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Abstract

If the training pattern set is large, it takes a large memory and a long time to train support vector machine (SVM).

Recently, we proposed neighborhood property based pattern selection algorithm (NPPS) which selects only the patterns

that are likely to be near the decision boundary ahead of SVM training [Proc. of the 7th Pacific-Asia Conference on

Knowledge Discovery and Data Mining (PAKDD), Lecture Notes in Artificial Intelligence (LNAI 2637), Seoul, Korea,

pp. 376–387]. NPPS tries to identify those patterns that are likely to become support vectors in feature space. Prelim-

inary reports show its effectiveness: SVM training time was reduced by two orders of magnitude with almost no loss in

accuracy for various datasets. It has to be noted, however, that decision boundary of SVM and support vectors are all

defined in feature space while NPPS described above operates in input space. If neighborhood relation in input space is

not preserved in feature space, NPPS may not always be effective. In this paper, we show that the neighborhood relation

is invariant under input to feature space mapping. The result assures that the patterns selected by NPPS in input space

are likely to be located near decision boundary in feature space.
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72076 Tübingen, Germany. Tel.: +82 2 8834913; fax: +82 2

8898560.

E-mail addresses: shin@tuebingen.mpg.de, hjshin72@

snu.ac.kr (H. Shin), zoon@snu.ac.kr (S. Cho).
1. Introduction

In support vector machine (SVM) quadratic

programming (QP) formulation, the dimension

of kernel matrix (M ·M) is equal to the number

of training patterns (M). A standard QP solver

has time complexity of order O(M3): MINOS,

CPLEX, LOQO, and MATLAB QP routines. In

order to attack the large scale SVM QP problem,
ed.
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the decomposition methods or iterative methods

have been suggested which break down the large

QP problem into a series of smaller QP problems:

Chunking, SMO, SVMlight, and SOR (Hearst et al.,

1997; Platt, 1999). The general time complexity of
those methods is approximately T Æ O(Mq + q3)

where T is the number of iterations and q is the size

of the working set. Needless to say, T increases as

M increases.

One way to circumvent this computational

burden is to select some of training patterns in

advance which contain most information given

to learning. One of the merits of SVM theory dis-
tinguishable from other learning algorithms is that

it is clear that which patterns are of importance to

training. Those are called support vectors (SVs),

distributed near the decision boundary, and fully

and succinctly define the classification task at hand

(Cauwenberghs and Poggio, 2001; Pontil and

Verri, 1998; Vapnik, 1999). Furthermore, on the

same training set, the SVMs trained with different
kernel functions, i.e., RBF, polynomial, and sig-

moid, have selected almost identical subset as sup-

port vectors (Schölkopf et al., 1995). Therefore, it

is worth finding such would-be support vectors

prior to SVM training (see Fig. 1).

To date, there have been several approaches on

pattern selection for SVM. Lyhyaoui et al. (1999)

implemented RBF classifiers which somewhat
resemble SVMs, to make clear the difference

between both methods. RBF classifiers were built

based on the patterns near the decision boundary.
Fig. 1. Pattern selection: a large training (original training) set shown

which is composed of only potential support vectors.
To find them, they proposed to search 1-nearest

neighbor in opposite class after class-wise cluster-

ing. But this method presumes that the training

set should be clean. Almeida et al. (2000) con-

ducted k-means clustering first on the entire train-
ing set regardless of patterns� class-membership.
Those clusters which contain patterns from one

class are called homogeneous, while those which

do not are called heterogeneous. All the patterns

from a homogeneous cluster are replaced by a sin-

gle centroid pattern, while the patterns from a het-

erogeneous cluster are all selected. The drawback

of this research is that it is not clear how to deter-
mine the number of clusters. Koggalage and Hal-

gamuge (2004) also employed clustering to select

the patterns from the training set. It is quite similar

to Almeida et al. (2000) approach in that they con-

ducted clustering on the entire training set first and

chose the patterns which belong to the clusters

having heterogeneous members. For a homogene-

ous cluster, on the contrary, the patterns along the
rim of cluster were selected not the centroid. It is

relatively a safer approach since even for homoge-

neous clusters there can exist the patterns near the

decision boundary if the cluster�s boundary is al-
most in contact with the decision boundary. On

the other hand, it has a relative shortcoming as

well in that the patterns far away from the decision

boundary are also picked as long as they lie along
the rim. And further, it is still vague how to set the

radius and how to define the width of the rim from

it. Zheng et al. (2003) proposed to substitute clus-
in (a) is condensed to a small training (selected training) set (b)
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ters� centroids for random samples of Lee and

Mangasarian (2001)�s reduced SVM (RSVM).

RSVM is to choose random samples from the

training set and regard them as support vectors.

But all the training patterns are still used as con-
straints of SVM QP. In RSVM, it is not clear that

how many random samples are required not to

degrade the original accuracy of SVM. Zheng

et al. (2003)�s idea on RSVM is based on that the

centroids are more representative than random

samples. In summary, clustering-based algorithms

have a common weakness: the selected patterns are

fully dependent on the clustering performance
which could be unstable. A related performance

comparison was dealt with in the research of Liu

and Nakagawa (2001). A bit different approach

was done by Sohn and Dagli (2001). In order to

reduce the SVM training set as well as to eliminate

noisy patterns (outliers), they utilized fuzzy class

membership through k nearest neighbors. Accord-

ing to the value of fuzzy class membership, they
could check a possibility of the pattern belonging

to the class and eliminate the ones having a weak

possibility. However, they seem to overlook the

importance of the patterns near the decision

boundary by treating them equal to the noisy pat-

terns (outliers far from the decision boundary).

In this paper, we propose neighborhood property

based pattern selection algorithm (NPPS). The
practical time complexity of NPPS is O(vM) where

v is the number of patterns in the overlap region

around decision boundary. We utilize k nearest

neighbors to look around the pattern�s periphery.
The first neighborhood property is that ‘‘a pattern

located near the decision boundary tends to have

more heterogeneous neighbors in their class-

membership.’’ The second neighborhood property
dictates that ‘‘an overlap or a noisy pattern tends

to belong to a different class from its neighbors.’’

And the third neighborhood property is that ‘‘the

neighbors of a pattern located near the decision

boundary tend to be located near the decision

boundary as well.’’ The first one is used for identi-

fying those patterns located near the decision

boundary. The second one is used for removing
the patterns located on the wrong side of the deci-

sion boundary. And the third one is used for skip-

ping calculation of unnecessary distances between
patterns, thus accelerating the pattern selection

procedure. In short, NPPS uses only local neigh-

bor information to identify those patterns likely

to be located near decision boundary. NPPS algo-

rithm and its performance will be covered in the
next section. And further details are also available

in (Shin and Cho, 2003a,b).

It has to be noted, however, that decision

boundary of SVM and support vectors are all

defined in feature space while NPPS described

above operates in input space. Since the mapping

from input space to feature space is highly nonlin-

ear and dimension expanding, distortion of neigh-
borhood relation could occur. In other words,

neighborhood relation in input space may not be

preserved in feature space. If that is the case, local

information in input space may not be correct in

feature space, thus impairing the effectiveness of

NPPS. There are two approaches to solve this

problem. The first involves running NPPS in fea-

ture space, and the second involves proving that
the neighborhood relation is invariant under the

input to feature space mapping. Let us consider

the first approach. In order to compute the dis-

tance between two patterns, one has to have the

optimal kernel function and hyper-parameters,

which are usually found by trial-and-error accom-

panying with multiple trials of SVM training with

all patterns. Obviously, that is not acceptable since
the purpose of pattern selection is to avoid training

SVM with all patterns. On the other hand, in the

second approach, NPPS can be executed only once

in input space since it does not involve searching

for optimal kernel and hyper-parameters. Thus,

we take the second approach in this paper by

showing that the neighborhood relation is invari-

ant under the input to feature space mapping.
Through the theoretical justification for the second

approach, we can avoid the computational burden

which could be incurred by taking the first

approach.

The remaining of this paper is organized as fol-

lows. In Section 2, we briefly introduce NPPS

algorithm and its performance reported earlier.

In Section 3, we provide proofs on the invariance
of the neighborhood relation under the input to

feature space mapping through two typical kernel

functions: RBF and polynomial. In Section 4, we
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conclude this paper with remarks on limitations of

our proofs.
2. Neighborhood property based pattern selection

The proposed idea is to select only those pat-

terns located around decision boundary since they

are the ones that contain most information. Obvi-

ously, the decision boundary is not known until a

classifier is built. Thus, the algorithm utilizes

neighborhood properties to infer the proximity

of a pattern to the decision boundary. The first
neighborhood property is that ‘‘a pattern located

near the decision boundary tends to have more

heterogeneous neighbors in their class-member-

ship.’’ Thus, the proximity of pattern ~x�s to the

decision boundary is estimated by ‘‘Neighbors_

Entropy (~x; k)’’, which is defined as the entropy

of the pattern ~x�s k-nearest neighbors� class

labels,

Neighbors Entropy ð~x; kÞ ¼
XJ
j¼1

P j � logJ
1

P j
;

where Pj is defined as kj/k where kj is the number

of neighbors belonging to class j among the k near-

est neighbors of~x in J class classification problem.

A pattern with a positive Neighbors_Entropy (~x; k)
value is assumed to be close to the decision bound-

ary, thus selected for training. Those patterns are

likely to be SVs. Among the patterns having a pos-

itive value of Neighbors_Entropy (~x; k), however,
overlap or noisy patterns are also present. Here,

let us define overlap patterns as the patterns that

are located in the other side of the decision bound-

ary since the class distributions� overlap. Genuine
noisy patterns are also defined as the patterns that

are located in the other side of the decision bound-

ary, but far away from the decision boundary.

Those are not adjacent to overlap patterns since
they occur due to reasons other than class distribu-

tion overlap. Overlap region is a region in feature

space occupied by the overlap patterns from either

side of the decision boundary. Note that the over-

lap region contains not only the overlap patterns,

but also the close non-overlap patterns which are

located close to the decision boundary, yet in the
right side of the decision boundary. Among the

patterns in the overlap region, overlap or noisy

patterns have to be identified and removed as

much as possible since they are more likely to be

the error SVs which would be misclassified. The
second neighborhood property thus dictates that

‘‘an overlap or a noisy pattern tends to belong to

a different class from its neighbors.’’ If a pattern�s
own label is different from the majority label of its

neighbors, it is likely to be incorrectly labeled. The

measure ‘‘Neighbors_Match (~x; k)’’ is defined as the
ratio of~x�s neighbors whose label matches that of
~x,

Neighbors Match ð~x; kÞ

¼ jf~x0jlabelð~x0Þ ¼ labelð~xÞ; ~x0 2 kNNð~xÞgj
k

;

where kNNð~xÞ is the set of k nearest neighbors of~x.
The patterns with a small Neighbors_Match (~x; k)
value is likely to be the ones incorrectly labeled.
Only the patterns satisfying [Selecting Condition],

are selected where 0 < b 6 1. The larger value of b
leads to the smaller number of selected patterns.

Setting b with a value of 1 means that we select

the patterns correctly classified by kNN, prelimi-

nary to the original classifier, SVM. Thus, some

of the critical patterns near the decision boundary
might be discarded. To conserve the original SVM

accuracy, we lessen the prior influence of kNN by

weighing down b = 0.5. By doing so, the overlap
(genuine noise) patterns far away from the deci-

sion boundary can still be eliminated while the pat-

terns near the decision boundary can be more

preserved.

However, the naive NPPS evaluating kNNs
for M patterns has time complexity of O(M2),

so the pattern selection process itself can be time-

consuming. To accelerate the pattern selection

procedure, let us consider the third neighborhood

property, ‘‘the neighbors of a pattern located near

the decision boundary tend to be located near the

decision boundary as well.’’ Assuming the prop-
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erty, one may compute only the neighbors� label
entropy for the patterns near the decision bound-

ary instead of all the training patterns. A pattern

is expanded or a pattern�s neighbors are evaluated
when its Neighbors_Entropy is positive. With an
initial set of randomly selected patterns, we evalu-

ate only the neighbors of a pattern satisfying

[Expanding Condition]

Neighbors Entropy ð~x; kÞ > 0

in the next step. This successive neighbors only

evaluation of the current pattern set is repeated un-
til all the patterns near the decision boundary are

chosen and evaluated.

For better understanding, Fig. 2 presents a toy

example. Let us assume J = 2, k = 3, and b = 1. At
the initial stage shown in Fig. 2(a), three patterns
~x1, ~x2, and ~x3 are randomly selected. They are
Fig. 2. A toy example for fast NPPS: the procedure starts with rando

final stage (d). ‘‘Outlined’’ circles or squares are the patterns to be expa

them the selected patterns are marked as ‘‘black solid’’ while expanded

is represented as dotted arrows. (a) The first stage, (b) the second sta
marked as outlined circles or squares. Neighbor

searching is represented by dotted arrows. After

its neighbors� label composition is evaluated, ~x1 is
not expanded since it does not meet the Expand-

ing Condition. On the other hand, ~x2 and ~x3 are
expanded. ~x2 satisfies the Selecting Condition as

well as the Expanding Condition. Thus, it is added

to the selected pattern set.~x3, however, does satisfy
the Expanding Condition only. The patterns like
~x1 are depicted as ‘‘gray’’ circles or squares, ~x2 as
‘‘black solid’’ and ~x3 as ‘‘double outlined’’ in the
next stage. Now in Fig. 2(b), ~x4, ~x5, ~x6 and ~x7, ~x8,
~x9 which are the neighbors of ~x2 and ~x3, respec-
tively, are evaluated. Among them, ~x4 is excluded
from expanding, while the rest are all selected

and expanded in Fig. 2(c). Neighborhood relation-

ship is more than somewhat mutual, hence

expanding is conducted only once per pattern to
mly sampled patterns from the initial stage (a), and gets at the

nded (to find its neighbors or to evaluate its neighbors). Among

but not selected ones as ‘‘double outlined’’. Neighbor searching

ge, (c) the third stage and (d) the fourth stage.
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avoid redundant evaluation. Therefore, only those

patterns that were not evaluated before such as~x10,
~x11,~x12, and~x13 are evaluated as shown in Fig. 2(c).
Similarly, ~x10 and ~x13 are not expanded, and ~x11
Fig. 3. Theoretical relationship between the computation time

and v: the computation time of fast NPPS is linearly propor-

tional to v when M is fixed.

Fig. 4. NP
and ~x12 are added to the selected pattern set, and
their neighbors~x14 and~x15 are evaluated in the last
stage, Fig. 2(d).

This lazy evaluation of fast NPPS reduces the

practical time complexity from O(M2) to O(vM),
where v is the number of patterns in the overlap

region. In most practical problems, v <M holds.

Fig. 3 depicts the theoretical relationship between

the computation time and v of the two algorithms.

The computation time of naive NPPS, O(M2),

does not change as long asM is fixed. Meanwhile,

that of fast NPPS is linearly proportional to v.

Therefore, fast NPPS is always faster than naive
NPPS except in the case of v =M. Preference of

one over the other algorithm is of concern to a

tradeoff between ease of implementation and time

complexity. We provided the time complexity

proofs for NPPS in (Shin and Cho, 2003b). The

algorithm and related notations are shown in

Fig. 4 and Table 1.

Fig. 5–7 visualize the previous experimental
results on artificial problems (Shin and Cho,
PS.



Fig. 6. Sine Function Problem: SVM result. (a) ALL patterns; (b) SELECTED patterns.

Fig. 5. Continuous XOR Problem: SVM result. (a) ALL patterns; (b) SELECTED patterns.

Table 1

Notation

Symbol Meaning

D The original training set whose cardinality is M

Di
e The evaluation set at ith step

Di
o A subset of Di

e, the set of patterns to be ‘‘expanded’’ from Di
e each element of which will compute its k

nearest neighbors to constitute the next evaluation set, Dþ1
e
+1

Di
x A subset of Di

e, the set of patterns ‘‘not to be expanded’’ from Di
e, or D

i
x = Di

e�Di
o

Di
s The set of ‘‘selected’’ patterns from Di

o at ith step

Si
o The accumulated set of expanded patterns,

Si�1
j¼0D

j
o

Si
x The accumulated set of non-expanded patterns,

Si�1
j¼0D

j
x

Si The accumulated set of selected patterns,
Si�1

j¼0D
j
s the last of which SN is the reduced training pattern set

kNNð~xÞ The set of k nearest neighbors of~x
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2003a): Continuous XOR (Fig. 5), Sine Function

(Fig. 6), and 4 · 4 Checkerboard (Fig. 7). The

decision boundary is depicted as a solid line and
the margins are defined by the dotted lines in both

sides of it. Support vectors are outlined. In each

figure, sub-figure (a) indicates a typical SVM result



Table 2

Empirical result comparison

No. of training

patterns

No. of support

vectors

Execution time (s) Test error (%)

ALL SELECTED ALL SELECTED ALL SELECTED

(=SVM + NPPS)

ALL SELECTED

Continuous XOR* 600 179 167 84 454.83 4.06 (=3.85 + 0.21) 9.67 9.67

Sine function* 500 264 250 136 267.76 8.96 (=8.79 + 0.17) 13.33 13.33

4 · 4 Checkerboard 1000 275 172 148 3.81 0.41 (=0.09 + 0.32) 4.03 4.66

Pima Indian diabetes 615 311 330 216 203.91 28.00 (=27.86 + 0.14) 29.90 30.30

Wisconsin breast cancer 546 96 87 41 2.14 0.13 (=0.03 + 0.10) 6.80 6.80

MNIST: 3–8 11982 4089 1253 1024 477.25 147.73 (=49.84 + 97.89) 0.50 0.45

MNIST: 6–8 11769 1135 594 421 222.84 58.96 (=14.69 + 44.27) 0.31 0.31

MNIST: 9–8 11800 1997 823 631 308.73 86.23 (=26.61 + 59.62) 0.41 0.43

DMEF4 81226 8871 35529 6624 4820.06 129.29 (=68.29 + 61.00) 34.83 35.13

�*� stands for that the SVM training of corresponding problems was conducted with a standard QP solver, i.e., Gunn�s SVMMATLAB

Toolbox. On the contrary, because of heavy memory burden and lengthy training time caused by large training set, others were trained

with an iterative SVM solver known as one of the fastest solvers, i.e., OSU SVM Classifier Toolbox (Kernel-Machines Organization).

Fig. 7. 4 · 4 Checkerboard Problem: SVM result. (a) ALL patterns; (b) SELECTED patterns.
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of all patterns while sub-figure (b) stands for that

of selected patterns by NPPS. The decision bound-

aries in both sub-figures look quite similar, thus,

generalization performance is similar. Table 2

summarizes the empirical results of NPPS reported

in (Shin and Cho, 2003a, in press). The table in-

cludes the results obtained from tests with three

artificial datasets mentioned above, and 5 real-
world bench-marking datasets (UCI Machine

Learning Repository; MNIST database) as well

as a marketing dataset (DMEF dataset Library).

The results show that NPPS reduced SVM training

time up to almost two orders of magnitude with

virtually no loss of accuracy.
3. Proofs on validity of pattern selection in input

space

As described in Section 2, NPPS operates in

input space (I) using local information there. How-

ever, decision boundary of SVM and support vec-

tors are all defined in feature space (U). Since the
mapping I# U is highly nonlinear as well as
dimension expanding, we have to ensure that

neighborhood relation in input space be preserved

in feature space. We now provide proofs on that

the k nearest neighbors of a pattern in the input

space I are also the k nearest neighbors of the pat-

tern in the feature space U.
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Definition 1 (kNN Invariance). Let kNNI(~x) be

the set of k nearest neighbors of a pattern ~x in
the input space I, and kNNU (~x) be that of the
pattern Uð~xÞ in the feature space U. If both sets are
identical

kNNIð~xÞ ¼ kNNUð~xÞ; 8k > 0; 8~x
the invariance of the k nearest neighbors (NN)

holds.

Finding the nearest neighbors necessarily im-

plies distance calculation. In terms of the squared

Euclidean distance which is the most commonly

used distance measure, the distance among pat-

terns in the input space I is

k~x�~yk2 ¼~x �~xþ~y �~y � 2~x �~y: ð1Þ
The distance in the feature space U is similarly

drawn as

kUð~xÞ � Uð~yÞk2 ¼ Uð~xÞ � Uð~xÞ þ Uð~yÞ � Uð~yÞ
� 2Uð~xÞ � Uð~yÞ ð2Þ

where U(Æ) is a mapping function from the input

space to the feature space, U(Æ): I# U. One might
obtain Uð~xÞ directly but the formula is extremely
complicated. Thanks to the fact that the mapping

U(Æ) always appears within a form of inner product
during SVM QP calculation, one thus uses kernel

trick which substitutes the inner product to a ker-

nel function, Uð~xÞ � Uð~yÞ ¼ Kð~x;~yÞ. If this kernel
trick is applied to Eq. (2), then the distance in

the feature space becomes

kUð~xÞ � Uð~yÞk2 ¼ Kð~x;~xÞ þ Kð~y;~yÞ � 2Kð~x;~yÞ:
ð3Þ

We will consider the following typical kernel

functions:

RBF : Kð~x;~yÞ ¼ exp �k~x�~yk2

2r2

 !
;

polynomial : Kð~x;~yÞ ¼ ð~x �~y þ 1Þp:
ð4Þ

As long as the relative distance magnitude of the

input space is preserved in the feature space U
for all patterns, the composition of the k nearest

neighbors of a pattern will be invariant. We now

define proximity invariance.
Definition 2 (Proximity Invariance). For the pat-

terns ~x, ~y1 and ~y2 (~x 6¼~y1, ~x 6¼~y2, and ~y1 6¼~y2) in
the input space I satisfying

k~x�~y1k
2
< k~x�~y2k

2
;

the invariance of proximity holds if they preserve

their relative distances in the feature space U

kUð~xÞ � Uð~y1Þk
2
< kUð~xÞ � Uð~y2Þk

2
:

It is obvious that kNN invariance holds if prox-

imity invariance holds. The following two theorems

provide proofs on kNN invariance for the two ker-
nels, RBF and polynomial, by inducing proximity

invariance for each of them.

Theorem 1 (kNN Invariance for RBF Ker-

nel). kNN invariance holds when the mapping

function Uð~xÞ is defined such that

Uð~xÞ � Uð~yÞ ¼ Kð~x;~yÞ ¼ exp �k~x�~yk2

2r2

 !
:

Proof. Let~y1 and~y2 be two distinct neighbors of~x
with k~x�~y1k

2
< k~x�~y2k

2
, i.e., ~y1 is closer to ~x

than~y2. Suppose the invariance of proximity does
not hold for mapping function Uð~xÞ, i.e.,

kUð~xÞ � Uð~y1Þk
2 P kUð~xÞ � Uð~y2Þk

2
. Using Eq.

(3), one can rewrite the inequality as

Kð~x;~xÞ þ Kð~y1;~y1Þ � 2Kð~x;~y1Þ
P Kð~x;~xÞ þ Kð~y2;~y2Þ � 2Kð~x;~y2Þ:

Since Kð~a;~aÞ ¼ 1 and Kð~a;~bÞ > 08 ~a, ~b, the in-
equality is simplified as

Kð~x;~y1Þ 6 Kð~x;~y2Þ:
Plugging the definition of RBF kernel, we obtain

exp �k~x� ~y1k
2

2r2

 !
6 exp �k~x� ~y2k

2

2r2

 !
;

which in turn can be simplified into

k~x� ~y1k
2 P k~x� ~y2k

2
:

This is contradictory to our initial assumption that
~y1 is closer to~x than~y2. Thus the assumption that
the invariance of proximity does not hold is not true.

Therefore, kNN invariance holds for RBF

kernel. h
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Theorem 2 (kNN Invariance for Polynomial Ker-

nel). kNN invariance holds when the mapping func-

tion Uð~xÞ is defined such that

Uð~xÞ � Uð~yÞ ¼ Kð~x;~yÞ ¼ ð~x �~y þ 1Þp;

and training patterns are all norm vectors (k Æ k = 1).

Proof. Let~y1 and~y2 be two distinct neighbors of~x
with k~x�~y1k

2
< k~x�~y2k

2
, i.e., ~y1 is closer to ~x

than~y2. Suppose the invariance of proximity does
not hold for mapping function Uð~xÞ, i.e.,
kUð~xÞ � Uð~y1Þk

2 P kUð~xÞ � Uð~y2Þk
2
. Using Eq.

(3), one can rewrite the inequality as

Kð~x;~xÞ þ Kð~y1;~y1Þ � 2Kð~x;~y1Þ
P Kð~x;~xÞ þ Kð~y2;~y2Þ � 2Kð~x;~y2Þ:

Since Kð~a;~aÞ ¼ 2p from ~a �~a ¼ 1, the inequality

becomes

Kð~x;~y1Þ 6 Kð~x;~y2Þ:
Plugging the definition of polynomial kernel, one

obtains

ð~x �~y1 þ 1Þp 6 ð~x �~y2 þ 1Þp:

The polynomial degree p can be eliminated from

both sides since norm vectors always satisfy

�1 <~a �~b < 1, 8~a 6¼ ~b, and ð~a �~bþ 1Þ > 0.

Therefore, we get

~x �~y1 6~x �~y2:
The inner product between the patterns can be

represented

k~xkk~y1k cos h1 6 k~xkk~y2k cos h2
where h1 and h2 denote the angles between ~x and
~y1, and between ~x and ~y2, respectively. Since
k~xk ¼ k~y1k ¼ k~y2k ¼ 1, finally one has

cos h1 6 cos h2;

and hence h1 P h2. In other words,

k~x� ~y1k
2 P k~x� ~y2k

2
;

which is contradictory to an initial assumption

that~y1 is closer to~x than~y2. Thus the assumption
that the invariance of proximity does not hold is not

true, which yields that kNN invariance holds for
polynomial kernel. h
Note that Theorem 2 does not hold without the

norm vector assumption (k Æ k = 1). Consider three
patterns, ~x ¼ 1, ~y1 ¼ 2, and ~y2 ¼ �1 in the input
space (1-dim). They satisfy

k~x�~y1k
2
< k~x�~y2k

2
;

i.e., ~y1 is closer to~x than ~y2. Let us consider p = 2
where UðaÞ � UðbÞ ¼ Kð~a;~bÞ ¼ ð~a �~bþ 1Þp. The

distance between ~x and ~y1 in the feature space
can be computed as

kUð~xÞ � Uð~y1Þk
2 ¼ kUð1Þ � Uð2Þk2

¼ Kð1; 1Þ þ Kð2; 2Þ � 2Kð1; 2Þ
¼ ð1 � 1þ 1Þ2 þ ð2 � 2þ 1Þ2

� 2ð1 � 2þ 1Þ2

¼ 4þ 25� 18 ¼ 11:

The distance between~x and~y2 in the feature space
can be similarly computed, resulting in 8. Thus, we

have kUð~xÞ � Uð~y1Þk
2
> kUð~xÞ � Uð~y2Þk

2
, which

violates the proximity invariance.
4. Conclusion

This paper provided a theoretical demonstra-
tion on our previous assumption that neighbor-

hood relation is invariant under input to feature

space mapping. In other words, the composition

of k nearest neighbors surrounding a pattern in

input space does not change after mapping to

feature space. The result leads us to conclude that

the patterns selected in input space are identical to

the patterns selected in feature space. Thus, it is
justified to select patterns in input space that are

likely to be support vectors in feature space.

We now address some limitations. First, fast

NPPS is geared up for efficient searching with ini-

tial random samples (see Fig. 4). A small propor-

tion of random sampling, however, may cause a

problem when the class distribution is multi-

modal. A small lump of patterns rather isolated
could be excluded from the searching unless an ini-

tial random sample hits one of them. A current

remedy for the risk is to check the class distri-

bution first. If the class distribution falls on a

multi-modal case, then we recommend to use naive
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NPPS instead. Actually, we implemented fast

NPPS to be able to easily switch to naive NPPS

just by setting the sampling ratio to 1. Second, in

case of polynomial kernel in Section 3, we assumed

that all patterns of training set are norm vectors

(k Æ k = 1), which could be somewhat restrictive.

However, it should be noted that in some machine

learning applications such as text mining, it is con-

ventional to preprocess a training set by scaling
~x0 ¼~x=k~xk so as to calculate a cosine distance

dist ð~x;~yÞ ¼ 1�~x0 �~y0.
Even though the proof should be similar in nat-

ure, we did not deal with sigmoid kernel here since
it is a kernel with innate restrictions. Sigmoid ker-

nel is a conditionally positive definite (CPD) kernel

which satisfies Mercer�s condition only for some

values of the hyper-parameters q and d, and only
for norm vector (Schölkopf and Smola, 2002; Vap-

nik, 1999). Furthermore, sigmoid kernel has rarely

been used since it has two hyper-parameters. It is a

kernel devised for showing that SVM includes tra-
ditional MLP (multi-layer perceptron) neural net-

work. A recent study of Lin and Lin (2003) on

sigmoid kernel is worth reading. Even though sig-

moid kernel seems to work well in a certain condi-

tion, it is not better than RBF. As RBF has

properties of being PD and having fewer para-

meters, there is no reason to use the sigmoid.
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