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Abstract—Given a linear and instantaneous mixture model, we
prove that for blind source separation (BSS) algorithms based on
mutual information, only sources with non-Gaussian distribution
are consistently reconstructed independent of initial conditions.
This allows the identification of non-Gaussian sources and conse-
quently the identification of signal and noise subspaces through
BSS. The results are illustrated with a simple example, and the
implications for a variety of signal processing applications, such
as denoising and model identification, are discussed.

Index Terms—Blind source separation (BSS), consistency, de-
noising, identifiability, independent component (IC) analysis, in-
dependent components, model identification, noise, stability, sub-
space.

I. INTRODUCTION

I N real-world applications, algorithms for blind source sep-
aration (BSS) return differing sets of independent compo-

nents (ICs) if they are applied to the same data set with varying
initial conditions. It is generally agreed that only ICs that can
be consistently reconstructed independent of initial conditions
should be regarded as meaningful and that the signal-to-noise
ratio (SNR) of the reconstructed data can be increased if all in-
consistent ICs are discarded (see, e.g., [1]–[6]). While only con-
sistent ICs are regarded as meaningful, to our knowledge, no in-
terpretation of the consistency of ICs and no mathematical proof
of the conditions for consistency have been published so far.

In this letter, we prove that for BSS algorithms based on mu-
tual information, such as the widely used Infomax algorithm [7],
only sources with non-Gaussian distribution are consistently re-
constructed. Sources with Gaussian distribution, on the other
hand, are arbitrarily mixed together, resulting in a reconstruction
that is dependent on the initial conditions of the algorithm. Mul-
tiple iterations of BSS algorithms based on mutual information
thus allow the identification of sources with non-Gaussian dis-
tribution. Reprojecting these on the observation space results in
a representation of the original measurements with all Gaussian
sources removed. This can also be interpreted as a signal and
noise subspace identification. The columns of the reconstructed
mixing matrix associated with consistent ICs span the signal
subspace. Algorithms for BSS based on mutual information are
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thus capable of blindly identifying the rank and a basis of the
signal subspace. This is of interest in a variety of signal pro-
cessing applications, such as denoising and model identifica-
tion, in which the signal subspace is not known a priori.

This letter is organized as follows. In Section II, we will in-
troduce the instantaneous mixture model and show that BSS
algorithms based on mutual information are capable of recon-
structing non-Gaussian sources, even if more than one Gaussian
source is present in the data. In Section III, we will prove that
only non-Gaussian sources are consistent and show how the
non-Gaussian sources can be identified. We will then illustrate
the results with a simple example in Section IV and discuss the
implications for a variety of signal processing applications in
the conclusion.

II. BSS BY MINIMIZATION OF MUTUAL INFORMATION

The linear BSS model is described by

(1)

with stationary random variables (r.v.s) and
and the instantaneous, full-rank mixing matrix .
It is thus assumed that there are as many sensors as sources.
Furthermore

(2)

i.e., the , are assumed to be statistically inde-
pendent. Furthermore, sources are assumed to have
Gaussian distribution. Without loss of generality, it is assumed
that these are the sources , . Also without loss
of generality, all sources are assumed to have zero mean.

The original sources are reconstructed from the measure-
ments through a linear demixing matrix

(3)

with and . If is sphered with the sphering
matrix such that , the solution space is
restricted to orthogonal matrices. We can then reformulate the
problem by defining as

(4)

with also orthogonal.
For algorithms based on minimizing the mutual information

between the recovered sources , is found by minimizing

(5)
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with as the differential
entropy. This leads to

(6)

Since is independent of and because
of the constraints on , (6) simplifies to

(7)

Based on [8], we will now show that by finding a solution of (7),
the original non-Gaussian sources can be reconstructed in spite
of the presence of multiple Gaussian sources. With

, the gradient of under the orthogonality con-
straint becomes [9]

(8)

Since , solutions of (7) are given by

(9)

Since

(10)

the distribution of is given by

(11)

Denoting with , the th row of (9) becomes

(12)

for , , . Combining

(13)

and (12) then results in

(14)

for , , , which is fulfilled if

(15)

for , , .
The analysis of (15) can be simplified by transforming it into

the frequency domain. With

(16)

the characteristic function of , (11) becomes

(17)

Substituting (17) in (15) and dividing by
results in

(18)

for , , .
Now only if is Gaussian does it hold that

(19)

Since the first sources are assumed to be Gaussian, (18) sim-
plifies to

(20)

Since because all sources have zero mean,
any matrix of the form

(21)

with any orthogonal matrix and
any permutation matrix fulfills (20). The

set of resulting unmixing matrices is then given by

(22)

and the recovered sources are given by

(23)

Hence, any matrix that returns a permuted version of the original
non-Gaussian sources and a mixture of the Gaussian sources is
a solution of (7). Furthermore, it is easy to check that for solu-
tions of the above form , i.e., the mutual information
between the recovered sources becomes zero.

This shows that algorithms based on the minimization of
mutual information are indeed capable of recovering the orig-
inal non-Gaussian sources, even in the presence of multiple
Gaussian sources. However, it is not clear whether every solu-
tion of (7)—and thus every solution of (20)—has to be of the
form in (21).

III. IDENTIFYING NON-GAUSSIAN SOURCES

We will now prove that only non-Gaussian sources are con-
sistent and show how these can be identified. Consider two dif-
ferent solutions and of (7). Inverting and leads to
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two pairs and , both of which are representa-
tions of , i.e.,

(24)

Then, the following holds.
Theorem 1: If column of is not linearly dependent

on any column of , then is Gaussian. This can be shown
through the following argument, which is based on [10].

Proof: Consider the two representations and
of . The characteristic function of is then given by

(25)

Since the mutual information has no local minima [11], for any
solution obtained through (7), the mutual information between
the elements of the recovered sources . It is a
well-known fact that the mutual information between the ele-
ments of a r.v. is zero if and only if the elements of the r.v. are
independent. Consequently, the elements of are indepen-
dent, and we can write

(26)

with as the th column of . With the definition of the
second characteristic functions , (26) becomes

(27)

Assume that columns of are linearly dependent on
columns of . Without loss of generality, assume furthermore
that these are the first columns, i.e., , ,

. Equation (27) then becomes

(28)

Now in (28), replace by such that . Sub-
tracting this from (28) results in

(29)

with the finite difference operator

(30)

and

(31)

(32)

In (29), disappeared due to . By induction, we can
now eliminate all and , except for .

We thus obtain

(33)

if , and

(34)
if .

Now the theorem of Marcinkiewicz [12] states that any
random variable with only a finite number of nonzero cumu-
lants has a Gaussian distribution. We can thus conclude the
following.

• , are Gaussian.
• , are

second-order polynomials. However, nothing can be said
about the distributions of and for ,
except that they are not Gaussian.

This shows that only non-Gaussian sources are consistent. By
running a BSS algorithm based on mutual information repeat-
edly on the same data set with different initial conditions and
checking linear dependencies between the columns of the re-
constructed mixing matrices, we can thus differentiate Gaussian
and non-Gaussian sources.

IV. EXAMPLE

We will now illustrate the results of the previous two sections
with a simple example. Consider the case with one
non-Gaussian source with sub-Gaussian distribution

(35)

and two Gaussian sources with zero mean and variance one

(36)

each sampled with 5000 data points. Any mean of the sources
can be subtracted from the measurements to make the sources
zero mean, and any scaling can be arbitrarily traded between the
sources and the mixing matrix. Without loss of generality, the
Gaussian sources can thus be chosen to have zero mean and unit
variance.

The sources are mixed according to

(37)

with a randomly generated full-rank nonorthogonal matrix

(38)

and the original sources are then reconstructed through

(39)
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Fig. 1. Reconstructed sources.

Fig. 2. Original (aaa ; i = 1; . . . ; 3) and reconstructed columns of the mixing
matrix.

with obtained by minimizing the mutual information of the
elements of with the extended Infomax algorithm [7]. The re-
constructed signals are shown in Fig. 1 with normalized vari-
ance to remove scaling indeterminacies. As can be seen in the
third panel, signal is reconstructed despite the presence of
two sources with Gaussian distribution, which confirms the re-
sult of Section II.

We then performed 50 reconstructions of using the extended
Infomax algorithm with uniformly distributed initial conditions

. Inverting the resulting unmixing matrices, we obtained the
representations , of . Normalizing the
columns of all matrices to remove scaling indeterminacies
and plotting these together with the original columns of (38)
results in Fig. 2. As expected from the results of Section III,
the column of the non-Gaussian source is consistently re-
constructed, while the reconstructed columns associated with
the Gaussian sources are randomly distributed in the subspace
spanned by the two columns and of (38) associated with
the Gaussian sources and . Note that for better visualiza-
tion, the data have been rotated such that the subspace spanned
by and coincides with the -plane.

V. CONCLUSION

We can summarize the results as follows. Algorithms for BSS
based on minimizing the mutual information can reconstruct the
original non-Gaussian sources, even in the presence of multiple
Gaussian sources. Furthermore, for any two unmixing matrices

and that minimize the mutual information of the recov-
ered sources and that lead to the two representations
and of , the following hold.

• If column of is linearly dependent on some column
in , has a non-Gaussian distribution.

• If column in is not linearly dependent on any
column in , has a Gaussian distribution.

Hence, checking linear dependencies between the columns of
any two solutions of BSS algorithms that minimize the mutual
information between the recovered sources allows the identifi-
cation of sources with Gaussian distribution.

For BSS based on mutual information, it thus turns out that
ICs regarded as meaningful because of their consistency are ICs
with a non-Gaussian distribution. Besides the implications this
has for the interpretation of ICs in a variety of signal processing
applications, these results are also of interest in the context of
denoising and model identification. Excluding the nonconsis-
tent and reprojecting the consistent ICs onto the observation
space leads to a representation of the measurements with all
Gaussian sources removed. Since subspace identification based
on BSS is not restricted to an orthogonal basis, a higher SNR
than with denoising methods based on eigenvalue decomposi-
tion can be expected. Finally, since the number of consistently
reconstructed ICs equals the rank of the signal subspace, the
presented results offer a new approach for model identification,
e.g., for estimating the number of sources in EEG/MEG source
reconstruction.
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