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Dominik Janzing JANZING@IRA .UKA .DE

Institute for Algorithms and Cognitive Systems, Universität Karlsruhe (TH), 76128 Karlsruhe, Germany

Bernhard Schölkopf BERNHARD.SCHOELKOPF@TUEBINGEN.MPG.DE

Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
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Abstract

We describe a causal learning method, which em-
ploys measuring the strength of statistical de-
pendences in terms of the Hilbert-Schmidt norm
of kernel-based cross-covariance operators. Fol-
lowing the line of the common faithfulness as-
sumption of constraint-based causal learning, our
approach assumes that a variableZ is likely to
be a common effect ofX andY , if conditioning
on Z increases the dependence betweenX and
Y . Based on this assumption, we collect “votes”
for hypothetical causal directions and orient the
edges by the majority principle. In most experi-
ments with known causal structures, our method
provided plausible results and outperformed the
conventional constraint-based PC algorithm.

1. Introduction

Until the early nineties, it was widely considered impos-
sible to discover causal structures in purely observational
data without using any controlled experiments. The semi-
nal works of Spirtes et al. (1993) and Pearl (2000) showed
that, under reasonable assumptions, it is possible to get
hints on causal relationships from non-experimental data.
Their well-known approach for automatically generating
causal hypotheses, formalized by a directed acyclic graph
(DAG), is based on the Markov condition and the faithful-
ness assumption: Among all graphs that contain enough
causal arrows to explainall statistical dependences, one
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prefers those structures which allowonly the conditional
dependences. The best known example based on these
principles is the inductive causation (IC) algorithm, which
consists of three main steps:

Step 1 Connect verticesX −Y if and only if no set of
variablesSXY (excludingX,Y ) can be found with
X ⊥⊥ Y |SXY , i.e. X,Y are independent given all
variables inSXY .

Step 2 For each substructureX− Z −Y (X andY non-
adjacent), orient the edges toX→Z←Y (a so-called
v-structure), ifZ /∈SXY .

Step 3 Orient as many of undirected edges as possible sub-
ject to the condition that neither a newv-structure nor
a directed cycle should be created.

A refined version of IC is the PC algorithm (after its au-
thors Spirtes and Glymour (1991)). However, if very few
or no conditional independence relations are verified, IC
would have little or no chance to orient the edges in Step
2. Another disadvantage of IC is the categorical (maybe er-
roneously) decisions in step 1 for independence will affect
all the future algorithm behavior. In addition, testing in-
dependence, especially for continuous variables, is a prob-
lem currently unsolved in its generality. The usual imple-
mentation of PC uses the partial correlations for continuous
domains under the assumption of multivariate normal dis-
tribution andχ2 tests for categorical variables. This paper
tries to elaborate on these problems. First, we argue that
the kernel-based statistical independence measureis use-
ful, since it does not have to impose any special kinds of
distributions. Second, taking thestrengthof dependences
into account, a probably overdetermination of dependence
(deciding dependence when there is independence) will not
be so crucial for the orientation in Step 2. This requires
however an appropriate measure for the strength of depen-
dences and a reliable method to compare the strengths of
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conditional and unconditional dependences. For this pur-
pose, we extend a dependence measure which is based on
the Hilbert-Schmidt norm of cross-covariance operators to
measuringconditionaldependences.

2. Measuring Statistical Dependences with
Kernels

The idea of measuring dependences by reproducing ker-
nel Hilbert spaces (RKHS) (Aronszajn, 1950; Schölkopf &
Smola, 2002) is that statistical dependences can always be
detected by correlations after data are mapped into an ap-
propriate feature space which is implicitly given by a ker-
nel.

2.1. Cross-Covariance Operator and Independence

First, we introduce the cross-covariance operator (Baker,
1973) expressing correlations in the feature space and show
its relation to independence of variables. Let(X ,BX ) and
(Y,BY) be measurable spaces and(HX , kX), (HY , kY ) be
RKHSs of functions onX andY, with positive definite ker-
nelskX , kY . We consider random vector(X,Y ) onX×Y
such that the expectationsEX [kX(X,X)] ,EY [kY (Y, Y )]
are finite. As presented by Fukumizu et al. (2004), there
exists a unique operatorΣY X (the cross-covariance opera-
tor) fromHX toHY such that

〈g,ΣY Xf〉HY

= EXY [f(X)g(Y )]− EX [f(X)] EY [g(Y )]

= Cov [f(X), g(Y )] ∀f ∈ HX , g ∈ HY .

Baker (1973) showed thatΣY X has a representation of the
form ΣY X =Σ

1/2
Y Y VY XΣ

1/2
XX with a unique bounded oper-

atorVY X :HX→HY such that‖VY X‖ ≤ 1. Furthermore,
it is known thatΣY X =0 ⇔ X⊥⊥Y for universal kernels,
in the sense of (Steinwart, 2001), or for Gaussian kernels
on the entireIRm, proved by Bach and Jordan (2002).

Now, we define the conditional cross-covariance operator.
Let (HX , kX), (HY , kY ), (HZ , kZ) be RKHSs on mea-
surable spacesX ,Y,Z, respectively, and(X,Y,Z) be a
random vector onX×Y×Z.

ΣY X|Z := ΣY X − Σ
1/2
Y Y VY ZVZXΣ

1/2
XX

is called the conditional cross-covariance operator, where
VY Z and VZX are the bounded operators derived from
ΣY Z andΣZX . It can be shown that〈g,ΣY X|Zf〉HY

=
EZ [Cov[f(X), g(Y )|Z]] for anyf ∈ HX andg ∈ HY , if
kZ is universal or Gaussian. It should be stressed that we
can indeed capture every conditional dependence using the
cross-covariance operator if variablesX andY are “blown
up”, i.e. Ẍ := (X,Z) andŸ := (Y,Z). One can show that
ΣŸ Ẍ|Z = 0⇔ X ⊥⊥ Y |Z.

On the other hand, if(X,Y ) ⊥⊥ Z, we haveΣŸ Ẍ|Z =

ΣY X ⊗ TZ , where TZ is defined by 〈h2, TZh1〉 :=
E[h1(Z)h2(Z)] for arbitraryh1, h2 ∈ HZ . For this reason,
we rescale the measure byβZ in order to obtain comparable
conditional and marginal dependence values.

Definition 1 The strength of the marginal and conditional
dependence can be respectively defined by

HY X := ‖ΣY X‖
2
HS

HY X|Z := βZ

∥∥ΣŸ Ẍ|Z

∥∥2

HS
with βZ := 1/‖TZ‖

2
HS .

By means of rescaling in this way, the measure of con-
ditional dependence equals that of unconditional depen-
dence, if the conditional variableZ is independent ofX
andY .

Theorem 1 We have

(X,Y ) ⊥⊥ Z =⇒ HY X|Z = HY X .

Moreover, if the kernels are universal (e.g. Gaussian ker-
nels on compact subsets ofIRm) or Gaussian kernels on
the entireIRm,

HY X = 0 ⇐⇒ X ⊥⊥ Y

HY X|Z = 0 ⇐⇒ X ⊥⊥ Y |Z .

For notational convenience, we will henceforth drop the
double-dots onX andY for the indices that appear in the
context ofconditionalcross-covariance operators.

2.2. Empirical Estimation of Hilbert-Schmidt
Dependence Measures

We consider the estimation ofHY X andHY X|Z after finite
sampling. It has been shown by Gretton et al. (2005) that

Ĥ
(n)
Y X :=

1

(n− 1)2
Tr

(
K̂Y K̂X

)
.

is a consistent estimator forHY X . HereK̂ is the central-
ized Gram matrix (Scḧolkopf et al., 1998). Fukumizu et al.
(2007) showed that the estimator of the cross-covariance
operator guarantees to converge in HS norm at raten−1/2.
In some analogy to the construction of an estimator for
ΣXX|Z given by Fukumizu et al. (2006) we have con-
structed a consistent estimator onHY X|Z by

Ĥ
(n,ε)
Y X|Z :=

β̂
(n)
Z

(n−1)2
Tr

(
K̂YK̂X−2K̂YK̂Z(K̂Z +εI)−2

K̂ZK̂X +K̂YK̂Z(K̂Z +εI)−2K̂ZK̂XK̂Z(K̂Z +εI)−2K̂Z

)
.

Here the estimator̂β(n)
Z is given byn2/

∑
ijkZ(zi, zj)

2

and ε > 0 a regularization constant1 that enables inver-
sion. If ε converges to zero more slowly thann−1/2 one

1Our experiments showed that the empirical measures are in-
sensitive toε, if it is chosen sufficiently small, e.g.10−5.
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can show that this estimator converges toHY X|Z . Note
that, although it is true that kernel methods are in gen-
eral inefficient for a large number of data, our kernel-
based dependence measures can be computed efficiently
for 1000 − 2000 data points by employing incomplete
Cholesky decomposition, as in Fine and Scheinberg (2001).

3. Causal Learning Algorithm Using
Dependence Measures

Empirical studies showed that the kernel-based indepen-
dence measures benefit from the power of detecting non-
linear dependence and can keep typeII errors (deciding in-
dependence when there is dependence) to a very low level.
In the meantime, we expect a potential increase of typeI
errors (deciding dependence when there is independence).
For this reason, it is not very surprising that sometimes so
few independence relations are verified that an orientation
of edges thereafter is impossible. We propose therefore
the following heuristics: conditioning on a common ef-
fect has the tendency to generate dependence between the
causes. This is at least true if the unconditional dependence
between the causes is small. If causesX,Y are already
strongly dependent, conditioning onZ can, of course, de-
crease the dependence. Nevertheless we assume that it will
typically decrease the dependence less than conditioning
on a commoncausewould do.

Based on this intuition, we introduce a voting-like proce-
dure for orientation of edges: for any triple(X,Y,Z), one
gets a vote forZ being a common effect ofX andY , if
and only ifHYX|Z > λ HYX , with an appropriateλ > 0.
Counting these votes we may direct most (not always all)
edges in favor of the majority. We chooseλ1 very large
in the 1st run and setλ2 := max{

HZX|Y

HZX
,

HZY |X

HZY
} in the

2nd run. The intuition behind the choice ofλ2 is to con-
sider the one with the weakest decrease of dependence as
an evidence of being a common effect. In summary, we
sketch our kernel-based causal learning (KCL) algorithm
as follows:

Step 1 Connect verticesX−Y if and only if no setSxy

(excludingX,Y ) can be found withHY X|Sxy
<ε0 (ε0

very small).
Step 2 Direct edges as follows: (2.1) Check for all sub-

structuresX−Z−Y (X andY not necessarily nonad-
jacent) whetherZ is a candidate for being a common
effect of X andY with respect toλ1. If this is the
case,X→Z andZ←Y both obtain a vote. Direct all
edges which obtained at least one vote (for either of
both directions) according to the majority principle. If
the result is balanced, leave the edge undirected. (2.2)
The same procedure withλ2.

Step 3 As IC in Section 1.

We would like to emphasize that our assumption cannot

be applied to orienting the edges directly2, but merely to
collecting evidences of orientation.

4. Experiments with Toy and Real-World Data

Boolean functions, like OR/AND, are simplified models
for many intuitive causal relations in real life. Our first ex-
periment is based on models with3 or 4 variables logically
linked by noisy OR gates. An n-bit (X1, . . . ,Xn ∈ {0, 1}
as inputs) noisy OR can be characterized by conditional
probabilities

P (Xn+1 =1 |x1, . . . , xn) = (1− r)
(
1− qx1+···+xn

)
+ r

with q∈ [0, 1] andr∈ [0, 1]. If q andr vanish, the OR gate is
deterministic. Here, we present6 different OR gates. 2In-
dDet and 3IndDet are deterministic OR with respective2
and3 independent inputs; 2IndPro and 3IndPro are proba-
bilistic OR gates with2 and3 independent inputs; whereas
the probabilistic OR gates 2DepPro and 3DepPro were fed
with 2 and3 dependent inputs (see Table 1 for parameters).
We run the experiments1000 times for respective200 data
points sampled by each of the6 models.

Table 1.Parameters of6 OR gates. P (Xi) is shorthand for
P (Xi = 1). OR0{X1, . . . , Xi} denotes a deterministic OR gate
with X1, · · · , Xi as inputs; OR0.2{X1, . . . , Xi} denotes a noisy
OR gate withq=r=0.2 . (1 − X1)0.1 depicts a variable, whose
value is with probability0.1 given by an inverse ofX1 and with
probability0.9 given by the uniform noise.

2IndDet 2IndPro 2DepPro

X1 P (X1) = 0.6 P (X1) = 0.6 P (X1) = 0.6

X2 P (X2) = 0.5 P (X2) = 0.5 (1 − X1)0.1

X3 OR0{X1,2} OR0.2{X1,2} OR0.2{X1,2}

3IndDet 3IndPro 3DepPro

X1 P (X1) = 0.6 P (X1) = 0.6 P (X1) = 0.6

X2 P (X2) = 0.5 P (X2) = 0.5 (1 − X1)0.1

X3 P (X3) = 0.4 P (X3) = 0.4 OR0.2{X1,2}

X4 OR0{X1,2,3} OR0.2{X1,2,3} OR0.2{X1,2,3}

In addition, we compare the results of KCL to the

2The way of making use of the quantitative information about
the strength of dependences has some analogies to the monotone
faithfulness principle proposed by Cheng et al. (2002). It states
that blocking a previously active path that connects two nodes de-
creases the mutual information. However, Chickering and Meek
(2006) show that this principle cannot generally be valid. For
causal networks with many nodes one will usually find several
nodes that violate it.
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Table 2.The underlying true model: 2-bit OR gates (see Table 1) and the structures generated by different algorithms (see text).
2IndDet 2IndPro 2DepPro

True Direction
(X1, X2)
(X1, X3)
(X2, X3)

◦ ◦ ◦→◦ ◦←◦ ◦−◦

100 0 0 0
0 100 0 0
0 100 0 0

◦ ◦ ◦→◦ ◦←◦ ◦−◦

100 0 0 0
0 100 0 0
0 100 0 0

◦ ◦ ◦→◦ ◦←◦ ◦−◦

0 100 0 0
0 100 0 0
0 100 0 0

KCL
◦ ◦ ◦→◦ ◦←◦ ◦−◦

96.7 0.2 0 3.1
0 99.7 0 0.3
0 99.7 0.2 0.1

◦ ◦ ◦→◦ ◦←◦ ◦−◦

96.7 0 0.4 2.9
0 95.2 0.4 4.4
0 95.2 0.2 4.8

◦ ◦ ◦→◦ ◦←◦ ◦−◦

12.6 0.1 0 87.3
0 98.1 0 1.9
0 98.1 0.1 1.8

PC
◦ ◦ ◦→◦ ◦←◦ ◦−◦

93.9 0 0 6.1
0 93.9 0 6.1
0 93.9 0 6.1

◦ ◦ ◦→◦ ◦←◦ ◦−◦

96.5 0 0 3.5
0 94.1 0 5.9
0 94.1 0 5.9

◦ ◦ ◦→◦ ◦←◦ ◦−◦

96.8 0 0 3.2
0 94.2 0 5.8
0 94.2 0 5.8

BN-PC
◦ ◦ ◦→◦ ◦←◦ ◦−◦

93.7 0 6.3 0
0 93.7 6.3 0
0 93.7 6.3 0

◦ ◦ ◦→◦ ◦←◦ ◦−◦

96.3 0 3.7 0
0 82.2 17.8 0
0 82.2 17.8 0

◦ ◦ ◦→◦ ◦←◦ ◦−◦

72.0 0.1 27.9 0
0.1 71.4 28.5 0
0 71.4 28.6 0

ES
◦ ◦ ◦→◦ ◦←◦ ◦−◦

98.5 0.4 0.5 0.6
0 99.2 0.2 0.6
0 99.1 0.2 0.7

◦ ◦ ◦→◦ ◦←◦ ◦−◦

99.3 0.1 0.2 0.4
0 89.0 6.8 4.2
0 91.7 3.5 4.8

◦ ◦ ◦→◦ ◦←◦ ◦−◦

99.4 0.1 0.2 0.3
0 88.9 6.5 4.6
0 91.0 4.3 4.7

GS
◦ ◦ ◦→◦ ◦←◦ ◦−◦

69.1 16.2 14.7 0
0 83.1 16.9 0
0 82.7 17.3 0

◦ ◦ ◦→◦ ◦←◦ ◦−◦

81.5 10.4 8.1 0
0 68.4 31.6 0
0 70.0 30.0 0

◦ ◦ ◦→◦ ◦←◦ ◦−◦

80.6 10.6 8.8 0
0 66.5 31.5 0
0 68.1 31.9 0

MWST+GS
◦ ◦ ◦→◦ ◦←◦ ◦−◦

97.2 2.5 0.3 0
0 99.0 1.0 0
0 97.9 2.1 0

◦ ◦ ◦→◦ ◦←◦ ◦−◦

98.7 1.3 0 0
0 94.6 5.4 0
0 89.4 10.6 0

◦ ◦ ◦→◦ ◦←◦ ◦−◦

98.9 1.1 0 0
0 94.1 5.9 0
0 88.2 11.8 0

MWST+K2
◦ ◦ ◦→◦ ◦←◦ ◦−◦

0 100 0 0
0 100 0 0
0 0 100 0

◦ ◦ ◦→◦ ◦←◦ ◦−◦

39.7 60.3 0 0
0 100 0 0
0 0 100 0

◦ ◦ ◦→◦ ◦←◦ ◦−◦

40.6 59.4 0 0
0 100 0 0
0 0 100 0

MCMC
◦ ◦ ◦→◦ ◦←◦ ◦−◦

69.1 16.2 14.7 0
0 83.1 16.9 0
0 82.7 17.3 0

◦ ◦ ◦→◦ ◦←◦ ◦−◦

77.9 11.3 10.8 0
0 75.9 24.1 0
0 74.1 25.9 0

◦ ◦ ◦→◦ ◦←◦ ◦−◦

77.4 11.1 10.5 0
0 75.0 25.0 0
0 74.4 25.6 0

well-known constraint-based PC algorithm, BN-PC (an
information-theory-based refinement of IC) by Cheng et al.
(2002). Apart from constraint-based algorithms, there ex-
ists a great variety of Bayesian methods for structure learn-
ing, particularly in case of discrete domains. Bayesian ap-
proaches with BDe priors using exhaustive search (ES),
Greedy Search/Hill-climbing (GS) by Chickering (2003),
MCMC (Markov Chain Monte Carlo) by Herskovits (1991)
are considered here. The well-known K2 algorithm by
Cooper and Herskovits (1992) can actually not be used
to find the causal structure, since an initial causal order-
ing of variables must already be given. K2 is then only
able to decide which arrows can be dropped without vi-
olating the Markov condition. Heckerman et al. (1994)
proposed to apply the maximum weight spanning tree al-
gorithm (MWST) by Chow and Liu (1968) to initialize
K2. We call it “MWST+K2”. Note that an initial order
can also optionally be specified for greedy search (GS). We
call this combination “MWST+GS”. All these methods are
implemented and described in detail by Murphy3, Leray
and Francois4. Table 3 summarizes the resulting graph of
each algorithm in the majority of cases. The detailed statis-
tics of the1000 runs can be found in Table 2 and 6. The
entries are percentages of detected arcs between two vari-

3BayesNet Toolbox, http://bnt.sourceforge.net/.
4BNT Structure Learning Package, http://banquiseasi.insa-

rouen.fr/projects/bnt-slp/.

ables(Xi,Xj). For (Xi,Xj), “◦ ◦” depicts the absence
of an edge betweenXi andXj ; “◦−◦” depicts a present but
undirected edge between them; “◦→◦” and “◦←◦” denote
“Xi→Xj” and “Xi←Xj”, respectively. As seen from

Table 3.The first row illustrates the underlying true models (see
Table 1 for parameters). Rows2 to 9 visualize graphical results
of different algorithms (see text). Each graph consists of at most
4 nodes, which are represented by circles:X1: top left, X2: top
right, X3: bottom left,X4: bottom right.

2IndDet 2IndPro 2DepPro 3IndDet 3IndPro 3DepPro

True Model

KCL

PC

BN-PC

ES

GS

MWST+GS

MWST+K2

MCMC

Table 3, both constraint-based and Bayesian methods have
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Table 4.Arcs detected by KCL+K2.400 data points are sampled from Asia network1000 times. The entries are percentages within
columns. No undirected edges are detected.

(X1, X2) (X1, X3) (X1, X4) (X1, X5) (X1, X6) (X1, X7) (X1, X8) (X2, X3) (X2, X4) (X2, X5) (X2, X6)

◦ ◦ 81.0 94.9 97.1 89.2 96.9 95.4 97.6 96.7 92.8 90.1 0
◦→◦ 12.4 3.8 1.9 6.9 2.8 4.3 2.3 2.7 4.8 9.1 99.1
◦←◦ 6.6 1.3 1.0 3.9 0.3 0.3 0.1 0.6 2.4 0.8 0.9

(X2, X7) (X2, X8) (X3, X4) (X3, X5) (X3, X6) (X3, X7) (X3, X8) (X4, X5) (X4, X6) (X4, X7) (X4, X8)

◦ ◦ 78.4 94.1 23.3 3.5 85.4 99.1 94.4 93.2 0 76.1 80.6
◦→◦ 19.2 5.7 4.7 26.2 0.1 0 2.5 6.0 98.7 19.5 18.5
◦←◦ 2.4 0.2 72.0 70.3 14.5 0.9 3.1 0.8 1.3 4.4 0.9

(X5, X6) (X5, X7) (X5, X8) (X6, X7) (X6, X8) (X7, X8) For convenience, we denote here
◦ ◦ 98.0 99.0 0 20.3 30.2 98.0 X1: ASIA, X2: TUB., X3: SMOKING,
◦→◦ 0 0.4 92.0 77.5 69.8 2.0 X4: LUNG, X5: BRONCHITIS, X6: TUB./LUNG,
◦←◦ 2.0 0.6 8.0 2.2 0 0 X7: X-RAY, X8: DYSPNOEA.

lead to quite good results in case of 2-bit models. In case
of 3-bit models, the constraint-based algorithms seem to
often perform better than most of the Bayesian algorithms
considered. In case of 2DepPro and 3DepPro, KCL de-
tected the connection betweenX1 andX2 (Table 3, row
KCL), whereas PC erroneously deleted the edge in both
cases (Table 3, row PC). Had PC detected the dependence
betweenX1 andX2 correctly, it would not have been able
to orient any edge, because no independence constraints
are available. The result would be a fully connected skele-
ton. In contrast, although all dependences are correctly
verified through kernel-based independence tests, the ori-
entation phase of KCL provides useful hints about causal
relations. Note that Both PC and KCL have left edges undi-
rected in network 3DepPro. KCL performs better than PC
in the sense that the former oriented as many edges as PC,
but no edges are erroneously deleted.

In the second experiment, we focus our attention espe-
cially on our orientation procedure by means of “voting
triples”. The example is an expert-designed causal network
with logical links, namely the Asia network. This net-
work was first introduced by Lauritzen and Spiegelhalter
(1988) who have specified reasonable transition properties
for each variable given its parents. The underlying structure
(Figure 1, left) expresses the following known qualitative
medical knowledge. DYSPNOEAmay be due to tuberculo-
sis (TUB.), LUNG cancer (together TUB./LUNG) or BRON-
CHITIS, or none of them, or more than one of them. A
recent visit to ASIA increases the chances of tuberculosis,
while SMOKING is known to be a risk factor for both lung
cancer and bronchitis. The results of a single chest X-RAY

do not discriminate between lung cancer and tuberculosis,
and neither does the presence or absence of DYSPNOEA.

Given the true corresponding skeleton (Figure 2, leftmost),
we computed the dependence measure for the “voting
triples” corresponding the8 edges in skeleton. Extensive

statistics of the orientation for the8 edges by KCL can
be found in Table 5. Taking the quotient values andλ of
different level into account, Step 2.1 of KCL detected a
v-structure TUB. → TUB./LUNG← LUNG; Step 2.2 de-
tected the otherv-structure TUB./LUNG→DYSPNOEA←
BRONCHITIS. The unoriented edge TUB./LUNG−X-RAY

can be directed in Step 3. The three remaining unoriented
edges (Figure 2, rightmost) is due to the limitation of meth-
ods which are based onv-structure identification. That is
what such method can maximally achieve.

Figure 1.Graphical representation of medical knowledge by Asia
network (left). Each node has two possible states representing re-
sponses “yes” and “no”. The graph on the right side is the struc-
ture discoved by KCL+K2.

The performance of PC, see e.g. Fig. 2 of (Leray &
Francois, 2004), is unsatisfactory in the sense that sev-
eral edges are completely missing. Repeated experiments
with a sample size from500 to 5000 show that3-5 from
the total8 edges are always missing. This result is traced
back actually to the independence test of PC. In contrast,
the kernel-based independence tests tend to induce redun-
dant edges, particularly when we choose a very smallε0
in Step 1. Therefore, it is important to check how ro-
bust KCL is to some addition of unnecessary edges. As
an extreme case ofε0 = 0, we applied our orientation
procedure to the fully connected skeleton, i.e. no condi-
tional independence would have been verified5. As seen

5For Asia network, which partly includes very weak correla-
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Figure 2.Stepwise results of KCL. The leftmost graph shows the true corresponding skeleton. The second and third graph from left
illustrates the result after Step 2.1 and Step 2.2 of KCL, respectively. The rightmost graph is the final output of KCL after Step 3.

from Table 5. The resulting causal order makes often mis-
takes in orientation of ASIA→ TUB., SMOKING→ LUNG

and SMOKING → BRONCHITIS. Based on the resulting
causal order by KCL, we propose to make use of the well-
known K2 algorithm by Cooper and Herskovits (1992) to
delete edges. Regardless of redundant edges, the other5
arrows can be discovered correctly. The result of the so-
called “KCL+K2” (K2 with a initial causal order detected
by KCL) contains no unoriented edges (see Figure 1, right).
The missing arc from ASIA to TUB. is probably due to the
too weak dependency between the two nodes in datasets of
such small sample size. Although the edges from SMOK-
ING to LUNG and BRONCHITIS are erroneously oriented6,
the result contains no unnecessary edges. Table 4 summa-
rizes how often an arrow is detected by KCL+K2 after1000
runs. An extensive comparison of well-known constraint-
based and Bayesian algorithms with respect to Asia net-
work is provided by Leray and Francois (2004). We can
see that the KCL+K2 performs better than K2 with other
initialization of causal orders, which indicates that our ori-
entation procedure provides quite reliable causal ordering.
Furthermore, KCL+K2 is also quite competitive with PC
and other Bayesian methods7. Most notably, our result can
be reliably achieved with datasets of moderate sample size.

The next experiment is a real-world dataset8 (Fraumeni,
1970) containing the numbers of CIGARETTES (hundreds
per capita) smoked (sold) in43 states in the US and the
District of Columbia in1960 together with death rates
per 100 thousand population from various forms of can-

tion, it is hard to find an appropriateε0 for 400 data points.
6“KCL+K2+KCL” (using KCL to orient the adjacency struc-

ture of the result of KCL+K2) would revise both erroneous orien-
tations into unoriented.

7Actually, with regard to the sample size, the result by
KCL+K2 is better than all12 algorithms listed in Fig. 2 of
(Leray & Francois, 2004) concerning the so-called “editing mea-
sures”. Editing measure (Leray & Francois, 2004) is defined by
the length of the minimal sequence of operators needed to trans-
form the original graph into the resulting one. Operators are edge-
insertion, edge-deletion and edge reversal. Our result has an edit-
ing measure of merely3

8The data are collected in the Data and Story Library (DASL),
available at http://lib.stat.cmu.edu/DASL/DataArchive.html, and
listed also as an example for the causal learning software
TETRAD http://www.phil.cmu.edu/projects/tetradexamples/.

cer, i.e., BLADDER cancer, LUNG cancer, KIDNEY can-
cer and LEUKEMIA . The fact that Nevada and the Dis-
trict of Columbia are outliers in the distribution of cigarette
consumption contributes to the difficulty of the analysis.
The ready explanation for the outliers is that cigarette sales
are increased by tourism (Nevada) and commuting workers
(District of Columbia). It is known that the consumption

Figure 3.Graphical result of the PC (left) and KCL algorithm
(right) for smoking and cancer data.

of cigarettes is a cause of various forms of cancer. As seen
from Figure 3 (right), KCL discovers CIGARETTESas the
common cause of BLADDER, LUNG and KIDNEY, which
confirms the common-sense understanding of the causal in-
fluences. Due to our lack of medical understanding, we do
not speculate on the plausibility of the absence of the in-
fluence from CIGARETTES to LEUKEMIA as well as the
orientation from LEUKEMIA to other forms of cancer. Re-
mark that the result of PC (Figure 3, left) contains signif-
icantly fewer edges and is less specific. In particular, the
orientations from LUNG and KIDNEY to CIGARETTESare
obviously erroneous.

5. Conclusion

We have proposed a kernel-based approach for automati-
cally generating causal structures. The idea is to define un-
conditional and conditional cross-covariance operators in
RKHSs and consider the Hilbert Schmidt norm of these op-
erators as a measure for the unconditional and conditional
dependence. We specify the independence test of IC with
the kernel-based independence test and apply our depen-
dence measure not only for the decision of independence
but also for getting additional hints on the causal directions
by additionally taking the strength of dependences into ac-
count. Our method is even applicable to data without any
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verified statistical independence, e.g. exploring the causal
order for the K2 algorithm.

The kernel-based approach provides a unifying method
which can treat continuous, discrete and even hybrid mod-
els. Because of the explosion of parameters and non-trivial
specification of good priors, continuous variables, which
have large value sets after discretization, are problematic
for Bayesian approaches. Constraint-based PC requires
Gaussian assumption for continuous domains and cannot
deal with hybrid models at all. Although dependences can
be captured by mutual information in theory, the estima-
tion of conditional mutual information, to the best of our
knowledge, is a non-trivial problem currently unsolved in
its generality and involves the explicit estimation of the
densities, which is hard for high dimensional data, unless
suitable smoothness assumptions are made. We are of the
opinion that the kernel method provides a convenient tool
to use smoothness assumptions in an implicit way. The ex-
tension of KCL to vectorial variables is straightforward.
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Table 5.Statistics of arcs detected by KCL.400 data points are sampled from Asia network1000 times. The entries are percentages
within columns. “TS” stands for the percentages achieved by given truecorresponding skeleton; “FS” stands for the percentages
achieved by given fully connected skeleton. For convenience, we denote hereX1: ASIA, X2: TUB.,X3: SMOKING, X4: LUNG, X5:
BRONCHITIS,X6: TUB./LUNG, X7: X-RAY, X8: DYSPNOEA.

(X1, X2) (X2, X6) (X3, X4) (X3, X5) (X4, X6) (X5, X8) (X6, X7) (X6, X8)

TS FS TS FS TS FS TS FS TS FS TS FS TS FS TS FS
◦→◦ 0.2 16.4 97.7 95.8 15.7 6.6 0.4 20.2 97.2 94.3 77.7 88.7 93.6 75.5 92.6 95.5
◦←◦ 0.1 65.0 0.1 2.0 29.3 72.2 44.6 56.4 0.6 0.7 16.6 5.7 4.2 13.9 6.5 3.7
◦−◦ 99.7 18.6 2.2 2.2 55.0 21.2 55.0 23.4 2.2 5.0 5.7 5.6 2.2 10.6 0.9 0.8

Table 6.The underlying true model: 3-bit OR gates (see Table 1) and the structures generated by different algorithms (see text).
3IndDet 3IndPro 3DepPro

True Direction
(X1, X2)
(X1, X3)
(X1, X4)
(X2, X3)
(X2, X4)
(X3, X4)

◦ ◦ ◦→◦ ◦←◦ ◦−◦

100 0 0 0
100 0 0 0
0 100 0 0

100 0 0 0
0 100 0 0
0 100 0 0

◦ ◦ ◦→◦ ◦←◦ ◦−◦

100 0 0 0
100 0 0 0
0 100 0 0

100 0 0 0
0 100 0 0
0 100 0 0

◦ ◦ ◦→◦ ◦←◦ ◦−◦

0 100 0 0
0 100 0 0
0 100 0 0
0 100 0 0
0 100 0 0
0 100 0 0

KCL

◦ ◦ ◦→◦ ◦←◦ ◦−◦

74.0 8.0 2.8 15.2
76.8 8.2 2.7 12.3
0 98.6 0.5 0.9

76.8 4.7 3.9 14.6
0 96.0 3.0 1.0
0 94.8 3.9 1.3

◦ ◦ ◦→◦ ◦←◦ ◦−◦

71.8 5.0 9.7 13.5
74.3 4.9 12.4 8.4
0.1 91.0 7.1 1.8
71.9 4.8 11.5 11.8
0 93.8 4.4 1.8
0 96.4 1.2 2.4

◦ ◦ ◦→◦ ◦←◦ ◦−◦

11.1 2.2 2.7 84.0
1.5 51.3 19.4 27.8
1.1 47.2 25.4 26.3
1.5 67.0 10.1 21.4
0.2 62.5 12.6 24.7
0.2 1.8 2.4 95.6

PC

◦ ◦ ◦→◦ ◦←◦ ◦−◦

98.5 0 0 1.5
98.1 0 0 1.9
0 100 0 0

97.4 0 0 2.6
0 100 0 0
0 99.8 0.2 0

◦ ◦ ◦→◦ ◦←◦ ◦−◦

96.8 0.5 0 2.7
98.5 0.2 0 1.3
3.7 96.2 0 0.1
97.1 0.1 0 2.8
0.9 99.0 0.1 0
0.3 99.5 0.2 0

◦ ◦ ◦→◦ ◦←◦ ◦−◦

69.8 12.2 5.9 12.1
29.3 47.2 6.9 16.6
18.7 55.8 6.0 19.5
20.4 54.9 10.5 14.2
7.9 61.7 10.5 19.9
5.4 11.5 23.3 59.8

BN-PC

◦ ◦ ◦→◦ ◦←◦ ◦−◦

97.5 0.4 2.1 0
97.8 0.6 1.6 0
0 74.2 25.8 0

96.8 0.7 2.5 0
0 65.9 34.1 0
0 48.7 51.3 0

◦ ◦ ◦→◦ ◦←◦ ◦−◦

96.9 0.7 2.4 0
97.0 0.3 2.7 0
0.6 31.3 68.1 0
97.6 0.2 2.2 0
0.8 39.8 59.4 0
0 47.2 52.8 0

◦ ◦ ◦→◦ ◦←◦ ◦−◦

71.6 9.9 18.5 0
28.5 23.8 47.7 0
20.2 27.0 52.8 0
19.3 29.4 51.3 0
8.1 32.4 59.5 0
4.9 12.6 82.5 0

ES

◦ ◦ ◦→◦ ◦←◦ ◦−◦

99.3 0.1 0.2 0.4
99.2 0 0.2 0.6
0 100 0 0

98.8 0.5 0.4 0.3
0 100 0 0
0 100 0 0

◦ ◦ ◦→◦ ◦←◦ ◦−◦

98.8 0.2 0.5 0.5
99.4 0.5 0.1 0
2.8 49.5 40.0 7.7
98.7 0.5 0.7 0.1
0.9 60.5 30.3 8.3
0.4 61.1 30.6 7.9

◦ ◦ ◦→◦ ◦←◦ ◦−◦

74.6 10.7 11.2 3.5
35.6 49.8 10.3 4.3
24.3 62.2 8.6 4.9
34.3 54.0 8.5 3.2
14.3 69.3 10.7 5.7
11.8 30.2 46.5 11.5

GS

◦ ◦ ◦→◦ ◦←◦ ◦−◦

90.1 4.4 5.5 0
93.1 2.7 4.2 0
0 75.2 24.8 0

93.1 3.1 3.8 0
0 69.0 31.0 0
0 64.5 35.5 0

◦ ◦ ◦→◦ ◦←◦ ◦−◦

97.5 1.3 1.2 0
97.4 1.8 0.8 0
2.5 32.4 65.1 0
95.6 2.0 2.4 0
1.0 42.4 56.6 0
0.5 47.2 52.3 0

◦ ◦ ◦→◦ ◦←◦ ◦−◦

25.3 36.0 38.7 0
50.9 17.2 31.9 0
33.7 26.2 40.1 0
44.9 19.5 35.6 0
25.8 25.8 48.4 0
1.3 41.2 57.5 0

MWST+GS

◦ ◦ ◦→◦ ◦←◦ ◦−◦

97.4 2.5 0.1 0
97.7 2.0 0.3 0
0 94.4 5.6 0

94.8 2.5 2.7 0
0 82.9 17.1 0
0 78.1 21.9 0

◦ ◦ ◦→◦ ◦←◦ ◦−◦

98.7 0.9 0.4 0
99.3 0.5 0.2 0
2.5 68.5 29.0 0
91.7 4.0 4.3 0
0.9 24.5 74.6 0
0.5 32.2 67.3 0

◦ ◦ ◦→◦ ◦←◦ ◦−◦

43.8 46.4 9.8 0
50.5 37.5 12.0 0
33.9 50.1 16.0 0
44.8 24.2 31.0 0
25.6 39.8 34.6 0
1.1 41.8 57.1 0

MWST+K2

◦ ◦ ◦→◦ ◦←◦ ◦−◦

34.1 65.9 0 0
66.3 33.7 0 0
0 100 0 0

34.9 0.1 65.0 0
0 0 100 0
0 0 100 0

◦ ◦ ◦→◦ ◦←◦ ◦−◦

96.4 3.6 0 0
95.9 4.1 0 0
3.0 97.0 16.0 0
92.4 0.1 7.5 0
0.9 0.7 98.4 0
0.5 0.2 99.3 0

◦ ◦ ◦→◦ ◦←◦ ◦−◦

9.8 90.2 0 0
44.6 55.4 0 0
26.1 73.9 16.0 0
38.0 0.1 61.9 0
17.4 0.2 82.4 0
0 41.6 58.4 0

MCMC

◦ ◦ ◦→◦ ◦←◦ ◦−◦

86.8 6.2 7.0 0
86.0 6.7 7.3 0
0 99.6 0.4 0

86.7 6.0 7.3 0
0 99.3 0.7 0
0 99.4 0.6 0

◦ ◦ ◦→◦ ◦←◦ ◦−◦

91.7 3.4 4.9 0
90.8 3.5 5.7 0
5.8 43.8 50.4 0
89.5 5.4 5.1 0
1.9 48.8 49.3 0
0.7 51.3 48.0 0

◦ ◦ ◦→◦ ◦←◦ ◦−◦

37.4 29.8 32.8 0
31.5 42.7 25.8 0
22.9 46.6 30.5 0
31.8 42.6 25.6 0
13.7 52.1 34.2 0
9.8 38.6 51.6 0


