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Abstract. When applying independent component analysis (ICA),
sometimes we expect the connections between the observed mixtures
and the recovered independent components (or the original sources) to
be sparse, to make the interpretation easier or to reduce the random effect
in the results. In this paper we propose two methods to tackle this prob-
lem. One is based on adaptive Lasso, which exploits the L1 penalty with
data-adaptive weights. We show the relationship between this method
and the classic information criteria such as BIC and AIC. The other is
based on optimal brain surgeon, and we show how its stopping criterion
is related to the information criteria. This method produces the solu-
tion path of the transformation matrix, with different number of zero
entries. These methods involve low computational loads. Moreover, in
each method, the parameter controlling the sparsity level of the trans-
formation matrix has clear interpretations. By setting such parameters
to certain values, the results of the proposed methods are consistent with
those produced by classic information criteria.

1 Introduction

Independent component analysis (ICA) aims at recovering latent independent
sources from their observable linear mixtures [4]. Denote by x = (x1, ..., xn)T

the vector of observable signals. x is assumed to be generated by x = As,
where s = (s1, ..., sn)T has mutually independent components. For simplicity
we assume the number of observed signals is equal to that of the independent
sources. Under certain conditions on the mixing matrix A and the distributions
of si, ICA applies a linear transformation on x, i.e., y = Wx, and tunes the
de-mixing matrix W to make the components of y = (y1, ..., yn)T mutually as
independent as possible; finally yi provide an estimate of the original sources si.

We sometimes prefer the transformation matrix (the de-mixing matrix W or
mixing matrix A) to be sparse, under the condition that yi are independent,
for reliable parameter estimation, or for an easier interpretation purpose [5,11].
For example, when performing LiNGAM (short for linear, non-Gaussian, acyclic
models) causality analysis based on ICA [8], we prefer W to be sparse, since the
LiNGAM analysis requires that W can be permuted to lower triangularity.

Generally speaking, sparsity of the transformationmatrix canbeeasilyachieved.
One can simply resort to the hard thresholding (which sets small coefficients to
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zero), sparse priors [5], the SCAD penalty [11] (which corresponds to an improper
prior). Wald test can also be used to set insignificant connections to zero [8]. The
problem with these methods is how to determine the free parameter in these meth-
ods which controls the level of sparsity. Moreover, for most of them, it is unclear if
the subset of the non-zero entries of the transforationmatrix could be found consis-
tently (e.g., the estimated subset converges to the correct one in probability when
the data follow the model and the sample size grows infinite). On the other hand,
one may exploit traditional information criteria, such asBIC [7] and AIC [1], to find
the subset of non-zero coefficients in the transformation matrix. The properties of
model selection based on information criteria have been well studied. For exam-
ple, BIC can select the true model consistently, while the model selected by AIC
has good prediction performance. Unfortunately, this model selection approach re-
quires exhaustive search over all possible models, which usually involves two stages
(training all models followed by comparison of the criteria) and is computationally
intensive. Generally speaking, in ICA, the transformation matrix has many entries,
and the space of candidate models is too large. Consequently this approach is not
practical.

We propose two methods to do ICA with sparse connections which combine
the strengths of the two model selection approaches mentioned above. The first
one is based on adaptive Lasso [14], which exploits modified L1 penalties and
was recently proposed for variable selection in linear regression. We relate adap-
tive Lasso with the traditional information criteria, and show how to select the
penalization parameter in adaptive Lasso to make its model selection results
consistent with those based on information criteria. As L1 penalties are not dif-
ferentiable at zero, optimization involving such penalties based on gradients is
generally troublesome. We further propose a very simple, yet effective scheme
to solve this problem. The second method is based on optimal brain surgeon
(OBS) [3] for network pruning. We also show the relationship between this ap-
proach and model selection based on traditional information criteria.

2 ICA Based on Maximum Likelihood

Since we will develop ICA with sparse connections by maximizing the penalized
likelihood, in this section we briefly review the derivation of ICA algorithms from
a maximum likelihood point of view [6]. Denote by fi the density functions of
si. The log likelihood of the observed data x is

LT =
T∑

t=1

n∑

i=1

log fi(yi,t) + T log | detW|, (1)

where T denotes the sample size. Note that if fi are not given (say, if it is
estimated from data), the scale of yi and W estimated by maximizing the above
likelihood is arbitrary, due to the scaling indeterminacy in ICA solutions. This
can be avoided by constraining the variances of yi or by keeping certain entries
of W (or A) constant. One scheme is to maximize the likelihood using gradient
(or natural gradient) based methods: 1

T · ∂LT

∂W = −E{ψ(y)xT }+[WT ]−1, or, 1
T ·



ICA with Sparse Connections: Revisited 197

∂LT

∂A = [AT ]−1 · [E{ψ(y)yT } − I], where ψ(y) = (ψ1(y1), · · · , ψn(yn))T with

ψ1(y1) = − f ′
i(yi)

f(yi)
, and in each iteration the variance of each yi is normalized.

Alternatively, one may incorporate the constraint E{y2
i } = 1using the reg-

ularization technique. The objective function to be maximized then becomes

JT =
T∑

t=1

n∑

i=1

{log fi(yi,t)} + T log | detW| − β

n∑

j=1

(E{y2
i } − 1)2, (2)

where β is a regularization parameter. In our experiments we used β = 1. The
gradients of the above function w.r.t. W and A can be easily derived.

3 ICA with Sparse Connections Based on Adaptive Lasso

We first propose to achieve the sparsity of the transformation matrix by penalized
maximum likelihood. The penalty term we adopt is based on adaptive Lasso [14].
We will show that the result of this penalization method is consistent with that
based on traditional information criteria, by setting the penalization parameter
to certain given values.

3.1 Idea of Adaptive Lasso

Here we assume that the model under consideration satisfies some regularity con-
ditions including identification conditions for the parameters θ, the consistency
of the estimate θ̂ when the sample size T tends to infinity, and the asymptotical
normality of θ̂. The penalized likelihood can be written as

pL(θ) = L(θ) − λpλ(θ), (3)

where L(θ) is the log likelihood, θ contains the parameters (which are not re-
dundant), and pλ(θ) =

∑
i pλ(θi) is the penalty.

The L1 penalty is well known for producing sparse and continuous esti-
mates [10]. However, it also causes bias in the estimate of significant parameters,
and more importantly, it could select the true model consistently only when the
data satisfy certain conditions [13]. Adaptive Lasso [14] was proposed to over-
come the disadvantage of the L1 penalty. In adaptive Lasso, pλ(θ) =

∑
i ĉi|θi|,

with ĉ = 1/|θ̂|γ , where γ > 0 and θ̂ is a consistent estimator to θ. In this way,
the strength for penalizing different parameters may be different, depending on
the magnitude of their estimate. It was shown that under some regularity con-
ditions and the condition λT /

√
T → 0 and λTT

(γ−1)/2 → ∞ (the subscript T in
λT is used to indicate the dependence of λ on T ), the adaptive Lasso estimate
is consistent in model selection.

3.2 Relating Adaptive Lasso to Information Criteria

Let us focus on the case γ = 1 of adaptive Lasso, meaning that

pλ(θi) = ĉi|θi| = |θi|/|θ̂i|, (4)
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where θ̂ can be any consistent estimator, e.g., the maximum likelihood estima-
tor. After the convergence of the adaptive Lasso procedure, insignificant param-
eters become zero, and pλ(θi) = 0 for such parameters. On the other hand, the
“oracle property” [2] holds for adaptive Lasso with suitable λ, meaning that
the pointwise asymptotic distribution of the estimators is the same as if the
true underlying model were given in advance. Significant parameters are then
changed very little by the penalty, when the sample size is not small. Conse-
quently, at convergence, pλ(θi) = |θ̂i,ALasso|/|θ̂i| ≈ 1 for non-zero parameters,
where θ̂i,ALasso denotes the adaptive Lasso estimator. In other words, the penalty
pλ(θi) indicates whether the parameter θi is active or not. Suppose the param-
eters considered are not redundant.

∑
i pλ(θi) is then an approximator of the

number of free parameters, denoted by D, in the resulting model. Recall that
the traditional information criteria for model selection can be written as

ICD = −L(θ̂D,ML) + λICD (5)

The BIC [7] and AIC [1] criteria are obtained by setting the value of λIC to
λBIC = 1/2 · logT, and λAIC = 1, (6)

respectively. Relating Eq. 5 to the penalized likelihood Eq. 3, one can see that by
setting λ in adaptive Lasso considered here to λIC in Eq. 5 (which may be λBIC ,
λAIC , etc.), the model selection result of adaptive Lasso would be consistent with
that obtained by minimizing the information criterion corresponding to λIC .

We give the following remarks for model selection based on adaptive Lasso.
First, when the initialized model is very large (i.e., it involves very many param-
eters), θ̂ may be too rough due to finite sample effects, and it is useful to update
θ̂ using a consistent estimator when a smaller model is derived. Second, in prac-
tice, especially when the sample size is not large, adaptive Lasso still causes bias
in the estimate of significant parameters: usually the adaptive Lasso estimator
still gives pλ(θi) = |θ̂i,ALasso|/|θ̂i| < 1 for significant parameters. Therefore, at
convergence, the penalty pλ(θ) =

∑
i pλ(θi) is expected to be a little smaller

than the number of parameters that are set to zero. To achieve that, we should
give a heavier weight for the penalization term. That is, λT should be a little
larger than the recommended values given above. (Or equivalently, ĉi should be
a little larger than 1/|θ̂i|.) In our experiments, we set λ = 1.5λBIC = 1.5

2 logT
to achieve the BIC-like model selection.

3.3 ICA with Sparse Connections Based on Adaptive Lasso

It is obvious that without specifying the variance of yi or specifying certain
entries of W (or A), applying adaptive Lasso will make the involved parameters
smaller and smaller. To avoid that, we can either normalize the variance of yi

in each iteration or enforce E{y2
i } = 1 by using Eq. 2 as the objective function.

Here we adopt the former scheme. Consequently, the objective function for ICA
with a sparse de-mixing matrix is the penalized likelihood:

pLT =
T∑

t=1

n∑

i=1

log fi(yi,t) + T log | detW| − λ
n∑

i,j=1

|wij |/|ŵij |, (7)
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where ŵij are entries of Ŵ, which is an estimate of W obtained by conventional
ICA. Similarly, replacing |wij |/|ŵij | in Eq. 7 with |aij |/|âij | will produce ICA
with a sparse mixing matrix. Note that unlike other methods, here λ is easily
determined, based on the relationship between adaptive Lasso and information
criteria discussed in Subsection 3.2

Now we aim to maximize the above penalized likelihood. Since the L1 function
is not differentiable at 0, gradient-based methods could not be directly applied for
optimization involving L1 penalties. Most existing methods for such optimization
are not easy to implement or could not set insignificant parameters to 0 exactly.
We propose a very simple but effective way for this problem.

3.4 A Simple Approach for Optimization Involving L1 Penalties

The difficulties in optimization involving L1 penalties are caused by the “sudden
change” of the L1 function. We can then consider such penalties as ravines that
are parallel to some axes. The so-called adaptive step size technique [9], which
was originally proposed for accelerating the optimization procedure in neural
networks learning, can then be exploited for optimization involving such penal-
ties. Note that for a ravine in the objective function parallel to an axis, use of an
appropriate individual step size is equivalent to re-scaling the ravine. Moreover, if
two successive updates of a given parameter are performed in the same/opposite
directions, the step size should be increased/decreased. Consequently, the param-
eters that should be shrunk to 0 by L1 penalties will gradually stop oscillation
and converge to 0, due to the diminishing step size.

Suppose we aim to maximize the objective function J (Eq. 7, in this case).
With an adaptive step size, the change of the parameter θi in the kth iteration
is given by �θ(k)

i = η
(k)
i ( ∂J

∂θi
)(k), where the step size for parameter θi depends on

the successive signs of the gradient: η(k)
i = η

(k−1)
i u, if ( ∂J

∂θi
)(k) · ( ∂J

∂θi
)(k−1) > 0,

and η
(k)
i = η

(k−1)
i d, if ( ∂J

∂θi
)(k) · ( ∂J

∂θi
)(k−1) < 0, with u > 1 and d < 1. We used

u = 1.1 and d = 0.5 in experiments, and found that they work quite well.

4 ICA with Sparse Connections Based on Optimal Brain
Surgeon

Sometimes we may want to obtain the solution path of ICA with sparse con-
nections, which gives all possible solutions with different sparsity levels we are
interested in. This can be achieved by using optimal brain surgeon (OBS) [3] for
network pruning. We further show the relationship between the stopping crite-
rion of OBS and traditional information criteria, and show how to make OBS
produce similar results as information criteria do.

4.1 Optimal Brain Surgeon

Suppose we aim to maximize the objective function J . Assuming that the change
of J around its (local) optimum is nearly quadratic in the perturbation of its
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parameters, i.e., δJ = − 1
2δθ

THδθ, where δθ denotes the perturbation of the
parameters and −H is the Hessian matrix (containing all second order deriva-
tives). We are looking for a set of parameters whose deletion causes the least
change in the value of J .

Mathematically, the least change in J caused by eliminating θq can be written
as minδθ{ 1

2δθ
T Hδθ}, subject to eT

q δθ+ θq = 0, where eq is the unit vector with
only the qth element being 1. Using the Lagrangian multiplier, one can find that
the optimal weight change and the resulting change in J are

δθ = − θq

[H−1]qq
H−1 ·wq, and Sq =

1
2

θ2q
[H−1]qq

, (8)

where Sq is called the saliency of the θq. OBS finds the q that gives the smallest
saliency and prunes it. If J is not very close to quadratic, one needs to adjust
the remaining parameters to maximize J , after pruning a parameter and re-
calculating other parameters according to Eq. 8. We repeat the above pruning
procedure ultil the smallest saliency of remaining parameters is larger than Th,
a threshold whose determination is discussed below. One advantage of OBS is
that it does not cause any bias in the estimate of the remaining parameters.

4.2 Relating Stopping Criterion of OBS to Information Criteria

Suppose the objective function J is the log-likelihood of the data. We make the
following assumptions. 1. The information criterion Eq. 5 for model selection
has no local minimum. 2. For the OBS procedure, J is well approximated by a
quadratic form, and no parameter pruned earlier becomes significant in a smaller
model. Under assumption 1, the model selected by minimizing the information
criterion has D∗ free parameters if ICD∗ > ICD∗−1 and ICD∗ > ICD∗+1. Ac-
cording to Eq. 5, this gives L(θ̂D∗+1,ML)−L(θ̂D∗,ML) < λIC while L(θ̂D∗,ML)−
L(θ̂D∗−1,ML) > λIC . Assumption 2 implies that L(θ̂D+1,ML)−L(θ̂D,ML) is ac-
tually the smallest saliency Sq when we eliminate a parameter among all the
D + 1 parameters. One can then see that by setting the threshold Th for stop-
ping the OBS procedure to λIC in the information criterion, OBS gives the same
model selection result as the corresponding information criterion does.

4.3 ICA with Entries Pruned by OBS

Entries of the ICA transformation matrix can be pruned by OBS, with Eq. 2 as
the objective function. Note that Eq. 2 has incorporated the constraint on the
scale of yi. Due to space limitation, the calculation of the Hessian matrix, as
well as how to avoid the heavy computational load in calculating its inverse, is
not given here. Note that the quadratic approximation of the objective function
may not be very accurate. Consequently, after pruning a parameter and updat-
ing others according to Eq. 8, one needs to update remaining parameters to
reach the (local) optimum, by making use of the gradient of Eq. 2; alternatively,
the Newton-Raphson method may be adopted, as the Hessian matrix has been
calculated in the OBS stage.
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5 Experiments

We first illustrate the performance of the proposed methods by simulation stud-
ies. These mothods can carry out both ICA with a sparse de-mixing matrix
and ICA with a sparse mixing matrix. Here only the former is demonstrated.
We randomly generated a 5 × 5 lower-triangular matrix W. The magnitude
of its non-zero entries is uniformly distributed between 0.1 and 1. The mixing
matrix was constructed as A = W−1. The five sources si were obtained by
passing independent Gaussian i.i.d. signals through power nonlinearities with
the exponent between 1.5 and 2. The variances of the sources are randomly
chosen between 0.2 and 1. The observations were generated by x = As. We ex-
amined two cases in which the sample size is 200 and 500, respectively. ICA
with a sparse de-mixing matrix based on adaptive Lasso and that based on
OBS, proposed above, were used to separate such mixtures. To make their re-
sults similar to that given by BIC, for the former method, we set the penalization
parameter λ = 1.5λBIC = 1.5

2 logT , and for the latter one, we set the threshold
Th = λBIC = log T

2 .
We repeated the simulation for 40 trials. The percentages of lost connections

(non-zero connections that were wrongly set to 0) and spurious connections (zero
entries that were not set to 0) are summarized in Table 1. One can see that there
are very few entries of W wrongly identified. As the sample size increases, the
error rate diminishes. This coincides with the fact the BIC is consistent in model
selection. Fig. 1(a) gives some of wij in the training process of ICA with sparse
W based on adaptive Lasso in a typical run, while (b) plots the solution path
of the OBS-based method for small parameters in a typical run (it shows the

Table 1. Percentages of lost non-zero entries and spurious connections (40 trials)

Sample size T 200 500

Method ALasso-based OBS-based ALasso-based OBS-based

Lost connections (%) 2.83% 5% 1% 1.17%
Spurious connections (%) 3% 2% 0.33% 0.25%
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Fig. 1. (a) Some of wij in the learning process of ICA with sparse W based on adaptive
Lasso (T=200). (b) A typical solution path of ICA with sparse W based on OBS
(T=200). For clarity, only small weigts are shown.
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solution of wij for each possible Th between 0 and λBIC). Clearly the pruning
result does not depend solely on the magnitudes of the parameters.

We also applied the proposed methods for ICA with sparse W to separate the
14-dimensional financial returns used in [12]. To obtain BIC-like model selection
results, we used the same settings as in the simulations above. The resulting W
could not be permuted to lower triangularity, meaning that LiNGAM [8] does
not hold for this data set. This is consistent with the claim in [12].

6 Conclusion and Discussions

We have proposed two methods to perform ICA with a sparse transformation
matrix (the mixing matrix A or de-mixing matrix W). The methods are based on
the adaptive Lasso penalty and the optimal brain surgeon technique, respectively.
We have shown how to relate the proposed methods to model selection based
on traditional information criteria (e.g., BIC and AIC). The proposed methods
involve comparatively light computational load, and most importantly, one can
easily determine the parameters that control the level of sparsity to make the
model selection results consistent with those based on information criteria.
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