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Abstract

Recent approaches to Independent Component Analysis (ICA) have
used kernel independence measures to obtain highly accurate solutions,
particularly where classical methods experience difficulty (for instance,
sources with near-zero kurtosis). FastKICA (Fast HSIC-based Kernel
ICA) is a new optimisation method for one such kernel independence
measure, the Hilbert-Schmidt Independence Criterion (HSIC). The high
computational efficiency of this approach is achieved by combining geo-
metric optimisation techniques, specifically an approximate Newton-like
method on the orthogonal group, with accurate estimates of the gradient
and Hessian based on an incomplete Cholesky decomposition. In contrast
to other efficient kernel-based ICA algorithms, FastKICA is applicable to
any twice differentiable kernel function. Experimental results for problems
with large numbers of sources and observations indicate that FastKICA
provides more accurate solutions at a given cost than gradient descent on
HSIC. Comparing with other recently published ICA methods, FastKICA
is competitive in terms of accuracy, relatively insensitive to local minima
when initialised far from independence, and more robust towards outliers.
An analysis of the local convergence properties of FastKICA is provided.

1 Introduction

The problem of Independent Component Analysis (ICA) involves the recovery
of linearly mixed, statistically independent sources, in the absence of informa-
tion about the source distributions beyond their mutual independence [12, 22].
The performance of ICA algorithms thus depends on the choice of the contrast
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function measuring the degree of statistical independence of the recovered sig-
nals, and on the optimisation technique used to obtain the estimated mixing
coefficients.

Classical approaches, also referred to as parametric ICA approaches, con-
struct their independence criteria according to certain hypothetical properties
of the probability distributions, either by an explicit parametric model of these
distributions via maximum likelihood [8], or by maximising certain statistics of
the unmixed sources (often measures of non-Gaussianity, such as the kurtosis)
[9, 22]. These approaches can therefore be less powerful than methods which
explicitly model the source distributions, and can even fail completely when the
modelling assumptions are not satisfied (e.g. a kurtosis-based contrast will not
work for sources with zero kurtosis).

More recently, several approaches to ICA have been proposed that directly
optimise nonparametric independence criteria. One option is to minimise the
mutual information between the sources, as in [26, 38, 7, 10]. Another approach
is to use a characteristic function-based measure of mutual independence due
to Kankainen [24] based on the pairwise criterion of Feuerverger [15], which was
applied to ICA in [14, 11], and to ICA with post-nonlinear mixing in [2, 3].

Finally, a variety of kernel independence criteria have been employed in
ICA. These criteria measure dependence using the spectrum of a covariance
operator between mappings of the variables to high dimensional feature spaces,
specifically reproducing kernel Hilbert spaces (RKHSs) [31]. The various kernel
independence criteria differ in the way they summarise the covariance operator
spectrum, and in the normalisation they use. They include the kernel canon-
ical correlation [5], the kernel generalised variance [5], the spectral norm of
the covariance operator (COCO) [19], the kernel mutual information [19], and
the Hilbert-Schmidt Independence Criterion (HSIC) [18]. A biased empirical
estimate of the HSIC statistic is in fact identical (as a function of its kernel
argument) to the characteristic function-based criterion of [15], which is in turn
identical to the ¢5 distance between Parzen window estimates of the joint density
and the product of the marginals: see Rosenblatt [30]. When a Gaussian kernel
is used and the sample size is fixed, the three statistics correspond exactly. As
pointed out elsewhere [15, 24], however, the characteristic function-based statis-
tic is more general than Rosenblatt’s, since it admits a wider range of kernels
while remaining an independence measure (a further difference is that the kernel
bandwidth may remain fixed for increasing sample size). Likewise, there exist
universal kernels (in the sense of [37]: that is, kernels for which HSIC is zero
iff the variables are independent, for any probability distribution [19, Theorem
6]) which have no equivalence with the characteristic function-based criterion
of [15, 24]: examples are given in [37, Section 3] and [27, Section 3].! Thus, the
RKHS criterion is a more general dependence measure than the characteristic
function criterion, which is in turn more general than the /5 distance between
Parzen window density estimates. Since the HSIC-based algorithm performs as

IThe RKHS approach also allows dependence testing on more general structures such as
strings and graphs [20].



well as or better than the remaining kernel dependence criteria for large sample
sizes [18] on the benchmark data of [5], we use it as the contrast function in our
present algorithm.

While the above studies report excellent demixing accuracy, efficient optimi-
sation of these dependence measures for ICA remains an ongoing problem,? and
a barrier to using nonparametric methods when the number of sources, m, is
large. The main focus of the present work is thus on more efficient optimisation
of kernel dependence measures. ICA is generally decomposed into two sub-
problems [12, 11]: signal decorrelation or whitening, which is straightforward
and is not discussed further, and optimisation over the set of orthogonal ma-
trices (the orthogonal group, O(m)), which is a differentiable manifold, and for
which the bulk of the computation is required. The approach of [5, 18, 19, 11] is
to perform gradient descent on O(m) in accordance with [13], choosing the step
width by a Golden search. This is inefficient on two counts: gradient descent
can require a very large number of steps for convergence even on relatively be-
nign cost functions, and the Golden search requires many costly evaluations of
the dependence measure. Although [23] propose a cheaper local quadratic ap-
proximation to choose the step size, this does not address the question of better
search direction choice. An alternative solution is to use a Jacobi-type method
[14, 26, 38], where the original optimisation problem on O(m) is decomposed
into a sequence of one-dimensional sub-problems over a set of pre-determined
curves, parameterised by the Jacobi angles. While the theoretical convergence
properties of a Jacobi approach as compared with direct optimisation on O(m)
are beyond the scope of this work, we perform an empirical evaluation against
algorithms employing optimisation over Jacobi angles in our experiments.

In the present study, we develop an approximate Newton-like method for
optimising the HSIC-based ICA contrast over O(m), namely Fast HSIC-based
Kernel ICA (FastKICA). A key feature of our approach is its computational
efficiency, due to both the Newton-like optimisation and accurate low rank ap-
proximations of the independence measure and its derivatives. Importantly,
these techniques do not require particular mathematical properties of the ker-
nel (e.g. compact support, or that it be Laplace), but can be applied directly
for any twice differentiable kernel function. The optimisation strategy follows
recent studies on Newton-like methods for numerical optimisation on smooth
manifolds in [21]. Approximate Newton-like algorithms have previously been
developed in the case of classical ICA contrast functions [34, 32], where the au-
thors use the diagonal structure of the Hessian at independence to greatly reduce
complexity and computational cost. These earlier methods share the significant
property of local quadratic convergence to a solution with correct source sepa-
ration. We show the HSIC-based ICA contrast likewise has a diagonal Hessian
at independence (this analysis originally appeared in [33]; note also that the di-
agonal property does not hold for the multivariate characteristic function-based
counterpart [24] to the HSIC-based contrast), and that FastKICA is locally

2Most of the effort in increasing efficiency has gone into cheaply and accurately approxi-
mating the independence measures [5, 10, 11, 23].



quadratically convergent to a correct unmixing matrix. Moreover, our experi-
ments suggest that in the absence of a good initialisation, FastKICA converges
more often to a correct solution than gradient descent methods. Previous ker-
nel algorithms require either a large number of restarts or a good initial guess
[5, 11, 19]. The current work is built on an earlier presentation by the authors
in [35]. Compared with [35], the present study contains proofs of the main the-
orems (which were omitted in [35] due to space constraints); a proof of local
quadratic convergence in the neighbourhood of the global solution; additional
experiments on ICA performance vs “smoothness” of the departure from inde-
pendence; and experiments on outlier resistance, for which our method strongly
outperforms the other tested approaches.

The paper is organised as follows. In Section 2, we briefly introduce the in-
stantaneous noise-free ICA model, the HSIC-based ICA contrast, and a Newton-
like method on O(m). In Section 3, we analyse the critical point condition and
the structure of the Hessian of this contrast. We describe our ICA method, Fast-
KICA, in Section 4, and prove local quadratic convergence. We also present an
efficient implementation of FastKICA, based on the incomplete Cholesky decom-
position [16]. Finally, our experiments in Section 5 compare FastKICA with
several competing nonparametric approaches: RADICAL [26], MILCA [38],
mutual information-based ICA (MICA) [29], and KDICA [10]. Experiments
address performance and runtimes on large-scale problems, performance for de-
creasing smoothness of the departure of the mixture from independence (which
makes demixing more difficult for algorithms that assume smooth source densi-
ties), and outlier resistance. Matlab code for FastKICA may be downloaded at
www.kyb.mpg.de/bs/people/arthur/fastkica.htm

2 Preliminaries: ICA, HSIC and Newton-like
Method on O(m)

2.1 Linear Independent Component Analysis

The instantaneous noise-free ICA model takes the form
Z =AS, (1)

where S € R™*™ is a matrix containing n observations of m sources, A € R"*™
is the mixing matrix (assumed here to have full rank),® and Z € R™*" contains
the observed mixtures. Denote as s and z single columns of the matrices S and
Z, respectively, and let s; be the i-th source in s. ICA is based on the assump-
tion that the components s; of s, for all i = 1...m, are mutually statistically
independent. This ICA model (1) is referred to as instantaneous as a way of
describing the dual assumptions that the observation vector z depends only on

3In other words, we do not address the more difficult problems of undercomplete or over-
complete ICA (corresponding to more mixtures than sources, or fewer mixtures than sources,
respectively).



the source vector s at that instant, and the source samples s are drawn inde-
pendently and identically from Prg. As a consequence of the first assumption,
the mixture samples z are likewise drawn independently and identically from
Pr..

The task of ICA is to recover the independent sources via an estimate B of
the inverse of the mixing matrix A, such that the recovered signals Y = BAS
have mutually independent components. It is well known that if at most one
of the sources s is Gaussian, the mixing matrix A can be identified up to an
ordering and scaling of the recovered sources [12]. This means the unmixing
matrix B is the inverse of A up to an m xm permutation matrix P and an m xXm
diagonal (scaling) matrix D, i.e., B = PDA~!. To reduce the computational
complexity the mixtures Z are usually pre-whitened via principal component
analysis (PCA) [12, 11]. Whitening corresponds to finding a matrix V'€ R™*™
such that W = VZ = VAS € R™*" with Ejww "] = I, where W are referred to
as the whitened observations. While this pre-whitening step is less statistically
efficient than solving directly for the unconstrained mixing matrix [9, Section
VL.B], the optimisation problem in the pre-whitened case is easier. Assuming
the sources s; have zero mean and unit variance, we find VA € R"™*™ to be
orthogonal. Therefore, the whitened noise-free ICA unmixing model becomes

Y =XW, (2)

where X € R™*™ is an orthogonal unmixing matrix (i.e., X' X = 1), and Y €
R™*™ contains our estimates of the sources. Let O(m) denote the orthogonal
group:

O(m) :== {X e R™*™| XX = I}. (3)

We focus in the remainder of this work on the problem of finding X € O(m) so
as to recover the mutually statistically independent sources via the model (2).
Thus, we next describe our measure of independence.

2.2 The Hilbert-Schmidt Independence Criterion

The Hilbert-Schmidt Independence Criterion (HSIC) is a bivariate independence
measure obtained as the squared Hilbert-Schmidt (HS) norm of the covariance
operator between mappings to RKHSs [18], and generalises the characteristic
function-based criterion originally proposed by Feuerverger [15]. The Hilbert
space F of functions from a compact subset &/ C R to R is an RKHS if at each
u € U, the point evaluation operator §,, : F — R, which maps f € F to f(u) €
R, is a continuous linear functional. To each point u € U, there corresponds an
element a, € F, also called the feature map, such that (o, o)z = (u,u’),
where 1: U xU — R is a unique positive definite kernel. We also define a second
RKHS G with respect to ¢, with feature map 3, € G and corresponding kernel
(Bo, ﬂv’>g =P(v,v").

Let Pr,, be a joint measure on (U x U,T" x A) (here T" and A are Borel o-
algebras on U), with associated marginal measures Pr,, and Pr,. The covariance



operator Cy, : G — F is defined as

(£, Cun(9)) 7 = Elf (w)g(v)] = E[f(w)]E[g(v)] (4)

for all f € F and g € G. The squared HS norm of the covariance operator Cy,,,
denoted as HSIC, is then

1Cunllis = Euur e [ () § (0,0)] (50)
+ Eur [ ()] Euyor [§ (0,0)] (5b)
= 2Buu [Bu [ (u, )] Ew [§(0,0)] | (5)

(see [18] for details), where (u,v) ~ Pr,, and (u/,v") ~ Pr,, are indepen-
dent random variables drawn from the same distribution, and E[] denotes the
expectation over the corresponding random variables. As long as the kernels
Y(u,-) € F and ¢(u,-) € G are universal in the sense of [37], e.g., the Gaus-
sian and Laplace kernels, ||Cy,|/#g = 0 if and only if v and v are statistically
independent [18, Theorem 4]. In this work, we confine ourselves to a Gaussian
kernel, and use the same kernel for both F and G,

la,b) = Bla,b) = dla—b) = exp (- 58" ). (6)

As discussed in the introduction, the empirical expression for HSIC in [18] is
identical to Feuerverger’s independence criterion [15] and Rosenblatt’s £? inde-
pendence statistic [30] for a Gaussian kernel at a given sample size.

We now construct an HSIC-based ICA contrast for more than two random
variables. In the ICA model (1), the components s; of the sources s are mutually
statistically independent if and only if their probability distribution factorises
as Pry = [\, Pr,,. Although the random variables are pairwise independent
if they are mutually independent, where pairwise independence is defined as
Pr, Pry, = Pr, 5, for all i # j, the reverse does not generally hold: pairwise
independence does not imply mutual independence. Nevertheless, Theorem 11
of [12] shows that in the ICA setting, unmixed components can be uniquely
identified using only the pairwise independence between components of the re-
covered sources Y, since pairwise independence between components of Y in
this case implies their mutual independence (and thus recovery of the sources
S).# Hence, by summing all unique pairwise HSIC measures, an HSIC-based

4That said, in the finite sample setting, the statistical performance obtained by optimiz-
ing over a pairwise independence criterion might differ from that of a mutual independence
criterion.



contrast function over the estimated signals Y € R™*" is defined as

H:0O(m) — R,
H(X):= Y By (x)Wn) o (z] Tu)] (7a)
1<i<j<m
+ Bk [¢ (2] Wit) ] iy [¢ (2] Wit)] (7b)
— 2B (B[ (2, Wer) ] B[ (2 W) (7c)
where X := [x1,...,2,] € O(m), Wy = wip—w; € R™ denotes the difference be-

tween k-th and I-th samples of the whitened observations, and Ey, ;[-] represents
the empirical expectation over all k£ and [.

2.3 Newton-like Methods on O(m)

In this section, we briefly review some basic concepts regarding Newton-like
methods on the orthogonal group O(m). We refer to [6, 36] for an excellent
introduction to differential geometry, and to [1] for an introduction to optimi-
sation algorithms on differentiable manifolds. We will review both the classical
approach to Newton-type optimization on smooth manifolds [13], and then de-
scribe a more recently developed Newton-like method [21], which we apply on
Oo(m).

We consider the orthogonal group O(m) as an m(m — 1)/2 dimensional em-
bedded submanifold of R™*"  and denote the set of all m x m skew-symmetric
matrices by so(m) := {Q € R™*™|Q) = —QT}. Note that so(m) is isomorphic to
R™m=1/2 written so(m) = R™(m=1/2 The tangent space TxO(m) of O(m)
at point X € O(m) is given by

TxO(m) :={Z€R™™|Z2=XQ, Qcso(m)}. (8)

A typical approach in developing a Newton-type method for optimising a smooth
function H: O(m) — R is to endow the manifold O(m) with a Riemannian
structure: see [13]. Rather than moving along a straight line as in the Euclidean
case, a Riemannian Newton iteration moves along a geodesic® in O(m). For a
given tangent space direction 2 = X € TxO(m), the geodesic vx through
X € O(m) with respect to the Riemannian metric (X, XQo) := —trQ;Qs,
for Xy, XQy € TxO(m), is

vx : R — O(m), e Xexp(eX'5), 9)

with vx(0) = X and 4x(0) = Z. Here, exp(-) denotes matrix exponentiation. It
is well known that this method enjoys the significant property of local quadratic
convergence.

More recently, a novel Newton-like method on smooth manifolds was pro-
posed [21]. This method has lower complexity than the classical approach, but

5The geodesic is a concept on manifolds analogous to the straight line in a Euclidean space
. It allows parallel transportation of tangent vectors on manifolds.



Rm(m—l)/Q

Figure 1: Tllustration of a Newton-like method on O(m).

retains the property of local quadratic convergence. We adapt the general for-
mulation from [21] to the present setting, the orthogonal group O(m).
For every point X € O(m), there exists a smooth map

px: R™Mm=D/2 L 0(m),  ux(0) = X, (10)

which is a local diffeomorphism around 0 € R™("=1/2 i e both the map wx
and its inverse are locally smooth around 0. Let X* € O(m) be a nondegenerate
critical point of a smooth contrast function H: O(m) — R. If there exists an
open neighborhood U(X*) C O(m) of X* € O(m) and a smooth map

I UX™) x R™m=1/2 L 0(m), (11)

such that (X, Q) = px(Q) for all X € U(X*) and Q € R™™1/2 we call
{px} xeu(x+) a locally smooth family of parametrisations around X*.

Let X) € O(m) be the k-th iteration point of a Newton-like method for
minimising the contrast function H. A local cost function can then be con-
structed by composing the original function H with the local parametrisation
tx, around Xy, ie., Hopux,: Rm(m=1)/2 _, R, which is a smooth function lo-
cally defined on the Euclidean space R™("~1/2 Thus, one Euclidean Newton
step Q € R™(m=1)/2 for H expressed in local coordinates, is the solution of the
linear equation

H(H o jix, ) (0)2 = —V(H o 1ix, )(0), (12)

where V(H o ux, )(0) and H(H o uux, )(0) are respectively the gradient and Hes-
sian of H o uy, at 0 € R™m=1/2 with respect to the standard Euclidean inner
product on the parameter space R™("~1/2_ Finally, projecting the Newton step
Q in the local coordinates back to O(m) using the local parametrisation® 1,
completes a basic iteration of a Newton-like method on O(m) (see Fig. 1 for an
illustration of the method).

6In the general setting, the second parametrisation can be from a different family to the
first: see [21] for details. This is not the case for our algorithm, however.



We now describe our choice of local parametrisation px of O(m), which
follows directly from the geodesic expression (9). We define Q = (w;;)i"_; €
s0(m) as before and let Q = (w;j)1<icj<m € R™M™=D/2 in a lexicographical
order. A local parametrisation of O(m) around a point X € O(m) is given by

px s RMM=D/22 56(m) - O(m), QX exp(Q), (13)

which is a local diffeomorphism around 0 € R™(m=1/2 ie. 1x(0) = X.
To summarise, a Newton-like method for minimising the contrast function
H: O(m) — R can be stated as follows:

’ Newton-like method on O(m)

Step 1: Given an initial guess Xy € O(m) and set k = 0.
Step 2: Calculate H o py, : R™m=1/2 = 50(m) — R.
Step 3: Compute the Euclidean Newton step, i.e., solve
the linear system for @ € R"(m=1)/2
H(H o 1x,) (0)R = —V (H o 11, ) (0).
Step 4: Set Xj41 = vx, (Q).
Step 5: If || Xi+1 — Xk||r is small enough, stop.
Otherwise, set k = k 4+ 1 and go to Step 2.

Here, || - ||r is the Frobenius norm of matrices. According to Theorem 1 in [21],
this Newton-like method is locally quadratically convergent to X* € O(m).
For an approximate Newton-like method on O(m), we replace the true Hessian
H(H o pux)(0) by an approximate Hessian H(H o tx )(0) which is more efficient
to compute. We will prove that local quadratic convergence is still obtained
with this approximation.

3 The HSIC-Based ICA Contrast at Indepen-
dence

In this section we examine the critical points of the HSIC-based ICA contrast at
independence. It turns out that any correct unmixing matrix which is a global
minimum of the HSIC-based contrast is a nondegenerate critical point.

Let X = [z1,...,2m] € O(m). By the chain rule, the first derivative of H
in the direction = = [&1,...,&n] € TxO(m) is

DH(X)Z = & (Hoyx)(e)|_,

m

= Z Erg [¢ (2] W) & Wiao (2] W) ] (14a)
ij=Trij
+Eiy [¢ (2] Wii) & W) Bry [¢ (2 ;r@ )] (14b)
— 2Ek [El [¢ ({,CT’IUM>§ wkl] El [(b (IL‘; )H . (].4C)



Setting the above derivative to zero, we can characterise the critical points of the
HSIC-based ICA contrast function defined in (7). Obviously, the critical point
condition depends not only on the statistical characteristics of the sources, but
also on the properties of the kernel function. It is hard to characterise all critical
points of HSIC in full generality: thus, we deal only with those critical points
that occur at the ICA solution.

Lemma 1. Let X* € O(m) be a correct unmizing matriz of the model (2).
Then X* is a nondegenerate critical point of the HSIC-based ICA contrast (7),
i.e., DH(X*)Z =0 for arbitrary E € Tx«O(m).

Proof. We recall that ||Cyyllfg > 0 and [|Cyyllig = 0 if and only if Pr,, =
Pr, Pr,. In other words, X* € O(m) is a global minimum of the HSIC-based
contrast function. Theorem 4 in [18] shows that any small displacement of
X* € O(m) along the geodesics will result in an increase in the score of the
contrast function H between the recovered sources (only larger perturbations,
e.g. aswap of the source orderings, would yield independent sources). According
to Theorem 4.2 in [17], the Hessian of H at X™* is positive definite. Hence, any
correct separation point X* € O(m) is a nondegenerate critical point of the
HSIC-based contrast function H. O

In what follows, we investigate the structure of the Hessian of the HSIC-
based contrast H at independence, i.e. at a correct unmixing matrix X* €
O(m). We first compute the second derivative of H at X € O(m) in direction

== [517"'75771] € TXO(m),

D?H(X)(Z,E) = & (H oyx)(e)

e=0

= Z Er [¢" (z] Wii) §:Wuﬁ;—l§i¢($;@kz)] (15a)
1,j=151#£]
— By [¢ (2] i) & EX "W (2] Wt (15b)
+ Era [ (2] Wrt) & W0, €50' (2] W) ] (15¢)
+ By [¢" (2] W) & Traw &) Eny [¢(93J-Tﬁkz)] (15d)
— By [¢ (2] Wit) & EX 01| B [¢ (CE;—WM)} (15e)
+ By [¢ (2] W) & 0wt ] B [0 (2] Wit) € Wit (15f)
— 2B, [Ei[¢" (2] W) & Wrw & B 6 (a] wra)]] (15g)
+ 2Bk [E ¢ (2] W) & EX T 00 | By [¢(2] Wia)] ] (15h)
— 2By [Ei [ (2] Wia ) €] Wt | By [¢' (2] Wt ) & Wit ] (151)

Let Q = [w1,...,wm] = (wij);"=1 € s0(m). For X = X, a tedious but straight-
forward computation (see Appendlx A) gives

D?H(X)(XQ,XQ)| .= Z w; (Kij + Kji) (16)

1<i<j<m

10



where

wij = 2B By [550i)E [0 (Srra ) ] B [Ea S5 Ea [¢(Bras )] (17a)
+ Bt [0 (5510 B 1 [(15) > D (Shay)] (17b)
+ 2B 1[8" (8114 |E 1 (¢ (3kt5)] (17c)
— 2B 1[¢" (550))Ew [Ea[(Sij)*1E[(Sht)]] (17d)
— Ep1 [0 (Skta)Skti | Ere1 [0 (Skiy ) Sy (17e)

Remark 1. Without loss of generality, let Q = (wij)1<i<j<m € R™(m=1)/2 jp g
lexicographical order. The quadratic form (16) is a sum of pure squares, which
indicates that the Hessian of the contrast function H in (7) at the desired critical
point X* € O(m), i.e., the symmetric bilinear form HH(X*): Tx-O(m) x
Tx-O(m) — R, is diagonal with respect to the standard basis of R™m=1/2,
Furthermore, following the arguments in Lemma 1, the expressions k;; +Kj; are
positive. O

4 Fast HSIC Based ICA and its Implementation

Having defined our independence criterion and its behaviour at independence,
we now describe an efficient Newton-like method for minimising H(X'). We be-
gin in Section 4.1 with an overview of the method, including the approximate
Hessian used to speed up computation. The subsequent two sections describe
how the Hessian (Section 4.2), as well as H(X) (Section 4.3) and its gradi-
ent (Section 4.4), can be computed much faster using the incomplete Cholesky
decomposition.

4.1 Fast HSIC Based ICA Method

We compute the gradient and Hessian of Hopux in the parameter space R™
By analogy with equation (14), the first derivative of H o ux at 0 € R™(m=1)/2
is

(m=1)/2_

D(H o ux)(0)Q = L (H o ux) ()| _,

- 18
= Y wi(my =), 1)
1<i<j<m
where
Tij = Z Exy [¢ (z] W) x;—wkl¢ (z,) W) ]
r=1;r#1i (19)

+ Era [¢ (2] W) @) W) Bry [¢ (2, W) |
oy 6 (o) 2 ] Ea [T 0]

11



Let @ := (Qij)zljzl S ﬁﬁ(m) and V(H o ,th)(O) = (qij)1§i<j§m € R™(m—1)/2
Then the Euclidean gradient V(H o ux)(0) is given entry-wise as ¢;; = 7;; — 7
forall 1 <i<j<m.

Similarly, the Hessian of the contrast function H can be computed directly
from (15). The diagonal property of the Hessian does not hold true for arbitrary
X € O(m), however, and it is clearly too expensive to compute the true Hessian
at each step of our optimization. Nevertheless, since the Hessian is diagonal
at X* (Eq. (16)), a diagonal approximation of the Hessian makes sense in a
neighborhood of X*. Thus, we propose a diagonal matrix for the Hessian of
H o px for an arbitrary X € O(m) at 0 € R™(™~1/2; the result is a symmetric
bilinear form H(H o pux )(0): R™m=1/2 x Rm(m=1)/2 R Due to the smooth-
ness of both the contrast function H in (7) and the map g on O(m) in (11),
the Hessian H(H o pux)(0) is smooth in an open neighborhood U(X*) C O(m)
of X* € O(m). Replacing the correct unmixing components s in (17) by the
current estimates y = X "w, i.e. 9y, = ., Wy, gives

m

HH o px) 0@ Q) & 3w (R +Fii) (20)
where
Rij = 2E]Ei[T11, )t [0 Gas) A B (Gt Bt [0 (T )] (21a)
+ Exy W'(?kli)]EkJ[@klj)2¢@klj)] (21b)
+ 2B 1[0 (U31) B 1[0 (T )] (21c)
— 2B 1 (6" (r15) | En []El[(yklj)2]El [¢@klj)u (21d)
— B 1[0 Urai)Ur1a) Br [0 (Tt ) Unaj)- (21e)

We emphasise that (by Remark 1) the Hessian at a correct unmixing ma-
trix X* is positive definite (i.e. the terms &;; + kj; are positive). Thus, the
approximate Newton-like direction 2 € R™(m=1)/2 with

~ Tij —Tji

wij = ﬁ (22)
for 1 < i < j < m is smooth, and is well defined within #/(X*). We call the
Newton-like method arising from this approximation Fast HSIC-based Kernel
ICA (FastKICA).

Although the approximation (20) can differ substantially from the true Hes-
sian at an arbitrary X € O(m), they coincide at X*. Thus, while the diagonal
approximation is exact at the correct solution, it becomes less accurate as we
move away from this solution. To ensure FastKICA is nonetheless well behaved
as the global solution is approached, we provide the following local convergence
result (we investigate the performance of our algorithm given arbitrary initiali-
sation in our numerical experiments: see Section 5).

Corollary 1. Let X* € O(m) be a correct unmizing matriz. Then FastKICA
18 locally quadratically convergent to X*.
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Proof. By considering the approximate Newton-like direction € in (22) as Q: U(X*) —
s0(m), each iteration of FastKICA can be written as the map

A:UX*)CO(m) — O(m), X — X exp(Q(X)). (23)
A tedious but direct computation shows that Q(X *) =0, and X* is a fixed
point of A. To prove the local quadratic convergence of FastKICA, we employ
Lemma 2.9 in [25], bearing in mind that the required smoothness conditions
(that the function be at least twice differentiable) are fulfilled by H(X). Ac-
cording to this lemma, we only need to show that the first derivative of A,

DA: TxO(m) — Tax)O(m), (24)
vanishes at a fixed point X*. Thus we compute directly
D.A(X*)(X*Q):X*Q+X*D(~2(X*)(X*Q). (25)
For the expression in (25) to vanish is equivalent to
Q=-DOQ(X")(X*Q), (26)
ie,forall1 <i<j<m,
D@ (X" )(X*Q) = —w;j. (27)

Denoting the numerator 7,;—7;; in (22) by LT)E;-L) (X) and the denominator K;;+xj;
by &E;-i) (X), we compute

oM (x~
u ) @y x+)

D iy (X)(X™Q) = — =t ry)s D @i

28

D&M (X*)(X*Q) (28)
&) (X7)

It can be shown that the first summand in (28) is equal to zero. Finally, following

an argument almost identical to that in Appendix A,

~(n * * ~(d *
D& (X)(XQ) = 5 (X )wij. (29)
Thus, we conclude condition (26) holds true at X*, i.e., D A(X™) vanishes as
required. The result follows. O

We emphasise that the local convergence result is proved in the population
setting. In the finite sample case, this theoretical convergence rate might not
be achievable [28]. For this reason, we experimentally compare the convergence
behavior of FastKICA with a gradient-based algorithm (see Section 5.1). We
will see that FastKICA converges significantly faster than gradient descent in
practice.

As an additional caveat to Corollary 1, there is in general no practical strat-
egy to guarantee that our ICA algorithm will be initialised within the neigh-
bourhood U (X ™). Nevertheless, our experiments in Section 5 demonstrate that
FastKICA often converges to the global solution even from arbitrary initiali-
sation points, and is much more reliable in this respect than simple gradient
descent.
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4.2 Incomplete Cholesky Estimate of the Hessian

In the following, we present an explicit formulation of the Hessian, and derive
its approximation using an incomplete Cholesky decomposition of the kernel
matrices. Sections 4.3 and 4.4 provide implementations of the contrast and
gradient, respectively, that re-use the factors of the Cholesky decomposition.
First, we rewrite the pairwise HSIC terms (7) in a more convenient matrix
form. Let K; denote the kernel matrix for the i-th estimated source, i.e., its
(k,1)-th entry is ¢(Yy,;) = ¢(z] Wr). We further denote by M € R™ ™ the
centring operation, M = I — X1 1T with 1,, being an n x 1 vector of ones.

n-n-nom

Lemma 2 (HSIC in terms of kernels [18]). An empirical estimate of HSIC' for
two estimated sources y;,y; s

1

H,,(X):= mtr(

This empirical estimate is biased, however the bias in this estimate decreases
as 1/n, and thus drops faster than the variance (which decreases as 1/\/n: see

[18]).
The first and second derivatives of the Gaussian kernel function ¢ in (6) are
{dww——xb@w

(a,h) = 0 g(a,h) — bo(ah). (31

Substituting the above terms into the approximate Hessian of H o ux at 0 €
s0(m), as computed in (20), yields

m

H(Hopx)(0)(Q,Q) ~ Y widy, (32)
1<i<j<m
where
Aij = = (B¢ + GBj) + 55 (GG — mimy) (33)
and

Bi = Ex1[0@ri)],
G = Era[d(Upis) yriviil (34)
Ni = Bii[o (W) vl

Here, yi; = e, yx is the i-th entry of the k-th sample of the estimates Y, selected
by the i-th standard basis vector e; of R™.

We now outline how the incomplete Cholesky decomposition [16] helps to
estimate the approximate Hessian efficiently. An incomplete Cholesky decom-
position of the Gram matrix K; yields a low-rank approximation K; ~ G;G
that greedily minimises tr(K; — G;G.'). The cost of computing the n x d ma-
trix G; is O(nd?), with d < n. Greater values of d result in a more accurate
reconstruction of K;. As pointed out in [5, Appendix C], however, the spectrum
of a Gram matrix based on the Gaussian kernel generally decays rapidly, and
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a small d yields a very good approximation (the experiments in [23] provide
further empirical evidence). With approximate Gram matrices, the empirical
estimates of the three terms in Equation (34) become

5 LT T AT

Bi = ﬁ(ln Gi)(1,Gi)

~ 1

G = ﬁ(yiTGi)(y;rGi)T7
1

i = E((yi ©y) GG 1),

where y; is the sample vector for the ith estimated source, and ® the entry-wise
product of vectors.

4.3 Incomplete Cholesky Estimate of HSIC

Lemma 2 states an estimate of the pairwise HSIC as the trace of a product of
centred kernel matrices M K; M, MK;M. Reusmg the Cholesky decomposition
from above, i.e. MK;M = MG, GTM er G , where Giisnxd; , We arrive at
an equivalent trace of a much smaller d; x d; matrlx for each pair of estimated
sources (y;,y;), and avoid any product of n X n matrices:

~ 1 e~
HX) = 3 1<sz:<mtr (checay

ot X w((Ere) ().

1<i<j<m

4.4 Incomplete Cholesky Estimate of the Gradient

We next provide an approximation of the gradient in terms of the same Cholesky
approximation K = GG'T. Williams and Seeger [39] describe an approximation
of K based on an index set I of length d with unique entries from {1,...,n}:

K~K' =K K K, (35)

where K ; is the Gram matrix with the rows unchanged, and the columns
chosen from the set I; and K 7.1 1s the d x d submatrix with both rows and
columns restricted to I. We adapt the approach of Fine and Scheinberg [16] and
choose the indices I in accordance with an incomplete Cholesky decomposition
to minimise tr (K — K').

For simplicity of notation, we will restrict ourselves to the gradient of HSIC
for a pair (y;,y;) and ignore the normalisation by (n — 1)72. The gradient of
H (X) is merely the sum of all pairwise gradlents Let K be the Gram matrix
for y; and L for y;. With centring matrices K = MKM and L = MLM the
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(unnormalised) differential of the pairwise HSIC is [23]
atr (K'L') =tr (K'a(r))) + e (T'd(K"))
—=tr (f{’d(L’)) +tr (z’d(Kz7,K;}KL:))
—tr (f('d(L’))
+ 2vec(E’K:’IK;})Tvec(dK:’I)
— vee(K 1K, L'K, [ Kp) vec(dK, ;). (36)

Our expression for d(K’) is derived in Appendix B.1. The expansion of dL’ is
analogous. The matrix decompositions shrink the size of the factors in (36). An
appropriate ordering of the matrix products allows us to avoid ever generating
or multiplying an n x n matrix. In addition, note that for a column x of X,
vec(dK. ;) = dvec(K. ) = (dvec(K. 1)/0x ") dvec(x).

The partial matrix derivative dvec(K. ;)/0z" is defined in Appendix B.2 and
has size nd x m, whereas the derivative of the full K has n? xm entries. Likewise,
Ovec(Kr r)/0x " is only d% x m. We must also account for the rapid decay of the
spectrum of Gram matrices with Gaussian kernels [5, discussion in Appendix C],
since this can cause the inverse of Ky ; to be ill-conditioned. We therefore add
a small ridge of 1076 to K, although we emphasise that our algorithm is
insensitive to this value.

We end this section with a brief note on the overall computational cost
of FastKICA. As discussed in [23, Section 1.5], the gradient and Hessian are
computable in O(nm3d?) operations. A more detailed breakdown of how we
arrive at this cost may be found in [23], bearing in mind that the Hessian has
the same cost as the gradient thanks to our diagonal approximation.

5 Numerical Experiments

In our experiments, we demonstrate four main points: First, if no alternative
algorithm is used to provide an initial estimate of X, FastKICA is resistant to
local minima, and often converges to the correct solution. This is by contrast
with gradient descent, which is more often sidetracked to local minima. In
particular, if we choose sources incompatible with the initialising algorithm (so
that it fails completely), our method can nonetheless find a good solution.”
Second, when a good initial point is given, the Newton-like algorithm converges
faster than gradient descent. Third, our approach runs sufficiently quickly on
large-scale problems to be used either as a standalone method (when a good

"Note the criterion optimised by FastKICA is also the statistic of an independence test
[15, 20]. This test can be applied directly to the values of HSIC between pairs of unmixed
sources, to verify the recovered signals are truly independent; no separate hypothesis test is
required.

16



——FastKICA| LIN--L —— FasIKICA|
---QGD 10 Rt NS ---QGD

°
]

100x HSIC
IS
100x Amari error

015 |\,

Figure 2: Convergence measured by HSIC, by the Frobenius norm of the differ-
ence between the i-th iterate X and X% and by the Amari error. FastKICA
converges faster. The plots show averages over 25 runs with 40,000 samples from
16 sources.

initialisation is impossible or unlikely), or to fine tune the solution obtained by
another method. While not the fastest method tested, demixing performance
of FastKICA achieves a reasonable compromise between speed and solution
quality, as demonstrated by its performance as the departure of the mixture from
independence becomes non-smooth. Finally, FastKICA shows better resistance
to outliers than alternative approaches.

Our artificial data for Sections 5.1 (comparison of FastKICA with gradient
descent) and 5.2 (computational cost benchmarks) were generated in accordance
with [19, Table 3], which is similar to the artificial benchmark data of [5]. Each
source was chosen randomly with replacement from 18 different distributions
having a wide variety of statistical properties and kurtoses. Sources were mixed
using a random matrix with condition number between one and two. Section 5.3
describes our experiments on source smoothness vs performance, and Section
5.4 contains our experiments on outlier resistance. We used the Amari diver-
gence, defined by [4], as an index of ICA algorithm performance (we multiplied
this quantity by 100 to make the performance figures more readable). In all ex-
periments, the precision of the incomplete Cholesky decomposition was 10~ %n.
Convergence was measured by the difference in HSIC values over consecutive
iterations.

5.1 Comparison with Gradient Descent

We first compare the convergence of FastKICA with a simple gradient descent
method [23]. In order to find a suitable step width along the gradient mapped
to O(m), the latter uses a quadratic interpolation of HSIC along the geodesic.
This requires HSIC to be evaluated at two additional points. Both FastKICA
and quadratic gradient descent (QGD) use the same gradient and independence
measure. Figure 2 compares the convergence for both methods (on the same
data) of HSIC, the Amari error, and the Frobenius norm of the difference be-
tween the i-th iterate X and the solution X% reached after 30 iterations.
The results are averaged over 25 runs. In each run, 40,000 observations from
16 artificial, randomly drawn sources were generated and mixed. We initialised
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both methods with FastICA [22], and used a kernel width of A = 0.5. As illus-
trated by the plots, FastKICA approaches the solution much faster than QGD.
We also observe that the number of iterations to convergence decreases when
the sample size grows. The plot of the Frobenius norm suggests that conver-
gence of FastKICA is only linear for the artificial data set. While local quadratic
convergence is guaranteed in the population setting, the required properties for
Corollary 1 do not hold exactly in the finite sample setting, which can reduce
the convergence rate [28].

For arbitrary initialisations, FastKICA is still applicable with multiple restarts,
although a larger kernel width is more appropriate for the initial stages of the
search (local fluctuations in FastKICA far from independence are then smoothed
out, although the bias in the location of the global minimum increases). We
set A = 1.0 and a convergence threshold of 10~® for both FastKICA and QGD.
For 40,000 samples from 8 artificial sources, FastKICA converged on average
for 37% of the random restarts with an average error (x 100) of 0.54 + 0.01,
whereas the QGD did not yield any useful results at all (mean error x 100:
74.14 £ 1.39). Here, averages are over 10 runs with 20 random initialisations
each. The solution obtained with FastKICA can be refined further by shrinking
the kernel width after initial convergence, to reduce the bias.

5.2 Performance and Cost vs Other Approaches

Our next results compare the performance and computational cost of FastKICA,
Jade [9], KDICA [10], MICA [29], MILCA [38], RADICAL [26], and quadratic
gradient descent (QGD) [23]. The timing experiments for all methods except
MILCA were performed on the same dual AMD Opteron (2x AMD Opteron(tm)
Processor 250, 64KiB L1 cache, 1MiB L2 cache, GiB System Memory). Since
MILCA was much slower, its tests were run in parallel on 64 bit cluster nodes
with 2-16 processors and 7.8-94.6 GB RAM, running Ubuntu 7.04: these nodes
were generally faster than the one used for the other algorithms, and the runtime
of MILCA is consequently an underestimate, relative to the remaining methods.

We demixed 8 sources and 40,000 observations of the artificial data. The run
times include the initialisation by Jade for FastKICA, QGD, and KDICA, and
are averaged over 10 repetitions for each data set (except for the slower methods
RADICAL and MILCA). QGD was run for 10 iterations, and the convergence
threshold for FastKICA was 107> (A = 0.5). MICA was allowed a maximum
number of 50 iterations, since with the default 10 iterations, the Amari error was
more than twice as high (0.84 +£0.74), and worse than that all other algorithms
besides Jade.

Figure 3 displays the error and time for 24 data sets. We see that demixing
performance is very similar across all nonparametric approaches, which per-
form well on this benchmark. MICA has the best median performance, albeit
with two more severely misconverged solutions. While small, the median per-
formance difference is statistically significant according to a level 0.05 sign test.
FastKICA and QGD provide the next best result, and exhibit a small but sta-
tistically significant performance difference compared with KDICA, RADICAL
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Figure 3: Comparison of run times (left) and performance (middle) for various
ICA algorithms. FastKICA is faster than MILCA, RADICAL, and gradient
descent with quadratic approximation, and its results compare favorably to the
other methods. KDICA is even faster, but performs less well than FastKICA.
Both KDICA and MICA have higher variance than FastKICA. The values are
averages over 24 data sets.

and Jade, but not MILCA. The time differences between the various algorithms
are much larger than their performance differences. In this case, the ordering
is Jade, KDICA, MICA, FastKICA, QGD, RADICAL, and MILCA. The addi-
tional evaluations of HSIC for the quadratic approximation make QGD slower
per iteration than FastKICA. As shown above, FastKICA also converges in fewer
iterations than QGD, requiring 4.32 iterations on average.

We also compared KDICA and FastKICA when random initialisations were
used. We see in Figure 5(a) that FastKICA solutions have a clear bivariate
distribution, with a large number of initialisations reaching an identical global
minimum: indeed, the correct solution is clearly distinguishable from local op-
tima on the basis of its HSIC value. By contrast, KDICA appears to halt at a
much wider variety of local minima even for these relatively simple data, as evi-
denced by the broad range of Amari errors in the estimated unmixing matrices.
Thus, in the absence of a good initialising estimate (where classical methods
fail), FastKICA is to be preferred. We will further investigate misconvergence
behaviour of the different ICA algorithms in the next section, for a more difficult
(non-smooth) demixing problem.

5.3 ICA performance as a function of problem smoothness

While the foregoing experiments provide a good idea of computational cost,
they do not address the performance of the various ICA methods as a function
of the statistical properties of the sources (rather, the performance is an average
over sources with a broad variety of behaviours, and is very similar across the
various nonparametric approaches). In the present section, we focus specifically
on how well the ICA algorithms perform as a function of the smoothness of the
ICA problem. Our source distributions take the form of Gaussians with sinu-
soidal perturbations, and are proportional to g(z)(1 + sin(2nvfz)), where g(x)
is a Gaussian probability density function with unit variance, § is the maximum
perturbing frequency considered and v is a scaling factor ranging from 0.05 to
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1.05 with spacing 0.05 (the choice of § will be addressed later). The sinusoidal
perturbation is multiplied by g(x) to ensure the resulting density expression is
everywhere non-negative. Plots of the source probability density function and its
characteristic function are given in Figure 4. Bearing in mind that purely Gaus-
sian sources can only be resolved up to rotation [12], the resulting ICA problem
becomes more difficult (for algorithms making smoothness assumptions on the
sources) as the departure from Gaussianity is encoded at increasing frequencies,
which are harder to distinguish from random noise for a given sample size.® By
contrast, the sources used in the previous section (taken from [19, Table 3])
yield very similar demixing performance when comparing across the nonpara-
metric algorithms used in our benchmarks. One reason for this similarity is
that the departure from Gaussianity of these sources has substantial amplitude
at low frequencies, resulting in ICA problems of similar difficulty for MICA,
KDICA, and FastKICA.? We remark that linear mixtures where the departure
from independence occurs only at high frequencies are not typical of real-life
ICA problems. That said, such mixtures represent an important failure mode
of ICA algorithms that make smoothness assumptions on the source densities
(as for MICA, KDICA, and FastKICA). Thus, our purpose in this section is to
compare the decay in unmixing performance across the various ICA algorithms
as this failure mode is approached.

We decide on the base frequency [ of the perturbation with reference to
the parameters of MICA, to simplify the discussion of performance. The MICA
algorithm optimizes a sum of entropies of each mixture component, where the
entropies are computed using discretised empirical estimates of the mixture
probability distributions. We can express the distribution estimates by first
convolving the mixture sample by a B-spline kernel (of order 3, although other
orders are also possible) and then downsampling to get probability estimates
at the gridpoints. If we consider the population setting and perform these
operations in the frequency domain, this corresponds to multiplying the Fourier
transform of the source density by that of the B-spline, and then aliasing the
frequency components that exceed the grid Nyquist frequency.

Given a baseline bandwidth by, the grid spacing is computed as a function
of the sample size n according to b, = by x 2.107683/n%2; without loss of
generality, we set by = 1. The spline kernel bandwidth is also scaled by this
factor, such that the zeros in the kernel spectrum occur at integer multiples of
fm :=n"2/(2.107683). To use these factors in setting 3, consider two sources
consisting of perturbed Gaussians with identical 3. The characteristic function
of the two mixtures resulting from a rotation with angle 7/4 has a distinctive
peak at 3v/2 when v = 1. Thus, by setting 8 = n%2/(2.107683+/2), this peak

8This perturbation to the Gaussian distribution differs from that used for designing con-
trast functions in classical ICA studies, which employ Edgeworth [12] or Gram-Charlier [4]
expansions. We shall see, however, that our perturbed sources are better suited to character-
izing the interaction between ICA performance and the choice of kernel, for methods using
kernel density estimates (MICA, and KDICA) and for FastKICA.

9 As we shall see, the spacings-based entropy estimates of RADICAL and the graph-based
mutual information estimates of MILCA behave quite differently.
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Figure 4: Left: Source probability density function for a perturbation at fre-
quency 0.7f,,/v/2, where f,, is the frequency of the first zero in the spectrum of
the spline kernel used by MICA. Middle: Characteristic function of the source,
showing peaks at the perturbation frequency. Right: Empirical (smoothed)
characteristic function of the mixture of two sources with angle 7/4. Two peaks
are seen at locations 0.7f,,. The spectrum of the MICA kernel (a 3rd order
B-spline) is superposed. The dashed vertical lines are at f,,,/2, which is the
Nyquist frequency for the grid used by MICA. Thus, perturbations exceeding
this frequency will be aliased.

will fall at the first minimum of the spline kernel spectrum. An illustration is
provided in Figure 4. Note in particular the decay of the spline spectrum towards
its first zero at f,,: any component of the mixture characteristic function at this
frequency will be severely attenuated, and thus we expect that demixing sources
with v approaching 1 will be difficult (the sources will appear Gaussian).

We sampled 25 data sets consisting of two sources with n = 1,000 for each
value of v, and mixed the sources with orthonormal matrices. To ensure com-
parable results, we used the same set of 25 mixing matrices across all v. The
algorithms were run for a maximum of 50 iterations. The convergence threshold
for FastKICA was a 0.5% change of HSIC, and the bandwidth A = 0.5. MICA
used a bandwidth of by = 1. For these bandwidth choices, we emphasise that
both FKICA and MICA reached chance level performance (i.e. complete fail-
ure) at the same source perturbing frequency, corresponding to ¥ = 1, making
the behaviour of these two methods across the v range directly comparable. In
other words, we report the relative performance of the two algorithms over the
frequency range for which they operate at better than chance level. The Amari
errors in Figure 5(b) are averages over 10 random initialisations and the 25 data
sets for each frequency. Each algorithm was initialised with the same 10 random
orthonormal matrices.

We note first of all that FastKICA has a longer v interval in which the
average Amari error is very low, compared with MICA and KDICA. In addi-
tion, as v rises above 0.5, the average error of FastKICA is consistently below
that of MICA and KDICA. On the other hand, for the lowest perturbing fre-
quencies, KDICA and MICA perform better than FastKICA. The two most
computationally costly methods, RADICAL and MILCA, perform best, with a
low Amari divergence over all the high v values tested. This is as expected, for
two reasons: first, both methods perform an exhaustive search over all pairs of
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Jacobi angles, and are not susceptible to local minima. Second, RADICAL is
based on a spacings estimate of entropy, and MILCA on a k-nn estimate of the
mutual information: in other words, both methods adapt automatically to the
scale of the variations in the mixture densities. That said, efficient optimization
techniques have yet to be developed for RADICAL and MILCA.

We next examine in more detail the convergence behaviour leading to the
drop in average performance of FastKICA, MICA, and KDICA as v rises. First,
as noted in the previous section, KDICA can be sensitive to local minima: thus
its average performance degrades even for low values of v as a large number
of initialisations result in misconvergence. The behaviour of MICA is more
complex, with performance dropping at v =~ 0.4 but recovering for v ~ 0.55
(two more such oscillations occur at higher v). At v ~ 0.4, the MICA entropy
score develops a local minimum at a rotation of /4 from the true unmixing
matrix, resulting in a substantial number of initializations converging to this
incorrect solution, as well as a group of correct solutions (this local minimum
is also seen for other by values, but at different onset values of v). The local
minimum becomes less pronounced at v ~ 0.55, but then strengthens again at
v =~ 0.65. By contrast, the results for FastKICA at moderate values of v more
closely follow the histogram of Figure 5(a), with a large fraction of solutions at
the global optimum, and the remaining misconverged solutions having a range
of Amari errors. Taking the best solution over all 10 initializations (as measured
by the HSIC or entropy score), rather than the average solution, the results of
MICA and FastKICA at larger v both remain indistinguishable from RADICAL
and MILCA until v =~ 0.8. For v > 0.8, performance worsens towards chance
level as v rises to 1, at which point the global optimum of both contrast functions
occurs at a random angle. The onset of this performance drop can be increased
for both FastKICA and MICA by decreasing by or A, respectively; but at a cost
of worse mean performance due to more pronounced local minima. On the other
hand, the best KDICA result continues to perform as well as RADICAL and
MILCA, since the slow decaying Fourier transform of its Laplace kernel makes
it sensitive to higher frequencies.

5.4 Resistance to Outliers

In our final experiment, we investigate the effect of outlier noise added to the
observations. We selected two generating distributions from the benchmark data
in [19, Table 3], randomly and with replacement. After combining these signals
with a randomly generated matrix with condition number between 1 and 2, we
generated a varying number of outliers by adding +5 (with equal probability) to
both signals at random locations. We evaluated HSIC using a Gaussian kernel of
size A = 0.5. For FastKICA and MICA, we chose the best result out of 3 random
initialisations, according to HSIC or the estimated entropy, respectively. The
initialisation for KDICA was the FastKICA result, since the KDICA is sensitive
to poor initialisation (as seen in Section 5.2). Results are shown in Figure 5(c).
It is clear that FastKICA substantially outperforms the alternatives in outlier
resistance.
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Figure 5: (a) Comparison of performance for arbitrary initialisations (n =
40,000, m = 8). Amari error histograms are shown for FastKICA vs. KDICA
with mixed artificial sources (10 data sets, 20 initialisations each). FastKICA
reaches a global minimum far more often than KDICA. (b) Amari error de-
pending on the sine frequencies for n = 1000 samples and two sources. (c)
Effect of outliers on the performance of the ICA algorithms, for two sources
of length n = 1000, drawn independently with replacement from [19, Table 3],
and corrupted at random observations with outliers at £5 (where each sign has
probability 0.5). Each point represents an average over 100 independent exper-
iments. The number of corrupted observations in both signals is given on the
horizontal axis.

6 Conclusion

We demonstrate that an approximate Newton-like method, FastKICA, can im-
prove the speed and performance of kernel/characteristic function-based ICA
methods. We emphasise that FastKICA is applicable even if no good initiali-
sation is at hand. With a modest number of restarts and a kernel width that
shrinks near independence (on our data, from A = 1.0 to A = 0.5), the cor-
rect global optimum is consistently found. A good initialisation results in more
rapid convergence, and we do not need to adapt the kernel size. Our method
demonstrates much better outlier resistance than recently published competing
approaches. Moreover, our optimization method can be applied to any twice
differentiable RKHS kernel, rather than relying on the specific properties of par-
ticular kernels (to be Laplace in the case of [10], or to be a spline kernel with
compact support in [29]).

Several directions for future work are suggested by the present study. First,
the kernel bandwidth used is currently chosen heuristically. It would be of in-
terest to develop more principled methods for choosing this bandwidth based on
properties of the data. Second, it is notable that ICA methods based on spac-
ings estimates of entropy, or nearest-neighbour estimates of mutual information,
perform very well for ICA problems where the departure from independence is
encoded at high frequencies. Unfortunately, efficient optimization techniques
have yet to be developed for ICA using these dependence measures.
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A Evaluation of the Second Derivative of
the HSIC Based ICA Contrast

We assume the unmixing matrix is correct, and thus X = X*. The term (15a)
for a fixed pair (i,j) can be computed as

Er [0 Gris) wil Sspwio (Guij)]

= Z wirwit g1 (0" (Skii) SkirSkied (Skij)) - 87)

rit=1;rt#1i

Under the assumptions of independence and whitened mixtures, the correspond-
ing (r,t) expression can be written

0 r#L
2Byt [¢" (Ski) & (Sri)] s r=t+#1,7; (38)
Er 1[0 (Sx1) Bkt [531;0 (Skig)], 7 =1=j.

Thus the term (15a) can be further simplified as

(15a): By [¢" (Skui) w; Skispwiod (k)]

m

= Z 207 Bt [0 (Sk1i)| Bt [0 (Skay)] (39)

r=1;r#i,j
+ Wi B[ (Sk0i) Bkt [Sh1;6 (Skij)] -

By applying the same techniques, the remaining terms (15b)—(15i) become

(15b): Ex 1 [¢ (Sk1s) i Q5k16b (Sra)]

= Z —w2 Bt (¢ (Skts) Sris) Eret [ (Briy)] s (40)

r=1;r#i

(15¢): By [¢ (ki) wi Swispw; @' (Skij)]

2 / (= - / (— — (41)
= — wi;Er 1 [ (ki) Skia) Ex it [0 (Skij) Srij)
(15d): Epy [¢" (Skii) wi' SriBpwi] Ert (6 (3ki5)]
= Z 203 By [0 (Sk1)] Bt [0 (Ski)] (42)
r=1;r#i
(15€): By ¢/ (§kz¢)w2—9§k1] Ei (@ (5ki5)]
= > LBk (Srai) Sui] Brt [0 (Suay)] (43)
r=1;r#1
(15f) Ek,l [d)/(gkli) w?@kl} Ek,l [d)/(gklj) W;‘rgkl] =0, (44)
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(15g): By, [y [¢” (ki) wi' SkiShwi] B [0 (3kay)]]

m

= Z 202 Ery [0 (851:)) Bkt [0 (Siaj)] (45)

r=1;r#4,j

+ Wi Bk (6" (Sk0)) B [Ba [575] Ba [6(5ra5)]]
(15}1) E []El [QZS/ (Ekli) w;ngl] E; [¢ (gklj)]]

m

= Z —w2 Bt (¢ (Skts) Sris) Eret [0 (Bray)] s (46)
r=1;r#i
(151) : By, [t [¢'(Skts) ] Skt B [¢(5ky) w) 5] (47)

= —w Bk (B[St Bt [0 (St ) | Ek [ [Ski5 /B[4 (5kas)] -

Substituting (39)—(47) into equation (15), the result in equation (16) follows
directly from w;; = —wj;.

B Derivation of the approximate gradient and
the matrix partial derivatives

In this appendix, we first derive the differential dK’ of the Cholesky approx-
imation to the Gram matrix K, and use it to obtain the differential of the
approximate HSIC in (36). We then give an expression for the differential of
the factors of K’, which involves the entry-wise derivative of the Gram matrix
with respect to a column 2 of X. Details have been published in [23].

B.1 Differential of the incomplete Cholesky approxima-
tion to HSIC

Recall that the differential of the low-rank approximation to HSIC is
dtr (f{i) — tr (ff'd(L')) Ftr (E'd(K')) . (48)
We expand the differential of K" = K, IK;}K 7. by the product rule and by
rewriting d(K;}) = K;} (dKI’:)KZ}. Plugging the result into the second term
tr (E’d([(’)) from (48) yields
tr (E’d(K’))
— tr (z’dK:,IK;}KL) Ftr (E’K:7,K;}dKI,:) (49)

(DK Ky MK KK
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Using the symmetry of the Gram matrices, the second term on the right hand
side can be transformed as

tr (E’K:JK;}dKI,:) ~ tr ((dK:,IK;}KI,:)TZ’T)
— tr (f’dK:’IK;}KL) :
and (49) becomes
tr (Z’d(K’)) —24r (K;}KL:Z’dK:J) —tr (K;}KL:E’K:JK;}dKM>
= 2vec(E’K:JKI_Jl)Tvec(dK:J)
—vec(K; 1K, L'K, (K1) "vec(dK, ;).

The other term tr (IN(’d(L’)) in (48) is equivalent.

B.2 Derivative of the Gram matrix with respect to X

The derivative of the Gram matrix entries with respect to a particular column x
of the unmixing matrix X depends on the kernel. We employ a Gaussian kernel
here, but one could easily obtain the derivatives of additional kernels: these can
then be plugged straightforwardly into the equations in the previous section.

Lemma 3 (Derivative of K with respect to X). Let K be the Gram matric
computed with a Gaussian kernel, and let x be an m x 1 column of the unmizing
matriz, such that the (i,7)th entry of K is

-1

kij = ¢(yi,y;) = exp {wﬂfTWiﬂ} )
where Wi; = (w; — w;)(w; —w;) ", and w; is the ith sample of observations.
Then the derivative of any k;; with respect to = is

Okij kij T

8xZT] = —%x (w; — wj)(w; — w;

Since the above derivative is a vector, we require appropriate notation to

express the derivative of the entire Gram matrix in a tractable form. This is
done using the vec(A) operation, which stacks the columns of the matrix A on
top of each other. Thus, the resulting differential is

)"

Ok Okn1 k1o Ok ]
B B Bx ' B d(vecx), (50)

Ovec(K) /02

d(vecK) =

where d(vecz) = dx and Oky1/0x = (0k11/0x ") 7. The derivatives of the sub-
matrices Ovec(K. 1)/0x T and dvec(Ky 1)/0x " are submatrices of vec(K)/dz ",
restricted to the rows Bkij/ax—r, with 1 <7 <mnandj € I, or both 4,5 € I,
respectively.
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