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Abstract

We describe a technique for comparing distributions with-
out the need for density estimation as an intermediate step.
Our approach relies on mapping the distributions into a Re-
producing Kernel Hilbert Space. We apply this technique to
construct a two-sample test, which is used for determining
whether two sets of observations arise from the same distribu-
tion. We use this test in attribute matching for databases using
the Hungarian marriage method, where it performs strongly.
We also demonstrate excellent performance when comparing
distributions over graphs, for which no alternative tests cur-
rently exist.

Introduction

We address the problem of comparing samples from two
probability distributions, by proposing a statistical test of
the hypothesis that these distributions are different (this is
called the two-sample or homogeneity problem). This test
has application in a variety of areas. In bioinformatics, it is
of interest to compare microarray data from different tissue
types, either to determine whether two subtypes of cancer
may be treated as statistically indistinguishable from a di-
agnosis perspective, or to detect differences in healthy and
cancerous tissue. In database attribute matching, it is desir-
able to merge databases containing multiple fields, where it
is not known in advance which fields correspond: the fields
are matched by maximising the similarity in the distributions
of their entries.

In this study, we propose to test whether distributions p
and q are different on the basis of samples drawn from each
of them, by finding a smooth function which is large on the
points drawn from p, and small (as negative as possible) on
the points from q. We use as our test statistic the difference
between the mean function values on the two samples; when
this is large, the samples are likely from different distribu-
tions. We call this statistic the Maximum Mean Discrepancy
(MMD).

Clearly the quality of MMD as a statistic depends heav-
ily on the class F of smooth functions that define it. On
one hand, F must be “rich enough” so that the population
MMD vanishes if and only if p = q. On the other hand, for
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the test to be consistent, F needs to be “restrictive” enough
for the empirical estimate of MMD to converge quickly to
its expectation as the sample size increases. We shall use
the unit balls in universal reproducing kernel Hilbert spaces
(Steinwart 2002) as our function class, since these will be
shown to satisfy both of the foregoing properties. On a more
practical note, MMD is cheap to compute: given m points
sampled from p and n from q, the cost is O(m+ n)2 time.

We develop a non-parametric statistical test for the two-
sample problem, based on the asymptotic distribution of
an unbiased empirical estimate of the MMD. This result
builds on our earlier work in (Borgwardt et al. 2006),
although the present approach employs a more accurate
approximation to the asymptotic distribution of the test
statistic; the test described here was originally presented
in (Gretton et al. 2007). We demonstrate the good
performance of our test on problems from bioinformatics
and attribute matching using the Hungarian marriage ap-
proach. In addition, we are able to successfully apply
our test to graph data, for which no alternative tests ex-
ist. Matlab software for the test may be downloaded from
http : //www.kyb.mpg.de/bs/people/arthur/mmd.htm

The Two-Sample-Problem

Let p and q be distributions defined on a domain X. Given
observations X := {x1, . . . , xm} and Y := {y1, . . . , yn},
drawn independently and identically distributed (i.i.d.) from
p and q respectively, we wish to test whether p 6= q.

To start with, we must determine a criterion that, in the
population setting, takes on a unique and distinctive value
only when p = q. It will be defined based on (Dudley 2002,
Lemma 9.3.2).

Lemma 1 Let (X, d) be a separable metric space, and let
p, q be two Borel probability measures defined on X. Then
p = q if and only if Ep(f(x)) = Eq(f(x)) for all f ∈
C(X), whereC(X) is the space of continuous bounded func-
tions on X.

Although C(X) in principle allows us to identify p = q
uniquely, it is not practical to work with such a rich function
class in the finite sample setting. We thus define a more gen-
eral class of statistic, for as yet unspecified function classes
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Figure 1: Illustration of the function maximizing the mean
discrepancy in the case where a Gaussian is being compared
with a Laplace distribution. Both distributions have zero
mean and unit variance. The function f that witnesses the
MMD has been scaled for plotting purposes, and was com-
puted empirically on the basis of 2 × 104 samples, using a
Gaussian kernel with σ = 0.5.

F, to measure the discrepancy between p and q, as proposed
in (Fortet & Mourier 1953).

Definition 2 Let F be a class of functions f : X → R and
let p, q be defined as above. Then we define the maximum
mean discrepancy (MMD) as

MMD [F, p, q] := sup
f∈F

(Ex∼p[f(x)] − Ey∼q[f(y)]) . (1)

We must now identify a function class that is rich enough
to uniquely establish whether p = q, yet restrictive enough
to provide useful finite sample estimates (the latter property
will be established in subsequent sections). To this end, we
select F to be the unit ball in a universal RKHS H (Steinwart
2002); we will henceforth use F only to denote this function
class. With the additional restriction that X be compact, a
universal RKHS is dense in C(X) with respect to the L∞

norm. It is shown in (Steinwart 2002) that Gaussian and
Laplace kernels are universal.

Theorem 3 Let F be a unit ball in a universal RKHS H, de-
fined on the compact metric space X, with associated kernel
k(·, ·). Then MMD[F, p, q] = 0 if and only if p = q.

See (Gretton et al. 2007) for more detail. We plot the wit-
ness function f from Definition 2 in Figure 1, when p is
Gaussian and q is Laplace, for a Gaussian RKHS kernel.

We next express the MMD in a more easily computable
form.

Lemma 4 Given x and x′ independent random variables
with distribution p, and y and y′ independent random vari-

ables with distribution q, the population MMD2 is

MMD2 [F, p, q] = Ex,x′∼p [k(x, x′)] (2)

− 2Ex∼p,y∼q [k(x, y)] + Ey,y′∼q [k(y, y′)] .

Let Z := (z1, . . . , zm) be m i.i.d. random variables, where
zi := (xi, yi) (i.e. we assume m = n). An unbiased empiri-

cal estimate of MMD2 is

MMD2
u [F,X, Y ] =

1

(m)(m− 1)

m
∑

i6=j

h(zi, zj), (3)

which is a one-sample U-statistic with h(zi, zj) :=
k(xi, xj) + k(yi, yj) − k(xi, yj) − k(xj , yi).

Proof [Eq. (2) in Lemma 4] In an RKHS, function eval-
uations can be written f(x) = 〈φ(x), f〉, where φ(x) =
k(x, .). Denote by µp := Ex∼p(x) [φ(x)] the expectation of

φ(x) (assuming that it exists),1 and note that Ep[f(x)] =
〈µp, f〉. Then

MMD2[F, p, q]

=

(

sup
‖f‖

H
≤1

Ep [f(x)] − Eq [f(y)]

)2

=

(

sup
‖f‖

H
≤1

Ep [〈φ(x), f〉
H

] − Eq [〈φ(y), f〉
H

]

)2

=

(

sup
‖f‖

H
≤1

〈µp − µq, f〉H

)2

= ‖µp − µq‖2
H

= 〈µp, µp〉H + 〈µq, µq〉H − 2 〈µp, µq〉H
= Ep 〈φ(x), φ(x′)〉

H
+ Eq 〈φ(y), φ(y′)〉

H

− 2Ep,q 〈φ(x), φ(y)〉
H
,

where x′ is a random variable independent of x with dis-
tribution p, and y′ is a random variable independent of y
with distribution q. The proof is completed by applying
〈φ(x), φ(x′)〉

H
= k(x, x′).

The empirical statistic is an unbiased estimate of MMD2,
although it does not have minimum variance (the minimum
variance estimate is almost identical: see (Serfling 1980,

Section 5.1.4)). Intuitively we expect MMD2
u[F,X, Y ] to

be small if p = q, and the quantity to be large if the distri-
butions are far apart. Note that it costs O((m + n)2) time
to compute the statistic. We remark that these quantities
can easily be linked with a simple kernel between proba-
bility measures: (2) is a special case of the Hilbertian metric
(Hein, Lal, & Bousquet 2004, Eq. (4)) with the associated
kernel K(p, q) = Ep,qk(x, y) (Hein, Lal, & Bousquet 2004,
Theorem 4).

Having defined our test statistic, we briefly describe the
framework of statistical hypothesis testing as it applies in the

1A sufficient condition for this is ‖µp‖
2

H < ∞, which is re-
arranged as Ep[k(x, x′)] < ∞, where x and x′ are independent
random variables drawn according to p.



present context, following (Casella & Berger 2002, Chapter
8). Given i.i.d. samples X ∼ p of size m and Y ∼ q of size
n, the statistical test, T(X,Y ) : Xm ×Xn 7→ {0, 1} is used
to distinguish between the null hypothesis H0 : p = q and
the alternative hypothesis H1 : p 6= q. This is achieved by
comparing the test statistic MMD[F,X, Y ] with a particular
threshold: if the threshold is exceeded, then the test rejects
the null hypothesis (bearing in mind that a zero population
MMD indicates p = q). The acceptance region of the test is
thus defined as any real number below the threshold. Since
the test is based on finite samples, it is possible that an in-
correct answer will be returned: we define the Type I error
as the probability of rejecting p = q based on the observed
sample, despite the null hypothesis being true. Conversely,
the Type II error is the probability of accepting p = q de-
spite the underlying distributions being different. The level
α of a test is an upper bound on the Type I error: this is a
design parameter of the test, and is used to set the thresh-
old to which we compare the test statistic. A consistent test
achieves a level α, and a Type II error of zero, in the large
sample limit. We will see that the test proposed in this paper
is consistent.

An Unbiased Test Based on the Asymptotic

Distribution of the U-Statistic

We now propose a statistical test of whether p 6= q, which is

based on the asymptotic distribution of MMD2
u. This distri-

bution under H1 is given by (Serfling 1980, Section 5.5.1),
and the distribution under H0 is computed based on (Ser-
fling 1980, Section 5.5.2) and (Anderson, Hall, & Tittering-
ton 1994, Appendix); see (Gretton et al. 2007) for details.

Theorem 5 We assume E
(

h2
)

< ∞. Under H1, MMD2
u

converges in distribution to a Gaussian according to

m
1

2

(

MMD2
u − MMD2 [F, p, q]

) D→ N
(

0, σ2
u

)

,

where σ2
u = 4

(

Ez

[

(Ez′h(z, z′))2
]

− [Ez,z′(h(z, z′))]
2
)

,

uniformly at rate 1/
√
m (Serfling 1980, Theorem B, p.

193). Under H0, the U-statistic is degenerate, meaning
Ez′h(z, z′) = 0. In this case, MMD2

u converges in dis-
tribution according to

mMMD2
u

D→
∞
∑

l=1

λl

[

z2
l − 2

]

, (4)

where zl ∼ N(0, 2) i.i.d., λi are the solutions to the eigen-
value equation

∫

X

k̃(x, x′)ψi(x)dp(x) = λiψi(x
′),

and k̃(xi, xj) := k(xi, xj) − Exk(xi, x) − Exk(x, xj) +
Ex,x′k(x, x′) is the centred RKHS kernel.

We illustrate the MMD density under both the null and alter-
native hypotheses by approximating it empirically for both
p = q and p 6= q. Results are plotted in Figure 2.
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Figure 2: Top: Empirical distribution of the MMD under
H0, with p and q both Gaussians with unit standard devia-
tion, using 50 samples from each. Bottom: Empirical distri-
bution of the MMD under H1, with p a Laplace distribution
with unit standard deviation, and q a Laplace distribution

with standard deviation 3
√

2, using 100 samples from each.
In both cases, the histograms were obtained by computing
2000 independent instances of the MMD.

Our goal is to determine whether the empirical test statis-

tic MMD2
u is so large as to be outside the 1 − α quantile of

the null distribution in (4) (consistency of the resulting test
is guaranteed by the form of the distribution under H1). One
way to estimate this quantile is using the bootstrap (Arcones
& Giné 1992) on the aggregated data. Alternatively, we may
approximate the null distribution by fitting Pearson curves to
its first four moments (Johnson, Kotz, & Balakrishnan 1994,
Section 18.8).

Experiments

We conducted distribution comparisons using our MMD-
based tests on datasets from bioinformatics and database ap-
plications. We applied tests based on both moment matching

to Pearson curves (MMD2
u M) and the bootstrap (MMD2

u

B). For our kernel, we used a Gaussian with σ set to the me-



Dataset Attr. MMD2

u B MMD2

u M t-test Wolf Smir Hall Biau

BIO Same 93.8 94.8 95.2 90.3 95.8 95.3 99.3

Different 17.2 17.6 36.2 17.2 18.6 17.9 42.1

FOREST Same 96.4 96.0 97.4 94.6 99.8 95.5 100.0

Different 0.0 0.0 0.2 3.8 0.0 50.1 0.0

CNUM Same 94.5 93.8 94.0 98.4 97.5 91.2 98.5

Different 2.7 2.5 19.17 22.5 11.6 79.1 50.5

FOR10D Same 94.0 94.0 100.0 93.5 96.5 97.0 100.0

Different 0.0 0.0 0.0 0.0 1.0 72.0 100.0

Table 1: Attribute matching on univariate (BIO, FOREST, CNUM) and multivariate data (FOR10D). Numbers indicate the
percentage of accepted null hypothesis (p=q) pooled over attributes. α = 0.05. Sample size (dimension; attributes; repetitions
of experiment): BIO 377 (1; 6; 100); FOREST 538 (1; 10; 100); CNUM 386 (1; 13; 100); FOR10D 1000 (10; 2; 100).

dian distance between points in the aggregate sample, be-
sides on the graph data, where we used the graph kernel
for proteins from (Borgwardt et al. 2005). We also com-
pared against several alternatives from the literature (see
(Gretton et al. 2007) for descriptions): the multivariate t-
test, the Friedman-Rafsky Kolmogorov-Smirnov generali-
sation (Smir), the Friedman-Rafsky Wald-Wolfowitz gener-
alisation (Wolf), the Biau-Györfi test (Biau), and the Hall-
Tajvidi test (Hall). Note that the Biau-Györfi test does not
apply to very high-dimensional problems (since it requires
partitioning of the space into a grid), and that MMD is the
only method applicable to structured data such as graphs.

Our experiments address automatic attribute matching.
Given two databases, we want to detect corresponding at-
tributes in the schemas of these databases, based on their
data-content (as a simple example, two databases might have
respective fields Wage and Salary, which are assumed to
be observed via a subsampling of a particular population,
and we wish to automatically determine that both Wage and
Salary denote to the same underlying attribute). We use a
two-sample test on pairs of attributes from two databases
to find corresponding pairs.2 This procedure is also called
table matching for tables from different databases. We per-
formed attribute matching as follows: first, the dataset D
was split into two halves A and B. Each of the n attributes
in A (and B, resp.) was then represented by its instances in
A (resp. B). We then tested all pairs of attributes from A
and B against each other, to find the optimal assignment of
attributes A1, . . . , An from A to attributes B1, . . . , Bn from
B. We assumed that A and B contained the same number of
attributes.

As a naive approach, one could assume that any possi-
ble pair of attributes might correspond, and thus that every
attribute of A needs to be tested against all the attributes
of B to find the optimal match. We report results for this
naive approach, aggregated over all pairs of possible at-
tribute matches, in Table 1. We used three datasets: the cen-
sus income dataset from the UCI KDD archive (CNUM),

2Note that corresponding attributes may have different distri-
butions in real-world databases. Hence, schema matching cannot
solely rely on distribution testing. Advanced approaches to schema
matching using MMD as one key statistical test are a topic of cur-
rent research.

the protein homology dataset from the 2004 KDD Cup
(BIO) (Caruana & Joachims 2004), and the forest dataset
from the UCI ML archive (Blake & Merz 1998). For the fi-
nal dataset, we performed univariate matching of attributes
(FOREST) and multivariate matching of tables (FOR10D)
from two different databases, where each table represents

one type of forest. Both our asymptotic MMD2
u-based tests

perform as well as or better than the alternatives, notably

for CNUM, where the advantage of MMD2
u is large. The

next best alternatives are not consistently the same across all
data: e.g. in BIO they are Wolf or Hall, whereas in FOREST

they are Smir, Biau, or the t-test. Thus, MMD2
u appears to

perform more consistently across the multiple datasets. The
Friedman-Rafsky tests do not always return a Type I error
close to the design parameter: for instance, Wolf has a Type

I error of 9.7% on the BIO dataset (on these data, MMD2
u

has the joint best Type II error without compromising the
designed Type I performance).

A more principled approach to attribute match-
ing is also possible. Assume that φ(A) =
(φ1(A1), φ2(A2), ..., φn(An)): in other words, the
kernel decomposes into kernels on the individual at-
tributes of A (and also decomposes this way on the
attributes of B). In this case, MMD2 can be written
∑n

i=1 ‖µi(Ai) − µi(Bi)‖2, where we sum over the MMD
terms on each of the attributes. Our goal of optimally
assigning attributes from B to attributes of A via MMD is
equivalent to finding the optimal permutation π of attributes
of B that minimizes

∑n

i=1 ‖µi(Ai) − µi(Bπ(i))‖2. If we

define Cij = ‖µi(Ai) − µi(Bj)‖2, then this is the same
as minimizing the sum over Ci,π(i). This is the linear

assignment problem, which costs O(n3) time using the
Hungarian method (Kuhn 1955).

We tested this ’Hungarian approach’ to attribute match-

ing via MMD2
u B on three univariate datasets (BIO, CNUM,

FOREST) and for table matching on a fourth (FOR10D). To

study MMD2
u B on structured data, we obtained two datasets

of protein graphs (PROT and ENZYM) and used the graph
kernel for proteins from (Borgwardt et al. 2005) for table
matching (the other tests were not applicable to this graph
data). The challenge on these graph datasets is to match
tables representing one functional class of proteins (or en-
zymes) from dataset A to the corresponding tables (func-



tional classes) in B. The graph kernel we apply is a special
instance of Haussler’s convolution kernels (Haussler 1999),
and counts common substructures in two graphs, for in-
stance walks, shortest paths, subtrees, or cyclic patterns. To
keep graph kernel computation efficient, only substructures
that can be computed in polynomial runtime are considered.
Results for attribute matching are shown in Table 2. Besides

on the BIO dataset, MMD2
u B made almost no errors.

Dataset Type # attr. # samp. Rep. % corr.

BIO univ. 6 377 100 90.0

CNUM univ. 13 386 100 99.8

FOREST univ. 10 538 100 100.0

FOR10D multiv. 2 1000 100 100.0

ENZYM struct. 6 50 50 100.0

PROT struct. 2 200 50 100.0

Table 2: Hungarian Method for attribute matching via

MMD2
u B on univariate (BIO, CNUM, FOREST), multi-

variate (FOR10D), and structured data (ENZYM, PROT)
(α = 0.05; ’# attr.’ is number of attributes, ’# samp.’ is
the sample size, ’Rep.’ is the number of repetitions, and ‘%
corr.’ is the percentage of correct attribute matches detected
over all repetitions).

Summary and Discussion
We have established a simple statistical test for comparing
two distributions p and q. The test statistic is based on the
maximum deviation of the expectation of a function eval-
uated on each of the random variables, taken over a suffi-
ciently rich function class. We do not require density esti-
mates as an intermediate step. Our method either outper-
forms competing methods, or is close to the best perform-
ing alternative. Finally, our test was successfully used to
compare distributions on graphs, for which it is currently
the only option. We remark that other applications can be
built on the Hilbert space representation of distributions. For
instance, it is possible to correct for covariate shift, where
we wish to perform supervised learning when the test dis-
tribution differs from the training distribution (Huang et al.
2007). This is achieved by by matching feature space means
of the test and training distributions through a training sam-
ple reweighting.
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