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Abstract prefers those structures which allamly the conditional
dependences. The best known example based on these
principles is the inductive causation (IC) algorithm, whic
consists of three main steps:

Step 1 Connect verticesX — Y if and only if no set of
variablesSxy (excluding X, Y) can be found with
X 1L Y|Sxy, ie. X,Y are independent given all
variables inSxy-.

Step 2 For each substructur® — 7 —Y (X andY non-
adjacent), orient the edges¥— Z <Y (a so-called
v-structure), ifZ ¢ Sxy .

Step 3 Orient as many of undirected edges as possible sub-

edges by the majority principle. In most experi- ject to the condition that neither a newstructure nor

ments with known causal structures, our method ?d'reCtEd_ cycle ShO_U|d be created.' ]

conventional constraint-based PC algorithm. thors Spirtes and Glymour (1991)). However, if very few
or no conditional independence relations are verified, IC

would have little or no chance to orient the edges in Step
2. Another disadvantage of IC is the categorical (maybe er-
roneously) decisions in step 1 for independence will affect
Until the early nineties, it was widely considered impos-all the future algorithm behavior. In addition, testing in-
sible to discover causal structures in purely observationadependence, especially for continuous variables, is & prob
data without using any controlled experiments. The semiiem currently unsolved in its generality. The usual imple-
nal works of Spirtes et al. (1993) and Pearl (2000) showednentation of PC uses the partial correlations for contiisuou
that, under reasonable assumptions, it is possible to gelomains under the assumption of multivariate normal dis-
hints on causal relationships from non-experimental datatribution andy? tests for categorical variables. This paper
Their well-known approach for automatically generatingtries to elaborate on these problems. First, we argue that
causal hypotheses, formalized by a directed acyclic grapthe kernel-based statistical independence meassitgse-
(DAG), is based on the Markov condition and the faithful- ful, since it does not have to impose any special kinds of
ness assumption: Among all graphs that contain enougHistributions. Second, taking ttstrengthof dependences
causal arrows to explaiall statistical dependences, one into account, a probably overdetermination of dependence
(deciding dependence when there is independence) will not
Appearing inProceedings of the ™" International Conference be so crucial for the orientation in Step 2. This requires
on Machine LearningCorvallis, OR, 2007. Copyright 2007 by however an appropriate measure for the strength of depen-
the author(s)/owner(s). dences and a reliable method to compare the strengths of

We describe a causal learning method, which em-
ploys measuring the strength of statistical de-
pendences in terms of the Hilbert-Schmidt norm
of kernel-based cross-covariance operators. Fol-
lowing the line of the common faithfulness as-
sumption of constraint-based causal learning, our
approach assumes that a varialléas likely to

be a common effect ok andY’, if conditioning

on Z increases the dependence betwéemand

Y. Based on this assumption, we collect “votes”
for hypothetical causal directions and orient the

1. Introduction
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conditional and unconditional dependences. For this purOn the other hand, ifX,Y) L Z, we haveXy ¢, =
pose, we extend a dependence measure which is based By y ® T, where T is defined by (hy, Tzh,) :=
the Hilbert-Schmidt norm of cross-covariance operators tas[h, (Z)hy(Z)] for arbitraryhy, ho € Hz. For this reason,

measuringonditionaldependences. we rescale the measure By in order to obtain comparable
conditional and marginal dependence values.
2. Measuring Statistical Dependences with Definition 1 The strength of the marginal and conditional
Kernels dependence can be respectively defined by
The idea of measuring dependences by reproducing ker- Hyx := ”EYX”?—IS

nel Hilbert spaces (RKHS) (Aronszajn, 1950; Siktopf & H = By||Sv+ 2 \with By = 1/||Tz|%e .
Smola, 2002) is that statistical dependences can always be 2| .YX|_Z||H§ z = 1| Tzlks
detected by correlations after data are mapped into an a;B)( means of rescaling in this way, the measure of con-
propriate feature space which is implicitly given by a ker- ditional dependence equals that of unconditional depen-

nel. dence, if the conditional variablg is independent ofX
andY.

2.1. Cross-Covariance Operator and Independence Theorem 1 We have

First, we introduce the cross-covariance operator (Baker, (X,Y)1L Z = Hyxz=Hyx.

1973) expressing correlations in the feature space and show , , )

its relation to independence of variables. (&t By) and Moreover, if the kernels are universal (e.g. Gaussian ker-

(V, By) be measurable spaces dftfly, kx ), (Hy, ky') be nels on cor:1npact subsets ™) or Gaussian kernels on

RKHSs of functions ort’ and, with positive definite ker- e entirelR™,

nelskx, ky. We consider random vectoX,Y) on X' x Y Hyx =0 <= X 1Y

such that the expectatiofisy [kx (X, X)], Ey [ky (Y, Y)] I —0 X1VIZ

are finite. As presented by Fukumizu et al. (2004), there vxjz =0 < 2.

exists a unique operataly x (the cross-covariance opera- For notational convenience, we will henceforth drop the

tor) from H x to Hy such that double-dots onX andY for the indices that appear in the
context ofconditionalcross-covariance operators.

<g, EYXf>Hy
= Exv [f(X)g(Y)] - Ex [f(X)] Ey [g(Y)] 2.2. Empirical Estimation of Hilbert-Schmidt
= Cov[f(X),9(Y)] Vf€Hx,g€Hy. Dependence Measures

We consider the estimation &ify x andHy x| after finite

Baker (1973) showed thaty x has a representation of the
( ) Y X P sampling. It has been shown by Gretton et al. (2005) that

form Ly x = £1/2 V3 xS¥ 3 with a unique bounded oper-
atorVy x : Hx — Hy such thal|Vy x || < 1. Furthermore, ) 1 (A = )
o . = ——Tr ( Ky K .
it is known thatXy x =0 < X 1 Y for universal kernels, YX ' (n-1)2 LY RX

in the sense of (Steinwart, 2001), or for Gaussian kernels

on the entirdR™, proved by Bach and Jordan (2002). is a consistent estimator fdfy x. Here K is the central-
ized Gram matrix (Sablkopf et al., 1998). Fukumizu et al.

Now, we define the conditional cross-covariance operator;2007) showed that the estimator of the cross-covariance
Let (Hx,kx), (Hy,ky), (Hz,kz) be RKHSs on mea- gperator guarantees to converge in HS norm atate?.
surable spaced’,), Z, respectively, and.X,Y,Z) be a  |n some analogy to the construction of an estimator for
random vector o x ) x Z. Yx x|z given by Fukumizu et al. (2006) we have con-
structed a consistent estimatorHg x| by
Yyx|z = Xyx — Ei//)zVYZVZXZ%)Q( |
3(n)

is called the conditional cross-covariance operator, eher Hgf)’f‘)z = (n_Zl)zTr(Kny—2Ksz(Kz+d)_2
Vyz and Vzx are the bounded operators derived from ~ - ~ X PP PP PP
S andSox. It can be shown thty. S iy froe = Kz Bx+ByEAR 7 el) 2R AR xR AR 1) Kz).
Ez[Covlf(X),g(Y)|Z]] forany f € Hx andg € Hy, it oo e estimatop” is given byn?/ Y, ky (2, z;)?
kz is universal or Gaussian. It should be stressed that we d 0 larizati tahthat 4 bles i
can indeed capture every conditional dependence using e € ; a regu antza lon cons | al etr;]a (le;c,vaer-
cross-covariance operator if variabl&sandY” are “blown sion. 1T e converges to zero more siowly than =/~ one
up”, i.e. X := (X, Z) andY := (Y, Z). One can show that 'Our experiments showed that the empirical measures are in-
Yikz=0e X 1L Y|Z. sensitive te, if it is chosen sufficiently small, e.g.0~°.




A Kernel-based Causal Learning Algorithm

can show that this estimator convergesH¢ x|,. Note  be applied to orienting the edges direéflyput merely to
that, although it is true that kernel methods are in gen-collecting evidences of orientation.

eral inefficient for a large number of data, our kernel-
based dependence measures can be computed efficien
for 1000 — 2000 data points by employing incomplete
Cholesky decomposition, as in Fine and Scheinberg (2001Boolean functions, like OR/AND, are simplified models
for many intuitive causal relations in real life. Our firstex
periment is based on models wilor 4 variables logically
linked by noisy OR gates. An n-bif{,,..., X, € {0,1}

as inputs) noisy OR can be characterized by conditional
Empirical studies showed that the kernel-based indeperProbabilities

Qence measures benefit from the power of deFe_ctmg NONp (', =1|a1,...,20) = (1 — 1) (1
linear dependence and can keep tiperrors (deciding in-

dependence when there is dependence) to a very low levekith ¢ € [0, 1] andr € [0, 1]. If g andr vanish, the OR gate is

In the meantime, we expect a potential increase of fype deterministic. Here, we presefifferent OR gates. 2In-
errors (deciding dependence when there is independencé)Det and 3IndDet are deterministic OR with respective
For this reason, it is not very surprising that sometimes s@nd3 independent inputs; 2IndPro and 3IndPro are proba-
few independence relations are verified that an orientatioRilistic OR gates witl2 and3 independent inputs; whereas
of edges thereafter is impossible. We propose thereforéhe probabilistic OR gates 2DepPro and 3DepPro were fed
the following heuristics: conditioning on a common ef- with 2 and3 dependent inputs (see Table 1 for parameters).
fect has the tendency to generate dependence between thé run the experiments)00 times for respective00 data
causes. This is at least true if the unconditional deperelendoints sampled by each of tilenodels.

between the causes is small. If causésy” are already

strongly dependent, conditioning éhcan, of course, de'. Table 1.Parameters o6 OR gates. P(X;) is shorthand for
crease the dependence. Nevertheless we assume that it wilt x, — 1), oR,{x;,..., X} denotes a deterministic OR gate
typically decrease the dependence less than conditioningith x,, - - , X, as inputs; OR2{X1, ..., X;} denotes a noisy

on a commorcausewould do. OR gate withy=r=0.2. (1 — X1)0.1 depicts a variable, whose
value is with probability0.1 given by an inverse oK and with
probability 0.9 given by the uniform noise.

dy Experiments with Toy and Real‘World Data

3. Causal Learning Algorithm Using
Dependence Measures

)

Based on this intuition, we introduce a voting-like proce-

dure for orientation of edges: for any trip|&,Y, Z), one SIndDet 5IndPro 2DepPro
gets a vote forZ being a common effect ok andY’, if ® ® ® ® (D
and only ifHyx |z > AHyx, with an appropriate. > 0. I/‘ I/.
Counting these votes we may direct most (not always all) @ & &
edges in favor of the majority. We choogse very large X1 | P(X1) =06 | P(X1)=06 | P(X1)=06
in the 1st run and set; := max{ Hﬁ;‘: IHE%‘YX} in the Xo | P(X2) =05 | P(Xs)=05 (1—X1)os
2nd run. The intuition behind the choice &% is to con- X3 | ORy{X12} | ORv2{Xi2} | ORy2{Xi.2}
sider the one with the weakest decrease of dependence as 3IndDet 3IndPro 3DepPro
an evidence of being a common effect. In summary, we
sketch our kernel-based causal learning (KCL) algorithm RY &Y 9):46
as follows: &~ O G
Step 1 Connect verticesX — Y if and only if no setS,,, X1 | P(X1)=06 | P(X1)=06 | P(X1)=06
(excludingX, Y') can be found witftly x|s,, <¢o (co Xo | P(X2) =05 | P(X2)=05 (I = X1)oa
very small). X3 | P(X3) =04 | P(X3)=04 | ORy.2{X12}
Step 2 Direct edges as follows: (2.1) Check for all sub- X4 | OR{X1,23} | ORo.2{X123} | ORo.2{X1 23}

structuresX —Z—Y (X andY not necessarily nonad-
jacent) whethet is a candidate for being a common
effect of X andY with respect to);. If this is the

case,X —Z andZ ¥ both obtain a vote. Direct all 2The way of making use of the quantitative information about

edges which obtained at least one vote (for either O gtrength of dependences has some analogies to the monotone
both directions) according to the majority principle. If faithfulness principle proposed by Cheng et al. (2002). It states
the result is balanced, leave the edge undirected. (2.2hat blocking a previously active path that connects two nodes de-
The same procedure witky. creases the mutual information. However, Chickering and Meek
Step 3 As IC in Section 1. (2006) show that t_hls principle cannot ge_nerally be _vahd. For
causal networks with many nodes one will usually find several
We would like to emphasize that our assumption cannohodes that violate it.

In addition, we compare the results of KCL to the
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Table 2.The underlying true model: 2-bit OR gates (see Table 1) and the stragianerated by different algorithms (see text).

2IndDet 2IndPro 2DepPro
True Direction 00 0—0 00 o—o 00 0—0 00 o—o 00 0—0 00 o—o
(X1, X2) 100 0 0 0 100 0 0 0 0 100 0 0
(X1, X3) 0 100 0 0 0 100 0 0 0 100 0 0
(Xo, X3) 0 100 0 0 0 100 0 0 0 100 0 0
[oe] 0—0 0«0 o—o0 o o 0—0 0«0 o—o0 [oe} 0—0 0+—0 o—o0
KCL 96.7 0.2 0 3.1 96.7 0 0.4 2.9 12.6 0.1 0 87.3
0 99.7 0 0.3 0 95.2 0.4 4.4 0 98.1 0 1.9
0 99.7 0.2 0.1 0 95.2 0.2 4.8 0 98.1 0.1 1.8
o o 0—0 0+—0 o—o0 o o 0—0 0+—0 o—o0 [ole} 0—0 0«0 o—o0
PC 93.9 0 0 6.1 96.5 0 0 3.5 96.8 0 0 3.2
0 93.9 0 6.1 0 94.1 0 5.9 0 94.2 0 5.8
0 93.9 0 6.1 0 94.1 0 5.9 0 94.2 0 5.8
o o o0—0 0«0 o—o0 o o o0—0 0«0 o—o0 o o o0—0 0«0 o—o0
93.7 0 6.3 0 96.3 0 3.7 0 72.0 0.1 27.9 0
BN PC 0 93.7 6.3 0 0 82.2 17.8 0 0.1 714 28.5 0
0 93.7 6.3 0 0 82.2 17.8 0 0 71.4 28.6 0
o o o0—0 0«0 o—o0 o o o0—0 0«0 o—o0 o o o0—0 0«0 o—o0
ES 98.5 0.4 0.5 0.6 99.3 0.1 0.2 0.4 99.4 0.1 0.2 0.3
0 99.2 0.2 0.6 0 89.0 6.8 4.2 0 88.9 6.5 4.6
0 99.1 0.2 0.7 0 91.7 3.5 4.8 0 91.0 4.3 4.7
o o o0—0 0«0 o—o0 o o o0—0 0«0 o—o0 o o o0—0 0«0 o—o0
GS 69.1 16.2 14.7 0 815 10.4 8.1 0 80.6 10.6 8.8 0
0 83.1 16.9 0 0 68.4 31.6 0 0 66.5 31.5 0
0 82.7 17.3 0 0 70.0 30.0 0 0 68.1 31.9 0
o o o0—0 0«0 o—o0 o o o0—0 0«0 o—o0 o o o0—0 0«0 o—o0
97.2 2.5 0.3 0 98.7 1.3 0 0 98.9 1.1 0 0
MWST+GS 0 99.0 1.0 0 0 94.6 5.4 0 0 94.1 5.9 0
0 97.9 2.1 0 0 89.4 10.6 0 0 88.2 11.8 0
o o 0—0 0«0 o—o0 o o 0—0 0«0 o—o0 o o 0—0 0«0 o0—o0
0 100 0 0 39.7 60.3 0 0 40.6 59.4 0 0
MWST+K2 0 100 0 0 0 100 0 0 0 100 0 0
0 0 100 0 0 0 100 0 0 0 100 0
o o 0—0 0«0 o—o0 ] o 0—0 0«0 o—o0 o o 0—0 0«0 o—o0
69.1 16.2 14.7 0 77.9 11.3 10.8 0 77.4 11.1 10.5 0
MCMC 0 83.1 16.9 0 0 75.9 24.1 0 0 75.0 25.0 0
0 82.7 17.3 0 0 74.1 25.9 0 0 74.4 25.6 0

well-known constraint-based PC algorithm, BN-PC (anables(X;, X;). For (X;, X,), “o o” depicts the absence
information-theory-based refinement of IC) by Cheng et al.of an edge betweeR; and X ;; “o—o” depicts a present but
(2002). Apart from constraint-based algorithms, there exundirected edge between them—=o" and “o«—o” denote
ists a great variety of Bayesian methods for structure learn* X; — X;” and “X; — X", respectively. ~As seen from
ing, particularly in case of discrete domains. Bayesian ap-

proaches with BDe priors using exhaustive search (ES)
Greedy Search/HIII-<_:I|mb|ng (GS) by Cthkerm_g (2003), Table 1 for parameters). Rowvesto 9 visualize graphical results
MCMC (Markov Chain Monte Carlo) by Herskovits (1991) of different algorithms (see text). Each graph consists of at most

are considered here.. The well-known K2 algorithm by 4 nodes. which are represented by circlas:: top left, X2: top
Cooper and Herskovits (1992) can actually not be usedignt, X;: bottom left, X,: bottom right.

Table 3.The first row illustrates the underlying true models (see

to find the causal structure, since an initial causal orderf 2IndDet | 2IndPro | 2DepPro | 3indDet | 3indPro | 3DepPro
ing of variables must already be given. K2 is then only L7177 N N XA
able to decide which arrows can be dropped without vi-_TrueModel i/ l"/ !'/ | P_ﬁ
olating the Markov condition. Heckerman et al. (1994) LN N XK
proposed to apply the maximum weight spanning tree al ket = S St
gorithm (MWST) by Chow and Liu (1968) to initilize | ee | &~ | b7 | b7 | | | B
K2. We call it “MWST+K2". Note that an initial order ~ 3 Bk St | et
can also optionally be specified for greedy search (GS). We__BN-"C /° /° /° :‘\—% :“% ?Sg
call this combination “MWST+GS". All these methods are | YRR 7RI AR

implemented and described in detail by Murphyeray
and Francois Table 3 summarizes the resulting graph of|  cs
each algorithm in the majority of cases. The detailed statis
tics of the1000 runs can be found in Table 2 and 6. The |/ M/ST*¢S
entries are percentages of detected arcs between two valijstac
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3BayesNet Toolbox, http://bnt.sourceforge.net/.
“BNT Structure Learning Package, http:/banquiseasi.insa*
rouen.fr/projects/bnt-slp/.

MCMC

Table 3, both constraint-based and Bayesian methods have
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Table 4.Arcs detected by KCL+K2400 data points are sampled from Asia netwdf00 times. The entries are percentages within
columns. No undirected edges are detected.

(X1,X2) | (X1,X3) | (X1,X4) | (X1,X5) | (X1,X6) | (X1,X7) | (X1,X8) | (X2,X3) | (X2,X4) | (X2,X5) | (X2,Xe)
o o 81.0 94.9 97.1 89.2 96.9 95.4 97.6 96.7 92.8 90.1 0
0—o0 12.4 3.8 1.9 6.9 2.8 4.3 2.3 2.7 4.8 9.1 99.1
0«0 6.6 1.3 1.0 3.9 0.3 0.3 0.1 0.6 2.4 0.8 0.9
(X2, X7) | (X2,Xs8) | (X3,X4) | (X3,X5) | (X3,X¢) | (X3,X7) | (X3,Xs) | (X4,X5) | (Xg,Xg6) | (Xa,X7) | (X4,X5)
o o 78.4 94.1 23.3 35 85.4 99.1 94.4 93.2 0 76.1 80.6
0—0 19.2 5.7 4.7 26.2 0.1 0 2.5 6.0 98.7 195 185
0«0 2.4 0.2 72.0 70.3 14.5 0.9 3.1 0.8 1.3 4.4 0.9
(X5, X6) | (Xs5,X7) | (Xs5,Xs) | (X¢,X7) | (X¢,Xs) | (X7,Xs) | FOr convenience, we denote here
o o 98.0 99.0 0 20.3 30.2 98.0 X1: AsIA, Xo: TUB., X3: SMOKING,
0—0 0 0.4 92.0 77.5 69.8 2.0 X4: LUNG, X5: BRONCHITIS, Xg: TUB./LUNG,
0«0 2.0 0.6 8.0 2.2 0 0 X7: X-RAY, Xs: DYSPNOEA

lead to quite good results in case of 2-bit models. In casetatistics of the orientation for th& edges by KCL can

of 3-bit models, the constraint-based algorithms seem tde found in Table 5. Taking the quotient values andf
often perform better than most of the Bayesian algorithmdlifferent level into account, Step 2.1 of KCL detected a
considered. In case of 2DepPro and 3DepPro, KCL dew-structure TUB. — TUB./LUNG « LUNG; Step 2.2 de-
tected the connection betweéfy and X, (Table 3, row tected the othev-structure TUB./LUNG — DYSPNOEA«—
KCL), whereas PC erroneously deleted the edge in botlBBRONCHITIS. The unoriented edgeUB./LUNG — X-RAY
cases (Table 3, row PC). Had PC detected the dependencan be directed in Step 3. The three remaining unoriented
betweenX; and X, correctly, it would not have been able edges (Figure 2, rightmost) is due to the limitation of meth-
to orient any edge, because no independence constraintsls which are based anstructure identification. That is
are available. The result would be a fully connected skelewhat such method can maximally achieve.

ton. In contrast, although all dependences are correctly
verified through kernel-based independence tests, the ori
entation phase of KCL provides useful hints about causal
relations. Note that Both PC and KCL have left edges undi-

in the sense that the former oriented as many edges as P(
but no edges are erroneously deleted.

In the second experiment, we focus our attention esperigure 1.Graphical representation of medical knowledge by Asia
cially on our orientation procedure by means of “voting network (left). Each node has two possible states representing re-
triples”. The example is an expert-designed causal networkponses “yes” and “no”. The graph on the right side is the struc-
with logical links, namely the Asia network. This net- ture discoved by KCL+K2.

work was first introduced by Lauritzen and Spiegelhalter

(1988) who have specified reasonable transition properti
for each variable given its parents. The underlying stmectu
(Figure 1, left) expresses the following known qualitative
medical knowledge. PsPNOEAMay be due to tuberculo-
sis (TuB.), LUNG cancer (together 0B8./LUNG) or BRON-
CHITIS, or none of them, or more than one of them. A

e .

‘Fhe performance of PC, see e.g. Fig. 2 of (Leray &
Francois, 2004), is unsatisfactory in the sense that sev-
eral edges are completely missing. Repeated experiments
with a sample size from300 to 5000 show that3-5 from
the total8 edges are always missing. This result is traced
recent visit to As1A increases the chances of tuberculosis,baCk actually to the independence test of PC.‘ In contrast,

the kernel-based independence tests tend to induce redun-

while SMOKING is known to be a risk factor for both lung dant ed tieularly wh h I
cancer and bronchitis. The results of a single chestax- | ant edges, particuiarly when we Choose a very Sea
n Step 1. Therefore, it is important to check how ro-

do not discriminate between lung cancer and tuberculosiéb ot KCL is to some addition of unnecessary edaes. As
and neither does the presence or absencersfPROEA u ! - unr y edges.
an extreme case aofy = 0, we applied our orientation

Given the true corresponding skeleton (Figure 2, leftmost)procedure to the fully connected skeleton, i.e. no condi-
we computed the dependence measure for the “votingonal independence would have been verifieds seen

triples” corresponding the edges in skeleton. Extensive ®For Asia network, which partly includes very weak correla-



A Kernel-based Causal Learning Algorithm

Figure 2.Stepwise results of KCL. The leftmost graph shows the true corregmps#leleton. The second and third graph from left
illustrates the result after Step 2.1 and Step 2.2 of KCL, respectivesyrigihtmost graph is the final output of KCL after Step 3.

from Table 5. The resulting causal order makes often miseer, i.e., BADDER cancer, lUNG cancer, KDNEY can-
takes in orientation of AIA — TUB., SMOKING — LUNG  cer and lEUKEMIA. The fact that Nevada and the Dis-
and SWOKING — BRONCHITIS. Based on the resulting trict of Columbia are outliers in the distribution of cigéee
causal order by KCL, we propose to make use of the well.consumption contributes to the difficulty of the analysis.
known K2 algorithm by Cooper and Herskovits (1992) to The ready explanation for the outliers is that cigarettessal
delete edges. Regardless of redundant edges, the themare increased by tourism (Nevada) and commuting workers
arrows can be discovered correctly. The result of the sofDistrict of Columbia). It is known that the consumption
called “KCL+K2" (K2 with a initial causal order detected

by KCL) contains no unoriented edges (see Figure 1, right)

The missing arc from AlA to TUB. is probably due to the

too weak dependency between the two nodes in datasets

such small sample size. Although the edges frano&- G )
ING to LUNG and BRONCHITIS are erroneously orientéd

the result contains no unnecessary edges. Table 4 summa-

rizes how often an arrow is detected by KCL+K2 aft@00 rjgre 3 Graphical result of the PC (left) and KCL algorithm
runs. An extensive comparison of well-known constraint-(right) for smoking and cancer data.

based and Bayesian algorithms with respect to Asia net-

work is provided by Leray and Francois (2004). We can

see that the KCL+K2 performs better than K2 with otherOf cigarettes is a cause of various forms of cancer. As seen
initialization of causal orders, which indicates that otir o from Figure 3 (right), KCL discovers IGARETTES as the
entation procedure provides quite reliable causal orderin common cause of BADDER, LUNG and KIDNEY, which
Furthermore, KCL+K2 is also quite competitive with PC confirms the common-sense understanding of the causal in-
and other Bayesian methddMost notab|y, our result can fluences. Due to our lack of medical Understanding, we do

be reliably achieved with datasets of moderate sample siz&0t speculate on the plausibility of the absence of the in-
fluence from CGARETTESto LEUKEMIA as well as the

orientation from [EUKEMIA to other forms of cancer. Re-

. ) ; mark that the result of PC (Figure 3, left) contains signif-
per capita) smoked (sold) i3 states in the US and the jcanty fewer edges and is less specific. In particular, the

District of Columbia in 1960 together.with death rates rientations from IUNG and KIDNEY to CIGARETTES are
per 100 thousand population from various forms of can- obviously erroneous.

The next experiment is a real-world datds@Eraumeni,
1970) containing the numbers o @ARETTES (hundreds

tion, it is hard to find an appropriatg for 400 data points.
bk CL+K2+KCL" (using KCL to orient the adjacency struc- 5 C i
. Conclusion
ture of the result of KCL+K2) would revise both erroneous orien-
tations into unoriented. _ We have proposed a kernel-based approach for automati-
Actually, with regard to the sample size, the result by ooy generating causal structures. The idea is to define un-

KCL+K2 is better than alll2 algorithms listed in Fig. 2 of diti | and diti | . .
(Leray & Francois, 2004) concerning the so-called “editing mea-coNditional and conditional cross-covariance operators |

sures”. Editing measure (Leray & Francois, 2004) is defined byRKHSs and consider the Hilbert Schmidt norm of these op-
the length of the minimal sequence of operators needed to trangrators as a measure for the unconditional and conditional
form the original graph into the resulting one. Operators are edgedependence. We specify the independence test of IC with

insertion, edge-deletion and edge reversal. Our result has an ed'[rﬁe kernel-based independence test and apply our depen-
ing measure of merely

8The data are collected in the Data and Story Library (DASL), dence measure not only for the decision of independence

available at http://lib.stat.cmu.edu/DASL/DataArchive.html, andbut also for getting additional hints on the causal direwio
listed also as an example for the causal learning softwardy additionally taking the strength of dependences into ac-

TETRAD http://www.phil.cmu.edu/projects/tetrakamples/. count. Our method is even applicable to data without any
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verified statistical independence, e.g. exploring the @alaus Fukumizu, K., Bach, F., & Gretton, A. (2007). Statistical
order for the K2 algorithm. consistency of kernel canonical correlation analysis.

The kernel-based approach provides a unifying method of Machine Learning Ress, 361-383.

which can treat continuous, discrete and even hybrid modFukumizu, K., Bach, F., & Jordan, M. (2004). Dimension-
els. Because of the explosion of parameters and non-trivial ality reduction for supervised learning with reproducing
specification of good priors, continuous variables, which kernel hilbert spacesJ. of Machine Learning Res5,
have large value sets after discretization, are problemati 73-99.

for Bayesian approaches. Constraint-based PC requires , ,
Gaussian assumption for continuous domains and cann&tukumizu, K., Bach, F., & Jordan, M. (2006Kernel di-
deal with hybrid models at all. Although dependences can Mension reduction in regressi¢iechnical Report 715).
be captured by mutual information in theory, the estima- Dept. of Statistics, University of California, Berkeley.
tion of conditional mutual information, to the best of our Gretton, A., Bousquet, O., Smola, A., & Silkopf, B.

knowledge, is a non-trivial problem currently unsolved in  (2005). Measuring statistical dependence with Hilbert-

its generality and involves the explicit estimation of the  gchmidt normsProc. Algorithmic Learning Theorpp.
densities, which is hard for high dimensional data, unless 63-77). Berlin: Springer-Verlag.

suitable smoothness assumptions are made. We are of the . . .
opinion that the kernel method provides a convenient tooHeckerman, D., Geiger, D., & Chickering, D. (1994).
to use smoothness assumptions in an implicit way. The ex- Learning Bayesian networks: The combination of

tension of KCL to vectorial variables is straightforward. knowledge and statistical DataProc. 10th Conf. Un-
certainty in Art. Intl.(pp. 293-301). San Francisco, CA:
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Table 5.Statistics of arcs detected by KCI00 data points are sampled from Asia netwdf00 times. The entries are percentages
within columns. “TS” stands for the percentages achieved by givendoa@sponding skeleton; “FS” stands for the percentages
achieved by given fully connected skeleton. For convenience, watelérereX: AsIA, Xo: TUB.,X3: SMOKING, X4: LUNG, X5:
BRONCHITIS, Xs: TUB./LUNG, X7: X-RAY, X5: DYSPNOEA

(X1, X2) (X2, Xe) (X3, X4) (X3, X5) (X4, Xs) (X5, X3) (X6, X7) (X6, X3)
TS FS | TS FS | TS FS | TS FS | TS FS | TS FS | TS FS | TS FS
o—o | 0.2 | 16.4| 97.7| 958 | 157| 6.6 | 0.4 | 20.2| 97.2 | 94.3| 77.7 | 88.7| 93.6 | 75.5| 92.6 | 955
o~—o | 0.1 | 65.0| 0.1 | 2.0 | 293| 722 | 446|564 | 06 | 0.7 | 166 | 57 | 42 | 139| 65 | 3.7
o—o | 99.7| 186 | 2.2 | 2.2 | 550| 212|550 234| 22 | 50| 57 | 56 | 22 | 106| 09 | 0.8

Table 6.The underlying true model: 3-bit OR gates (see Table 1) and the stragienerated by different algorithms (see text).

3IndDet 3IndPro 3DepPro
True Direction o o 0—o0 0«0 o—o o o 0—o0 0«0 o—o o o 0—o0 0«0 o—o
(X1, X2) 100 0 0 0 100 0 0 0 0 100 0 0
(X1, X3) 100 0 0 0 100 0 0 0 0 100 0 0
(X1, X4) 0 100 0 0 0 100 0 0 0 100 0 0
(X2, X3) 100 0 0 0 100 0 0 0 0 100 0 0
(X2, X4) 0 100 0 0 0 100 0 0 0 100 0 0
(X3, X4) 0 100 0 0 0 100 0 0 0 100 0 0
o o 0—0 0+—0 o—o0 o o 0—0 0+—0 o—o0 (e} o 0—0 0+—0 o—o0
740 8.0 2.8 152 718 5.0 9.7 13.5 1.1 2.2 2.7 840
768 8.2 2.7 123 743 4.9 124 8.4 1.5 513 19.4 27.8
KCL 0 986 0.5 0.9 01 910 7.1 1.8 1.1 472 254  26.3
768 4.7 3.9 14.6 719 48 11.5 11.8 1.5 670 10.1 21.4
0 9%6.0 3.0 1.0 0 938 4.4 1.8 0.2 625 12.6 24.7
0 948 39 1.3 0 %64 1.2 2.4 02 1.8 24 956
o o 0—0 0«+—0 o—o0 o o 0—0 0«+—0 o—o0 o o 0—0 0+—0 o—o0
985 0 0 1.5 9658 0.5 0 2.7 698 12.2 5.9  12.1
981 0 0 1.9 985 0.2 0 1.3 20.3 472 6.9 16.6
PC 0 100 0 0 3.7 962 0 0.1 18.7 558 6.0 19.5
974 0 0 2.6 971 0.1 0 2.8 20.4 549 10.5 14.2
0 100 0 0 0.9 990 0.1 0 7.9 617 10.5 19.9
0 998 0.2 0 0.3 995 0.2 0 5.4 11.5 23.3 59.8
o o 0—0 0+—0 o—o0 o o 0—0 0+—0 o—o0 (e} o 0—0 0+—0 o—o0
975 0.4 2.1 0 %69 0.7 2.4 0 716 9.9 185 0
978 06 1.6 0 970 0.3 2.7 0 28.5 23.8 477 0
BN-PC 0 742  25.8 0 0.6 31.3 681 0 20.2 27.0 528 0
%68 0.7 2.5 0 976 0.2 2.2 0 19.3 294 513 0
0 659 34.1 0 0.8 39.8 594 0 81 324 595 0
0 487 513 0 0 472 528 0 49 126 825 0
o o 0—0 0+—0 o—o0 o o 0—0 0+—0 o—o0 o o 0—0 0+—0 o—o0
993 01 02 04 988 0.2 05 0.5 746 107 11.2 3.5
992 0 02 06 994 0.5 0.1 0 35.6 498 10.3 4.3
ES 0 100 0 0 2.8 495 40.0 7.7 24.3 622 8.6 4.9
988 05 04 0.3 987 05 07 0.1 34.3 540 85 3.2
0 100 0 0 0.9 605 30.3 8.3 14.3 693 10.7 5.7
0 100 0 0 04 6L1 30.6 7.9 11.8 30.2 465 11.5
o o 0—0 0«0 o—o0 o o 0—0 0+—0 o—o0 o o 0—0 0+—0 o—o0
901 4.4 5.5 0 975 1.3 1.2 0 25.3 360 387 0
931 2.7 4.2 0 974 1.8 0.8 0 509 17.2 31.9 0
GS 0 752 248 0 2.5 324 651 0 33.7 262 401 0
931 3.1 3.8 0 956 2.0 2.4 0 449 195 356 0
0 69.0 31.0 0 1.0 424 566 0 25.8 25.8 484 0
0 645 355 0 0.5 472 523 0 1.3 412 575 0
o o 0—0 0+—0 o—o0 o o 0—0 0+—0 o—o0 o o 0—0 0+—0 o—o0
974 25 0.1 0 87 09 04 0 43.8 464 9.8 0
977 2.0 0.3 0 993 0.5 0.2 0 505 37.5 12.0 0
MWST+GS 0 94 5.6 0 2.5 685 29.0 0 33.9 501 16.0 0
948 2.5 2.7 0 917 4.0 4.3 0 448 242 31.0 0
0 829 17.1 0 0.9 245 746 0 25.6 398 346 0
0 781 21.9 0 05 322 673 0 1.1 41.8 571 0
o o 0—0 0+—0 o—o0 o (e} 0—0 0+—0 o—o0 o (e} 0—0 0+—0 o—o0
341 659 0 0 9.4 3.6 0 0 9.8 92 0 0
663 337 0 0 959 4.1 0 0 446 554 0 0
MWST+K2 0 100 0 0 3.0 970 160 0 26.1 739 160 0
349 0.1 650 0 924 0.1 7.5 0 380 0.1 619 0
0 0 100 0 09 0.7 984 0 174 0.2 84 0
0 0 100 0 05 02 993 0 0 416 584 0
o (e} 0—0 0+—0 o—o0 o (e} 0—0 0+—0 o—o0 o o 0—0 0+—0 o—o0
8.8 6.2 7.0 0 917 3.4 4.9 0 374 298 328 0
86.0 6.7 7.3 0 908 3.5 5.7 0 315 427 258 0
MCMC 0 99.6 0.4 0 5.8 43.8 504 0 22.9 466 30.5 0
8.7 6.0 7.3 0 8905 5.4 5.1 0 31.8 426 256 O
0 993 0.7 0 1.9 48.8 493 0 13.7 521 342 0
0 994 0.6 0 0.7 513 480 0 9.8 386 516 0




