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We attempt to shed light on the algorithms humans use to classify images
of human faces according to their gender. For this, a novel methodology
combining human psychophysics and machine learning is introduced.
We proceed as follows. First, we apply principal component analysis
(PCA) on the pixel information of the face stimuli. We then obtain a data
set composed of these PCA eigenvectors combined with the subjects’ gen-
der estimates of the corresponding stimuli. Second, we model the gender
classification process on this data set using a separating hyperplane (SH)
between both classes. This SH is computed using algorithms from ma-
chine learning: the support vector machine (SVM), the relevance vector
machine, the prototype classifier, and the K-means classifier. The classifi-
cation behavior of humans and machines is then analyzed in three steps.
First, the classification errors of humans and machines are compared for
the various classifiers, and we also assess how well machines can recreate
the subjects’ internal decision boundary by studying the training errors
of the machines. Second, we study the correlations between the rank-
order of the subjects’ responses to each stimulus—the gender estimate
with its reaction time and confidence rating—and the rank-order of the
distance of these stimuli to the SH. Finally, we attempt to compare the
metric of the representations used by humans and machines for classifi-
cation by relating the subjects’ gender estimate of each stimulus and the
distance of this stimulus to the SH. While we show that the classification
error alone is not a sufficient selection criterion between the different al-
gorithms humans might use to classify face stimuli, the distance of these
stimuli to the SH is shown to capture essentials of the internal decision
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space of humans. Furthermore, algorithms such as the prototype classifier
using stimuli in the center of the classes are shown to be less adapted to
model human classification behavior than algorithms such as the SVM
based on stimuli close to the boundary between the classes.

1 Introduction

Bringing together theoretical modeling and behavioral data is arguably
one of the main challenges when studying the “computational brain”
(Churchland & Sejnowski, 1992). The aim of this letter is to obtain a bet-
ter understanding of the algorithms responsible for the classification of
visual stimuli by humans. For this, we combine machine learning and psy-
chophysical techniques to gain insights into the algorithms human subjects
use during visual classification of images of human faces according to their
gender. In this “machine-learning-psychophysics” approach, we substitute
a complex system that is very hard to analyze—the human brain—with a
reasonably complex system—a learning machine (Vapnik, 1998). The latter
is complex enough to capture some essentials of the human behavior but is
still amenable to close analysis (Poggio, Rifkin, Mukherjee, & Niyogi, 2004).
The research presented in this article is focused on a novel methodology that
bridges the gap between human psychophysics and machine learning by
extracting quantitative information from a (high-level) human behavioral
experiment.

The past decade has seen important technological advances in
neuroscience from a microscopic scale (e.g., multiunit recordings) to a
macroscopic scale (e.g., functional magnetic resonance imaging), yielding
novel insights into visual processing. However, on an algorithmic level, the
methods and understanding of brain processes involved in visual recogni-
tion are still limited, although numerous attempts have been made since
this problem was pointed out by Marr (1982).

Recently various computational models for visual recognition have been
proposed. For instance, a network of Gabor wavelet filters was used to de-
scribe the processing of visual information (Mel, 1997). Independent com-
ponent analysis was combined with a nearest-neighbor classifier to model
face recognition (Bartlett, Movellan, & Sejnowski, 2002). The computations
done by the human visual system for facial expression recognition were
described using Gabor wavelets, principal component analysis, and arti-
ficial neural networks (Dailey, Cottrell, Padgett, & Adolphs, 2002). Object
recognition and classification was also modeled using a hierarchical model
composed of a network of nonlinear units combined using a maximum op-
eration (Riesenhuber & Poggio, 1999, 2002). While each of these methods is
successful for its own task, they illustrate the divergence of the approaches
used to understand human category learning as pointed out, for example,
in the overview by Ashby and Ell (2001). In this letter, we propose a novel
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method combining machine learning and human psychophysics to shed
light on the algorithms humans use to classify visual stimuli. Our frame-
work allows us to compare directly the classification behavior of different
algorithms to that of humans.

While the results obtained in this letter have no claim to be biologically
inspired or to explain a specific function of the visual system (see, e.g., Rolls
& Deco, 2002, for an overview of such computational methods), we instead
ask the following questions: Can we generate testable hypotheses about the
algorithms humans use to classify visual inputs? Can we find a classifier
whose behavior reflects human classification behavior significantly better
than others? Current high-level vision research, with its intrinsically com-
plex stimuli, is hampered by a lack of methods to answer such questions
at the algorithmic level. The method presented here has the potential to
contribute to overcoming this obstacle.

An initial attempt using machine learning to help understand the algo-
rithms humans use to classify the gender of faces was presented by Graf and
Wichmann (2004). This letter extends that work. In section 2 we present a
psychophysical gender classification experiment of images of human faces
and analyze the subjects’ responses—the gender estimate with its reaction
time and confidence rating. Section 3 introduces several algorithms from
machine learning that will be used to model the classification behavior of
humans. Our analysis of the classification behavior of humans proceeds in
three steps. First, the classification performance of humans and machines
is compared in section 4, and the findings are related to those described
in the literature. Second, we correlate in section 5 the rank-order of the
subjects’ responses to each stimulus with the rank-order of the distance of
this stimulus to the separating hyperplane (SH) of the machine. The suc-
cess of these studies encourages us to perform the third step in section 6:
a metric comparison of the representations used by humans and machines
for classification, using the subjects’ gender estimate of each stimulus and
the corresponding distance to the SH of the machine. Section 7 summarizes
our results and discusses their implications.

2 Human Classification

In a human psychophysical classification experiment, 55 human subjects
were asked to classify a random gender-balanced subset of 152 out of 200
realistic human faces according to their gender. The stimuli were presented
sequentially once to each subject. The temporal envelope of stimulus pre-
sentation was a modified Hanning window (a raised cosine function with
a raising time of 500 ms and a plateau time of 1000 ms, for a total presen-
tation time of 2000 ms per face). After the presentation of each stimulus, a
blank screen with mean luminance was shown to the subjects for 1000 ms
before the presentation of the following stimulus. We recorded the subjects’
estimated gender (female or male) together with the reaction time (RT) and
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a confidence rating (CR) on a scale from 1 (unsure) to 3 (sure). No feedback
on the correctness of the subjects’ answers was provided. Subjects were
asked to classify the faces as fast as possible to obtain perceptual, rather
than cognitive, judgments. Most of the time they responded well before the
presentation of the stimulus had ended (mean reaction time over all stimuli
and subjects was approximately 900 ms). A training phase of 8 faces (4 male
and 4 female faces) preceded the actual classification experiment in order
to acquaint the subjects with the stimuli and the experimental procedure.
Subjects viewed the screen binocularly with their head stabilized by a head-
rest. All subjects had normal or corrected-to-normal vision and were paid
for their participation. Most of them were students from the University of
Tübingen, and all of them were naive to the purpose of the experiment.

Each stimulus was an 8-bit grayscale frontal view of a Caucasian face
with a nominal size of 256 × 256 pixels. All faces were centered on the
display, had the same pixel-surface area and the same mean intensity, and
they came from a processed version of the MPI face database1 (Blanz &
Vetter, 1999). The details of the image processing are described in Graf and
Wichmann (2002). The stimuli were presented against the mean luminance
(50 cd/m2) of a linearized Clinton Monoray CRT driven by a Cambridge
Research Systems VSG 2/5 display controller. Neither the presentation of a
male nor of a female face changed the mean luminance of the screen.

The subjects’ gender estimates were analyzed using signal detection
theory (Wickens, 2002). We assume that on the decision axis, the inter-
nal class representations are corrupted by gaussian distributed noise with
same unit variance but different means. We define correct response prob-
abilities for male (+) and female (−) stimuli as P+ = P(ŷ = 1|y = 1) and
P− = P(ŷ = −1|y = −1), where ŷ is the estimated class and y the true class
of the stimulus. The discriminability of both classes can then be computed
as d ′ = Z(P+) + Z(P−), where Z = �−1, and � is the cumulative normal
distribution with zero mean and unit variance. Averaged across all sub-
jects, we obtain a high discriminability, d ′ = 2.63 ± 0.57, suggesting that the
classification task is comparatively easy for the subjects, albeit not trivial
(no ceiling effect). Furthermore, the subjects exhibit a pronounced male
bias in the responses defined as log(β) = 1

2 (Z2(P+) − Z2(P−)) = 1.49 ± 1.15,
indicating that more females are classified as males than males as females.

In Figure 1 we show the relation between the average across all subjects
of the subjects’ responses for each stimulus, each point in these plots rep-
resenting one stimulus. We can first see that for P(ŷ = +1|x) ≈ 1, all the
stimuli are male and that for P(ŷ = +1|x) ≈ 0, all the stimuli are female.
Second, we can observe the male bias already mentioned: a higher density
of responses near P(ŷ = +1|x) ≈ 1. Furthermore, there are female stimuli
for which P(ŷ = +1|x) > 1

2 , but no male stimuli for which P(ŷ = +1|x) < 1
2 .

1 To be found online at http://faces.kyb.tuebingen.mpg.de.
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Figure 1: Relation between the subjects’ responses—the probability P(ŷ =
+1|x) to answer male, the reaction time RT, and the confidence rating CR—
on a stimulus-by-stimulus basis (responses averaged across subjects).

Clearly the threshold for male-female discrimination depends on the male
bias and is located in [ 1

2 , 1]. Third, we notice that for stimuli with a high
probability to belong to either class (P(ŷ = +1|x) = 0 or 1), the correspond-
ing RTs are short and the CRs are high. In other words, when the subjects
make a correct gender estimate, they answer fast, and they are confident of
their response. For the stimuli where the subjects have difficulty choosing a
class (P(ŷ = +1|x) ≈ 0.5), they take longer to respond (long RT) and are un-
sure of their response (low CR). Subjects thus have a rather good knowledge
of the correctness of their gender estimate.

3 Machine Classification

To model the subjects’ classification behavior using machine learning, we
first need to preprocess the stimuli to reduce their “apparent” dimensional-
ity. We use principal component analysis PCA (Duda, Hart, & Stork, 2001),
a widely used linear preprocessor from unsupervised machine learning,
to preprocess the data. PCA is an eigenvalue decomposition of the covari-
ance matrix associated with the data matrix D = B E along the directions of
largest variance where the columns of the basis matrix B are constrained to
be orthonormal and the rows of the encoding matrix E are orthogonal. The
rows of B are termed eigenfaces according to one of the first studies to apply
PCA to human faces (Sirovich & Kirby, 1987). PCA has also been success-
fully applied to model face perception and classification in a large number
of studies, from psychophysics (O’Toole, Abdi, Deffenbacher, & Valentin,
1993: Valentin, Abdi, Edelman, & O’Toole, 1997; O’Toole, Deffenbacher,
Valentin, McKee, Huff, & Abdi, 1998; O’Toole, Vetter, & Blanz, 1999; Furl,
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Phillips, & O’Toole, 2002), to artificial recognition systems (Turk & Pentland,
1991; Golomb, Lawrence, & Sejnowski, 1991; Gray, Lawrence, Golomb, &
Sejnowski, 1995; O’Toole, Phillips, Cheng, Ross, & Wild, 2000; Bartlett et al.,
2002) and facial expression modeling (Calder, Burton, Miller, Young, &
Akamatsu, 2001). Like all previous studies, we apply PCA to the vectors
obtained when reshaping the intensity matrix of the pixels of each face into
a single 2562 × 1 vector. We keep the full space of the data, that is, the 200
nonzero components of the PCA decomposition of the data, and obtain a
PCA-encoding data matrix E of size 200 × 200, where each row is the en-
coding corresponding to a face stimulus. By construction, these encodings
are already centered. Subsequently these encodings are also normalized
since this has been shown to be quite effective in real-world applications
for some classifiers (Graf, Smola, & Borer, 2003). Since we consider the full
encoding space of dimension 200, the choice of PCA as a preprocessor is of
little consequence, and the face stimuli can be reconstructed perfectly from
these encodings.

In this letter, we consider two types of stimulus data sets for each subject:
the true and the subject data sets. The patterns in both data sets are repre-
sented by their (centered and normalized) PCA encodings. The true data set
contains the p = 152 encodings �xi ∈ R

200, i = 1, . . . , p of the stimuli seen by
the subject, combined with the true labels yi = ±1 of these stimuli—their
true gender as given by the MPI face database. The subject data set is com-
posed of the same encodings �xi , combined this time with the labels ŷi of
the stimuli as estimated by the subject in the psychophysical classification
experiment. This data set represents what we assume to be the subject’s
internal representation of the face space. Altogether we thus have 55 true
and subject data sets.

We use methods from supervised machine learning to model classifica-
tion. The classifiers are applied to the true and the subject data sets and
thus classify in the PCA space of dimension 200. We consider classifiers
that are linear: they classify using a separating hyperplane (SH) defined by
its normal vector �w and offset b. Furthermore, these classifiers can all be
expressed in dual form: the normal vector is a linear combination of the
patterns of the data set �w = ∑

i αi �xi . Since we cannot investigate all such
classifiers in an exhaustive manner, we consider the most representative
member of each one of four families of classification principles: the support
vector machine, the relevance vector machine, the prototype classifier and
the K-means classifier. Figure 2 shows these classifiers applied on a two-
dimensional toy data set. These classifiers are presented and discussed in
further detail below.

The support vector machine SVM (Vapnik, 2000; Schölkopf & Smola,
2002) is a state-of-the-art maximum margin classification algorithm rooted
in statistical learning theory. SVMs classify by maximizing the margin sep-
arating both classes while minimizing the classification errors. This trade-
off between maximum margin and misclassifications is controlled by a
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SVM RVM Prot Kmean

Figure 2: Classification of a two-dimensional toy data set using the classifiers
considered in this study. The dark lines indicate the SHs.

parameter C set by cross-validation.2 The optimal dual space parameter �α
maximizes the following expression,

∑
i

αi − 1
2

∑
i j

yi yjαiα j 〈�xi |�x j 〉,

subject to

∑
i

αi yi = 0 and 0 ≤ αi ≤ C,

where 〈·|·〉 stands for the inner (or scalar) product between two vectors. The
offset is computed as b = 〈yi − 〈 �w|�xi 〉〉i |0<αi <C . Patterns of the data set satis-
fying αi 
= 0 are called support vectors, and they lie on the boundary or inside
of the margin stripe between the classes. Both perceptrons (Rosenblatt, 1958)
and adaboost (Freund & Schapire, 1995) can be interpreted as maximum
margin classifiers—a maximum margin is a property of these algorithms
but no notion of margin appears in their definition (see Graepel, Herbrich, &
Williamson, 2001, and Schapire, Freund, Bartlett, & Lee, 1998, respectively)
and thus belong to the same family of algorithms as SVMs. Also SVMs can
be thought of as a more principled version of two-layered feedforward ar-
tificial neural networks (LeCun, Bottou, Orr, & Müller, 1998; Haykin, 1999).

Probabilistic Bayesian classification is represented by the relevance vec-
tor machine RVM (Tipping, 2001), which belongs to the family of gaus-
sian processes (Williams & Barber, 1998). The RVM classifies patterns by
maximizing a conditional probability of class membership P(�y|X, �β) given
the data X = {�xi }p

i=1 and some hyperparameter �β. The class membership
P(�y|X, �α) is modeled using a Bernoulli distribution. The sparseness of �α is

2 Cross-validation is used to assess in an unbiased manner the classification error of an
algorithm on a given data set. An N-fold cross-validation scheme separates the data set
into N subsets where N − 1 are used for training and the remaining one is used for testing.
The average over all N possibilities is then an estimate of the classification error of the
classifier on the considered data set. When estimating optimal parameters, the parameter
yielding the minimal classification error is chosen.
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introduced using a gaussian distribution for P( �α| �β). Learning then amounts
to maximizing with respect to �β the following conditional probability:

P(�y|X, �β) =
∫

P(�y|X, �α)P( �α| �β)d �α.

The value of �β maximizing the above probability is then used to compute
�α using P( �α| �β), and thus also �w and b. Since this integral cannot be solved
analytically, the Laplace approximation (local approximation of the inte-
grant by a gaussian) is used for solution, yielding an iterative update scheme
for �β.

Some classifiers used in neuroscience, cognitive science, and psychology
are variants of the mean-of-class prototype classifier Prot (Reed, 1972; Rosch,
Mervis, Gray, Johnson, & Boyes-Braem, 1976). Its popularity may be due in
part to its intuitiveness—representing the class by its mean tendency—as
well as due to its simplicity: it classifies according to the nearest mean-of-
class prototype. In its simplest form, all dimensions are weighted equally,
but variants exist where the weight of each dimension is inversely propor-
tional to the class variance along that dimension. As we cannot estimate
class variance along all 200 dimensions from only 200 stimuli, we chose to
implement the simplest prototype classifier with equal weights along all
dimensions where the prototypes are defined as

�p± =
∑

i �xi (yi ± 1)∑
i (yi ± 1)

.

The weight vector and the offset are then computed respectively as

�w = �p+ − �p− and b = ‖�p−‖2 − ‖�p+‖2

2
.

The expression for �w can be rewritten as a linear combination of the pat-
terns �xi , and thus Prot can be viewed as a classifier in dual form. Note
that due to the homogeneity of the faces in the MPI face database (Graf &
Wichmann, 2002) this classifier is likely to be close to the “best” possible
prototype classifier. The popularity of prototype classification has led to
several variants. For instance, the general context model (Palmeri, 2001;
Nosofsky, 1991) is a classifier where instead of computing ‖�x − �p±‖ as
for the prototype classifier, the quantity

∑
i |yi =±1 ‖�x − �xi‖ is used for clas-

sification. Moreover, the Fisher linear discriminant classifier FLD (Fisher,
1936) is a whitened variant of the prototype classifier. Indeed, the FLD
weight vector can be written as �w = S−1

w ( �p+ − �p−), where Sw = S+ + S−
and S± = ∑

�xi |yi =±1 |�xi − �p±〉〈�xi − �p±| is the within-class covariance ma-
trix of the positive and negative data, respectively (Duda et al., 2001),
the notation |·〉〈·| standing for the outer product of two vectors. Conse-
quently, if we disregard the constant offset b, we can write the decision
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function as 〈 �w|�x〉 = 〈S−1
w ( �p+ − �p−)|�x〉 = 〈S−1/2

w ( �p+ − �p−)|S−1/2
w �x〉, which is

a prototype classifier using the prototypes �p± after whitening the space
with S−1/2

w . Finally, we may mention that FLD is prone to overfitting when
considering fewer patterns p than dimensions n, which is the case for us:
p = 152 ≤ n = 200. This makes FLD not suited as a classifier for our studies.

An extension of prototype classification is to consider for each class mul-
tiple “prototypes” computed, for instance, using the K-means clustering
algorithm (Duda et al., 2001). By combining these prototypes with a nearest-
neighbor classifier, we obtain the K-means classifier Kmean. The number
of means K is assumed to be the same for both classes, and its value is
determined using cross-validation. The SH obtained here is piecewise lin-
ear, and Kmean represents the family of piecewise linear SH algorithms.
Every portion of the SH of Kmean is computed using the Prot algorithm,
which makes Kmean a classifier in dual form “by parts.” The extension
of the prototype algorithm to a multiprototype one has been suggested by
Edelman (1995) in the context of his “chorus of prototype” approach, which
cannot be directly applied to our study. Our Kmean classifier is close in
spirit, however.

4 Classification Errors of Man and Machine

First we assess the classification errors of humans and machines using cross-
validation, a method involving multiple training and testing sets, which
allows us to estimate the generalization ability of the classifiers. Second,
we show that for the particular task we chose, training on the entire data
set using a single training and testing set does not lead to overfitting since
the classification errors obtained with and without cross-validation are not
significantly different. Finally, we study the training error of the classifiers,
which is a measure of how well the classifiers can recreate the subjects’
internal decision boundary for faces.

For humans, the classification error on the true data set is simply obtained
by considering the mean and standard deviation over all 55 human subjects
of the individual mean classification error computed by comparing the
true gender of a stimulus with its estimate. The classification error on the
subject data set cannot be computed directly since the subject’s labels are
not known beforehand. To obtain this error, we use a method derived from
cross-validation where for each stimulus shown to a particular subject,
we compute the mean error the other subjects made on this stimulus by
defining as an error when the other subjects responded differently than the
considered subject did. The classification error on the subject data set is thus
computed by treating each subject’s responses in turn as being “correct” and
calculating the classification error of all the other subjects by this standard.
In other words, we compare the subjects’ gender responses on common
stimuli and determine the mean consistency between subjects. We then
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Figure 3: (Top) Classification error of humans and machines on both data sets
assessed using cross-validation (multiple training and testing sets). (Bottom)
Training and classification errors of the machines on both data sets computed
without cross-validation (single training and testing set).

compute the mean and standard deviation of this error over all the stimuli
presented to that subject. For machines, the mean and standard deviation
of the classification error is obtained, for both the true and the subject data
sets, using a single five-fold cross-validation on the classification error for
the RVM and Prot and a double five-fold cross-validation to determine also
the optimal values of C for the SVM and K for Kmean. The mean and
standard error over all 55 subjects of the mean and standard deviation of
the above “individual” classification errors are computed for both data sets
and are shown in the top row of Figure 3.

When considering the classification error of humans, we notice that the
standard error is smaller for the subject data set than for the true one. This
is due to our method of assessing the classification error on the subject data
set: it is computed using the consistency between each subject’s responses
and the other subjects’ responses on the same set of stimuli. As the subjects’
responses tend to agree—a stimulus whose gender is difficult to assess by
one subject is likely to be difficult to classify also by the other subjects—the
average gender response over all subjects will also be similar. Hence the
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standard error of the subjects’ responses will be small. However, on the true
data set, we do not have this “average of average” consistency effect, which
is why the standard error of the classification error is larger on the true than
on the subject data set.

On the true data set, while the classification errors are not significantly
different for humans versus the SVM and for humans versus the RVM
(the error bars overlap), humans significantly outperform Prot and Kmean.
On the subject data set, however, all the machines perform on average
worse than humans, at least given our method of assessing the human
classification error on the subject data set. This suggests that at least on
the subject data set, humans and machines may be using different image
features for classification. In all considered cases, the classification error on
the subject data set is higher than on the true data set, which suggests that the
subjects’ labels make classification more difficult. This may be due to the
inherent variability (noise or jitter) in the subjects’ labeling. Prot and Kmean
perform much worse than humans on both data sets, suggesting that either
humans do not use Prot and Kmean for classification, or they do not use
the PCA representation, or none of these.

The above results can be compared to those obtained by Graf and
Wichmann (2004) where instead of applying PCA directly on the pixel
information, PCA was applied to a representation of the faces that uses cor-
respondences between the images such as texture and shape maps (e.g., a
nose is mapped to a nose). Although the conclusions were similar, the clas-
sification errors of machines are higher in this study, which suggests that a
representation using correspondences, that is, an additional amount of in-
formation, makes classification an easier task for the machines. There have
also been numerous attempts to compare the classification performance of
humans and machines in the context of gender classification. Most of them
used artificial neural network (ANN) classifiers applied on a PCA represen-
tation of the image intensity information. The so-called holons, computed
from the PCA representation, were used by Cottrell and Metcalfe (1991)
as inputs to an ANN in the EMPATH recognition system to predict the
identity, the emotion, and the gender of the face stimuli. This system was
shown to perfectly classify gender and to outperform humans for assessing
emotion. In Golomb et al. (1991), ANNs were shown to classify gender better
than humans, although not much, using the so-called SEXNET architecture.
Contrary to the above findings, in our case the SVMs, although a principled
version of ANNs, do not perform significantly better than humans, which
may be due to the fact that we use linear SVMs. Other studies (Gray et al.,
1995) using face stimuli at different resolutions but without the PCA stage
indicate that the gender classification problem seems to be linearly separa-
ble since a simple perceptron yielded results similar to a multilayer ANN.
We have obtained a similar result: some linear classification algorithms are
good models for gender classification as testified by their relatively low
classification errors.
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A cross-validation scheme involving multiple training and testing sets
is useful to assess the generalization ability of a classifier by giving an
estimate of its classification error on a given data set. However, training on
the entire data set may not always yield to overfitting. In particular, if we
can show that the classification error assessed using cross-validation is not
significantly different from the one obtained by training on the entire data
set and testing on a separate testing set, we can then assert that the classifiers
are not overfitting, even if trained on the entire data set. Moreover, we then
also have a gain of interpretability of the classification process: training
on the entire data set yields a single SH, while cross-validation amounts to
using multiple SHs in a piecewise linear manner. In the case of the SVM and
Kmean, in order to determine the optimal value of the parameters C and K ,
respectively, we still need to proceed to a single 10-fold cross-validation on
the classification error. However, the classifiers are still trained on the whole
data set using these optimal values, and therefore each classifier has a single
SH. We then compute for each subject the mean and standard deviation of
the following errors for the various classification algorithms:

� The training error on the true and on the subject data set
� The classification error on the true data set computed using the unseen

stimuli with their true labels
� The classification error on the subject data set determined using the

unseen stimuli with, as labels, the sign of the mean of the other subjects’
responses for each of these unseen stimuli

The unseen stimuli are the remaining 48 stimuli out of the 200 that have not
been seen by the considered subject. These training and testing errors are
then averaged, and the standard error is computed over all subjects. The
resulting values are shown in the bottom row of Figure 3.

We compare the generalization ability of the classifiers when trained once
on the entire data set (no cross-validation) or multiple times on parts of it
as done for cross-validation by comparing, respectively, the classification
errors of the bottom and top rows of Figure 3. Although the classification
errors are slightly lower without cross-validation, which may be due to
overfitting, these errors do not differ significantly. Moreover, although the
errors themselves are slightly changed, their relation among each other
is unchanged. Therefore, for the considered task, we do not need to use
cross-validation.

Most important, the training errors on both data sets are a measure of
how well the classifiers can recreate the subjects’ internal decision bound-
ary for face representation. While the SVM and the RVM perform quite
well at this task, Prot and Kmean are rather poor candidates. As for the
classification errors, the machines have on average more difficulty learning
the subject data set than the true one.
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Comparing the classification errors of humans and machines mainly
describes the input-output mapping of the human brain and of the machine.
This shows only what is available in a black-box approach, and, as we may
guess, this is not enough to make strong claims about the algorithms that
humans actually use to classify visual stimuli. To infer these algorithms
from our machine-learning-psychophysics approach, we have to take a
closer look at the inner workings of the classification behavior of humans
and machines.

5 Rank-Order Relation Between Man and Machine

In this section we investigate the classification behavior of humans using
machine learning. For this we study, on a stimulus-by-stimulus basis, the
correlations between the average of the subjects’ responses—the subjects’
classification error, the corresponding reaction time (RT), and confidence
rating (CR)—for a stimulus �x and the average response of the machine
represented by the distance,

δ(�x) = 〈 �w|�x〉 + b
‖ �w‖ ,

of this stimulus to the SH of the machine in the PCA space, the averages
being computed across all 55 subjects. The metric used to compute the
above distance is the common and simple Euclidean 2-norm. The distance
δ reflects how the learning machine structured the face space of the subjects.
To link machine learning and human classification, we make the following
conjecture: the closer a stimulus is to the SH (the smaller |δ|), the harder
the classification should be (more errors by the subjects, longer RTs, and
lower CRs). The rank-order of both the responses of humans (classification
error, RT, and CR) and machines (|δ|) is considered so as to avoid having
to specify the precise metric of how to relate humans and machines. If this
approach is successful, we can then consider the full metric information
given by the responses of humans and machines (see section 6).

Since the training errors on the true and the subject data sets do not
differ significantly (see the bottom row of Figure 3), we may consider only
the SHs obtained using the subject data set. Moreover, only these SHs
reflect what we hypothesize to be the internal face representation of the
subjects. Hence, for each subject, a “personal” SH is computed using the
labels ŷi estimated by this subject. The distance δ between the SH and each
stimulus presented to this subject is then computed for each classification
algorithm. In the case of Kmean, this distance is computed using the piece
of hyperplane constructed using the “prototype” of each class nearest to the
considered stimulus. We then assess the correlation between the average
classification behavior of humans and machines on a stimulus-by-stimulus
basis. For this, we compute, for each stimulus and classifier, the relation
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Figure 4: Rank-order analysis on a stimulus-by-stimulus basis between the
responses of humans (the classification error, the corresponding RT and CR)
and machines (|δ| computed on the subject data set). Both axes range from 1 to
200. In the plots of the top row, the horizontal aggregations are stimuli that have
been perfectly classified by the subjects, which translates in a tied-rank analysis
into a horizontal line with an offset.

between the absolute value |δ| of the average across all subjects of the
distance of that stimulus to the SH and the mean response of the subjects
for that stimulus. To assess this correlation, we perform a nonparametric
rank-order correlation analysis using the tied-rank of the subject’s response
and of |δ| across the set of stimuli by computing Spearman’s rank correlation
coefficient r . The mean value of r and its standard deviation are obtained
using a bootstrap method by averaging over 1000 random poolings of 90%
of the 200 stimuli. Figure 4 shows these rank-order correlation plots relating
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humans and machines, each of the 200 scatter points representing one face
stimulus. Considering the relation between the rank-order of the subjects’
responses and |δ| of machine, we notice that stimuli far from the SH (high
|δ|) are classified more accurately (low subject error), faster (short subject
RT), and with higher confidence (high subject CR) than stimuli close to
the SH. These rather intuitive trends are present for all classifiers, albeit
to different degrees, and illustrate that |δ| may indeed be a good measure
to bridge the gap between human psychophysics and machine learning.
Given a classifier, if the man-machine correlations are high for one of the
subjects’ responses, they can be expected to be high also for the other
responses since the subjects’ responses are related, as already pointed out in
section 2.

These rank-order correlations allow us also to get a first hint at the
algorithms humans may use to classify visual stimuli. The SVM shows
the highest man-machine correlations for all responses. Moreover, it has
the lowest training error on the subject data set (see the bottom row of
Figure 3). In other words, the SVM can almost perfectly recreate the subjects’
internal decision space, and it also gives the best man-machine correlations.
The SVM is thus a good candidate to model algorithmically visual gender
classification in humans. Although the RVM has a slightly higher training
error on the subject data set, its good man-machine correlations make it
also a good candidate for this enterprise. The prototype classifier shows the
lowest man-machine correlation for all responses. Under the assumptions
of this study (in particular, no nonlinear preprocessing), a mechanism akin
to prototype learning seems to be a poor model of human classification
behavior. A piecewise extension of Prot such as Kmean also shows low
man-machine correlations and is not nearly as good as the SVM or the
RVM. It is thus unlikely that humans use this type of piecewise linear
decision function. However, we cannot draw any definite conclusions for
Prot and Kmean since both classifiers have rather high training errors on
the subject data set.

Comparing these results to those reported in Graf and Wichmann (2004),
we notice that the man-machine correlations are higher in the present study.
We may then conclude that using the correspondence information between
the face images, although reducing the classification errors as mentioned
in section 4, decreases the man-machine correlations. The latter may hint
at the fact that a texture-shape correspondence representation may not
be used by humans to encode visual information. It further emphasizes
that classification performance per se and man-machine correlations are
not equivalent measures. At first sight, the result that the correspondence
information reduces the man-machine correlations may contradict the one
obtained by Hancock, Bruce and Burton (1998), where it is shown that
applying PCA on the texture and shape information separately increases
the man-machine correlations for face recognition. The setting of the two
studies is, however, different: while we focus here on gender classification,
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the study by Hancock et al. (1998) mainly considers face recognition. The
task performed by humans and machines is thus quite different between
the two studies. While correspondence information should improve face
recognition by better relating the face stimuli and removing artifacts, it
may at the same time also degrade some gender-specific cues that are
necessary for gender classification. Furthermore, it is difficult to compare
both studies directly because of the difference in the implementation of the
preprocessing stage: in the study by Graf and Wichmann (2004), PCA is
applied to the concatenation of the texture and shape vectors, while in the
study by Hancock et al. (1998), PCA is applied to the texture and shape
vectors separately.

Our results can also be related to those of Ashby, Boynton, and Lee (1994)
where the reaction time RT for the classification of low-level stimuli is shown
to decrease with the distance of the stimuli to the “categorization decision
bound”—the SH in this study. The RT is also shown to be independent of
the distance of the stimuli to the prototypes of each class. In this study,
we corroborate those findings and also extend them in two ways. First,
we consider the gender estimate and the confidence rating corresponding
to the reaction time and find that these responses are related. Second, we
investigate different algorithms rooted in machine learning to compute this
SH. Third, in the next section, we gain insights into the actual metric humans
use for visual gender classification.

From the above rank-order correlation studies, we conclude that our
data are orderly and that there is structure in the data that the machines
can uncover. Even when removing the metric information presented in the
responses of humans and machines by computing their tied-rank, some
distinct trends can be seen in the data, these trends allowing us to compare
humans and machines. In the next section, we proceed to a more quanti-
tative analysis of the classification algorithms humans use for gender clas-
sification by removing the absolute value and the rank-order operations.
We thus assess directly the metric of the internal decision space in humans
using machine learning.

6 Metric Relation Between Man and Machine

The success of the above rank-order analysis suggests to us that the distance
δ of the stimuli to the SH of a classifier is a meaningful measure to compare
the classification behavior of humans and machines. Moreover, δ seems
to capture more information about man-machine comparisons than the
classification error. In this section, we proceed with a metric analysis by
relating on a stimulus-by-stimulus basis the probability that a stimulus is
classified as male to the distance of this stimulus to the SH for each classifier,
this time, however, without taking the rank-order of both quantities and by
considering δ instead of |δ|.
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The subjects’ gender responses ŷ are used to define the mean probability
P(ŷ = +1|x) that a stimulus �x is classified as male across all 55 subjects.
This probability has the characteristic of a smooth psychometric function:
it is near 0 for stimuli classified predominantly as females, increases to 1/2
for stimuli where the classification is more difficult, and approaches 1 for
stimuli classified mainly as males. This situation is typical for virtually all
psychophysical tasks where human performance is a smooth, monotonic
function of task difficulty. If any of the machines has captured more than
just the input-output (classification error) mapping of the human subjects
but instead captured some aspects of the human internal representation for
gender classification, then the distance of a face to the SH should reflect
the human classification difficulty. Thus, a regression of a monotonic func-
tion against the responses of machines δ on the x-axis and the responses
of humans P(ŷ = +1|x) on the y-axis should yield a good fit: an averaged
psychometric function. We fit that subject-averaged psychometric function
to the responses of humans and machines using a constrained maximum-
likelihood method (Wichmann & Hill, 2001). The goodness of fit is assessed
using the variance explained σexp, which compares the amount of informa-
tion captured from the data by the fitted function to the amount captured
by a horizontal fit through the data. A high value of σexp indicates a good
fit, whereas a low value indicates a poor fit; σexp ranges from 1.0 (perfect
fit) to 0.0 (no explanatory gain over a horizontal line, that is, no relation
between the variables). We fit either a clipped linear, a Weibull, or a logistic
function to the data, selecting the one for each classifier that maximizes σexp.
The plots of Figure 5 relate on a stimulus-by-stimulus basis P(ŷ = +1|x) to
δ, which is scaled to [0, 1] and computed, as in section 5, using the subject
data set.

Since we use a linear preprocessor (PCA), a linear classifier, and the
Euclidean norm for the computation of δ, we may expect that the linear
fit would be the best type of fit. For the SVM, we indeed find that the
best-fitting function is a clipped linear regression, whereas for the other
classifiers, we require nonlinear sigmoidal functions. The SVM, which has
a low training error on the subject data set and also exhibits the highest man-
machine correlations in the rank-order analysis, provides here the best fit
(highest values of σexp) and is also the only one of the studied classifiers
that allows a linear interpolation between the responses of humans and
machines. The SVM thus again creates the gender classification space for
faces closest to that of humans. The RVM has a lower quality of fit (lower
value of σexp), and the interpolation function follows a Weibull function. It
seems thus less appropriate for our purpose, although it is still a possible
candidate. Consistent with the previous rank-order results, the prototype
classifier exhibits the least structure in the data, and consequently also the
poorest goodness of fit σexp. Its piecewise linear extension Kmean shows
slightly more structure, but is still far worse than the SVM or the RVM.
Similarly to the previous findings of this study, it thus seems unlikely that
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Figure 5: Metric analysis on a stimulus-by-stimulus basis between the response
of humans P(ŷ = +1|x) and machines δ (computed on the subject data set and
rescaled to [0, 1]).

humans use algorithms based on the concept of prototype to classify the
gender of faces.

7 Conclusions

Estimating the human internal metric representation of objects and cate-
gories is one of the central problems in cognitive psychology, and many
previous investigations exist using, for instance, the geometrical relations
between objects in feature spaces (Edelman, 1999) or the aftereffects in-
duced in humans by face stimuli (Leopold, O’Toole, Vetter, & Blanz,
2001). There have also been previous attempts to study human and ma-
chine classification behavior by comparing, for instance, the generaliza-
tion ability of humans and machines using the so-called other-race effect
(Furl et al., 2002). In this article, we introduced a unified algorithmic ap-
proach based on machine learning techniques to gain insights into both
the internal decision space of humans and the classification behavior of
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humans in the context of a gender classification task of images of human
faces.

Our research introduces a novel methodology and tests it by applying it
to visual gender classification. Understanding the algorithms humans use
in classification tasks shows what computations a more biologically realistic
model should perform. We hope that our results provide further guidance
for the construction of neural population models that could explain human
classification behavior on a more microscopic scale (Dayan & Abbott, 2001;
Gerstner & Kistler, 2002). However, before dealing with these microscopic
aspects, a better knowledge of the macroscopic classification behavior is
necessary. In this letter, we hope to have given a framework to study human
classification of visual stimuli quantitatively.

The main aspect of our letter is that we study the subjects’ internal deci-
sion space for face stimuli. First, the input-output characteristics of human
and machine gender classification were compared using the classification
error as a measure. Second, the classification behavior of humans and ma-
chines was related by comparing the rank-orders of the responses of hu-
mans (the subjects’ classification error with the corresponding reaction and
confidence rating) and machines (the distance of the stimuli to the SH of
the machines). First trends in the data were obtained from these rank-order
studies: stimuli far from the SH are classified more accurately, faster, and
with higher confidence than stimuli closer to the SH. In other words, the
distance of stimuli to a hyperplane separating both classes is demonstrated
to be a useful measure to compare humans and machines. Third, we con-
sidered the full metric information contained in the responses of humans
and machines and studied the subjects’ internal decision space for gender
classification of images of faces. From this, we concluded that combining a
linear preprocessor (PCA) with a linear classifier in a Euclidean metric space
gave exceedingly good fits for the SVM: the distance of a face to the SH was
an almost perfect predictor of the human classification performance aver-
aged across all our subjects. In contrast, the prototype classifier behaved in
the least human-like manner. This finding supports the arguments against
the concept of prototype outlined by Földiák (1998). Here we show that
more sophisticated algorithms such as the SVM better capture the human
internal face space, at least given our gender classification task.

Both the rank-order and the metric studies on the subjects’ internal de-
cision space for faces gave similar results: the SVM, and to some extent
the RVM, are the best candidates to model the classification algorithms
in humans, while the prototype classifier as well as its piecewise linear
extension Kmean seem to be least adapted for this task. A classification
algorithm using the center of the classes such as for the prototype classi-
fier seems thus less adapted to model human classification behavior than
a classifier maximizing the margin between the classes such as the SVM.
In other words, when making decisions about the gender of faces, humans
may rely more on androgynous faces that are difficult to classify (such as
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the support vectors, that is, stimuli lying on or in the margin stripe) rather
than on the prototypical faces that are easy to classify.

We have focused here on the classification algorithms using a single pre-
processor, PCA. This allowed us to study in depth the algorithmic models
for gender classification that humans use. However, the preprocessing stage
cannot be ignored in a complete model of visual gender classification. While
such a model would be beyond the scope of this letter, our future studies
derived from Graf (2004) will include the use of other preprocessors, such
as independent component analysis, nonnegative matrix factorization, or
Gabor wavelet filters.
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