year and in the real data set there is
one year more observed for the days in January), the plausible Markov kernel of the cause Date in
Date→Temperature differs slightly from the usually expected uniform distribution (Figure 2, left).
For the effect variable Temperature in Date→Temperature, the plausible Markov kernel (Figure 2,
right) has a conditional expectation in a sinus form, which traces back to the cyclic property of
the cause Date, and a Gaussian-shaped function for every given value of Date, which is due to the
method of entropy maximization constrained by first and second moments.

In case of the other hypothetical causal direction Temperature → Date, the cause variable
Temperature has a Gaussian distribution (Figure 4, left), as a result of constrained entropy maxi-
mization. For the effect variable Date in Temperature→Date, we obtain a bizarre shape for its
most plausible Markov kernel (Figure 4, right).

Then we calculated the joint distributions from these plausible Markov kernels based on both
hypothetical causal directions.

QDate→Temperature = Q(Temperature|Date) · Q(Date)

RTemperature→Date = R(Date|Temperature) · R(Temperature).

Figure 3 (left) visualizes the resulting joint distribution QDate→Temperature and Figure 5 (left)
visualizes RTemperature→Date. Our computation is based on a discretization of one day for the
variable Date and one degree for the variable Temperature. Figures 3 (right) and 5 (right) display
both joint distributions as contours of equal with the same observed data points, respectivly. We
note that Q and R have different numbers of modes, which we found to be invariant to changes of
location and scale of discretization.

Figure 4: Plausible Markov kernels R(Temperature) and R(Date|Temperature) of hypothetical
causation Temperature→Date

Figure 5: Hypothetical joint distribution RTemperature→Date based on hypothetical causation
Temperature→Date
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We use the log-likelihood based on QDate→Temperature and RTemperature→Date to quantify how
strong the data support a hypothetical causal direction in the context of plausible Markov kernels.
Our calculation shows that given data the “true” causal direction Date→Temperature achieves a
log-likelihood score of −7.9844×104, whereas the other direction gets a lower log-likelihood score
of −8.0027×104. Our method yields herewith the correct result.

6 Conclusion

Between only two observed variables X and Y (either discrete or continuous, either one- or multidi-
mensional), both possible hypothetical causal directions X → Y and Y → X come into considera-
tion. However, it is well known that they are equivalent under the Markov condition assumption and
thus indistinguishable solely on the basis of probabilistic independence. In this paper, we developed
a new method of causal inference using plausibility of Markov kernels. Through some additional
“smoothness” conditions on the shape of plausible Markov kernels we found a possible way to
capture the asymmetry of causality and showed a novel approach to estimate the causal direction
between X and Y . The encouraging result1 of real-world temperature data raise a slight hope
for making causal inferences from purely observational (non-interventional) data among equivalent
causal structures with respect to the causal Markov condition. Our further work is to generalize our
method by exploring diverse criteria for most plausible Markov kernels concerning true causality in
nature.
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A Appendix

Here we derive the plausible Markov kernels of the causation between a binary variable X with
Sx = {−1,+1} and a real-valued variable Y with Sy = IR. For the sake of simplicity, we denote
x±1 for the cases X = ±1. Assuming a hypothetical causal direction X → Y , the plausible Markov
kernel Q(X) is determined just through the constraint of its first moment µx. Note that the second
moment of X is a constant 1. It applies

Q(x+1) =
1

2
(1 + µx) =: q

Q(x−1) =
1

2
(1 − µx) = 1 − q.

To determine the plausible Markov kernel Q(Y |X) we maximize the entropy function

H(Y |X) = q · H(Y |x+1) + (1 − q) · H(Y |x−1) (1)

subject to the constraints

q · E+1 + (1 − q) · E−1 = µy (2)

q · E+1 − (1 − q) · E−1 = ηxy (3)

q · (E+1)
2

+ (1 − q) · (E−1)
2

+ q · V ar+1 + (1 − q) · V ar−1 = γy (4)

1We have so far applied our method to two real-world problems. One of them is shown in the present paper, the
other one was a medical one. In both cases, the results were positive. Unfortunately we cannot present the results
of the second study in the present paper.
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Here µy is the first moment of Y , ηxy the second mixed moment of X and Y , γy the second moment
of Y . These values are known. E±1 denote the expectations of the conditional variable (Y |x±1) and
V ar±1 the variances of (Y |x±1), respectively. These values are still to be determined. However,
E±1 can be determined by equations (2) and (3) uniquely.

E+1 =
µy + ηxy

1 + µx

E−1 =
µy − ηxy

1 − µx
.

Therefore, it remains actually only one constraint to be satisfied:

q · V ar+1 + (1 − q) · V ar−1 =: σ2 (5)

where

σ2 = ηy −
(

q · (E+1)
2

+ (1 − q) · (E−1)
2
)

= ηy −
(µy + ηxy)

2

2(1 + µx)
−

(µy − ηxy)
2

2(1 − µx)
.

Here σ2 can be calculated directly from all known values. The maximization of the function (1)
with satisfying the constraint (5) has obviously a unique solution that Q(Y |x+1) and Q(Y |x−1) are
both Gaussian distributed:

Q(Y |x+1) ∝ N (E+1, V ar+1) and Q(Y |x−1) ∝ N (E−1, V ar−1) .

Otherwise it would be inconsistent with the well known fact that a normal distribution maximizes
the entropy by given expectation and variance. The maximal entropy of Q(Y |X) of equation (1)
in such case can be formulated as follows:

H(Y |X) =
1

2
ln (2πe) +

q

2
ln (V ar+1) +

1 − q

2
ln (V ar−1) (6)

since the entropies of both Gaussian distributions are 1
2 ln (2πeV ar+1) and 1

2 ln (2πeV ar−1) respec-
tively. Substitute (5) into (6), to achieve the maximum the first-order derivative must vanish and
the second-order derivative should be negative. We obtain

V ar+1 = V ar−1 = σ2

which means H(Y |X) achieves its maximum if and only if

Q(Y |x−1) ∝ N
(

µ−1, σ
2
)

and Q(Y |x+1) ∝ N
(

µ+1, σ
2
)

.

The Markov kernels R(Y ) and R(X|Y ) for the other causal direction X → Y can also be
determined analytically. Firstly, it is known that for fixed first (µy) and second moment (γy) bell-
shaped Gaussian distribution N (µy, γy−(µy)2) maximizes the differential entropy of the real-valued
variable Y . To determine R(X|Y ) we maximize the entropy function

H(X|Y ) = −

∫

(R(x+1|y) · ln (R(x+1|y)) + R(x−1|y) · ln(R(x−1|y))) · R(y)dy

subject to the constraints

R(x+1|y) + R(x−1|y) = 1 ∀y ∈ IR (7)
∫

(R(x+1|y) −R(x−1|y)) · R(y)dy = µx (8)

∫

y · (R(x+1|y) −R(x−1|y)) · R(y)dy = ηxy (9)

∫

(R(x+1|y) + R(x−1|y)) · R(y)dy = γx ≡ 1 (10)
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Here µx and γx is the known first and second moment of X. The equation (10) holds trivially.
Through the substitution of (7) in (8) and (9) only the following two constraints are left:

∫

(2R(x+1|y) − 1) · R(y)dy = µx (11)

∫

y · (2R(x+1|y) − 1) · R(y)dy = ηxy (12)

By introducing two positive Lagrange multipliers λ and ν the solution of R(X|Y ) must be of the
form

R(x−1|y) =
e−(λy+ν)

eλy+ν + e−(λy+ν)
=

1

2
−

1

2
tanh(λy + ν)

R(x+1|y) =
eλy+ν

eλy+ν + e−(λy+ν)
=

1

2
+

1

2
tanh(λy + ν).

Together with (11) and (12) the unknowns λ and µ should satisfy the following equations system
∫

tanh(λy + ν) · R(y)dy = µx

∫

y · tanh(λy + ν) · R(y)dy = ηxy

where R(y) ∝ N (µy, γy − (µy)2). Solving this nonlinear equations system, we will be able to
determine λ and µ, thus R(X|Y ) for every given µx and ηxy.

In summary, we obtain a closed-form solution for the causation between a binary and a real-
valued variable. For one causal direction X → Y , we have plausible Markov kernels in a form
of

Q(x−1) =
1

2
(1 − µx) and Q(x+1) =

1

2
(1 + µx)

Q(Y |x−1) ∝ N
(

µ−1, σ
2
)

and Q(Y |x+1) ∝ N
(

µ+1, σ
2
)

where

µ−1 =
µy − ηxy

1 − µx
, µ+1 =

µy + ηxy

1 + µx
and σ2 = γy −

(µy + ηxy)
2

2 (1 + µx)
−

(µy − ηxy)
2

2 (1 − µx)
.

For the other causal direction Y → X, the plausible Markov kernels have a form of

R(Y ) ∝ N
(

µy, γy − (µy)
2
)

R(x−1|y) =
1

2
−

1

2
tanh(λy + ν) and R(x+1|y) =

1

2
+

1

2
tanh(λy + ν).

Having computed these plausible Markov kernels, the corresponding joint distributions

QX→Y = Q(Y |X) · Q(X) (with respect to causation X → Y )

RY →X = R(X|Y ) · R(Y ) (with respect to causation Y → X)

can be calculated. The question is whether QX→Y could equal RY →X under certain conditions,
because if the equation

QX→Y = RY →X

applies, causal directions (X → Y and Y → X) cannot be distinguished from each other anymore,
based on our “principle of plausible Markov kernels”. However, one checks that whenever there
exists correlation between X and Y , our method with most plausible Markov kernels leads always
to different joint distributions. This is because the marginal distribution of Y based on the causal
direction X → Y is a convex sum of two Gaussian distributions which have different expectation
values for non-vanishing correlation between X and Y . This distribution cannot coincide with the
marginal distribution of Y based the causal direction Y → X since the latter is unimodal Gaussian
distributed.
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