
Learning Robot Dynamics for Computed Torque
Control using Local Gaussian Processes Regression

Duy Nguyen-Tuong, Jan Peters

Max Planck Institute for Biological Cybernetics

Spemannstraße 38, 72076 Tübingen

Abstract— Accurate models of the robot dynamics allow the
design of significantly more precise, energy-efficient and more
compliant computed torque control for robots. However, in some
cases the accuracy of rigid-body models does not suffice for
sound control performance due to unmodeled nonlinearities such
as hydraulic cables, complex friction, or actuator dynamics. In
such cases, learning the models from data poses an interesting
alternative and estimating the dynamics model using regression
techniques becomes an important problem. However, the most
accurate regression methods, e.g. Gaussian processes regression
(GPR) and support vector regression (SVR), suffer from excep-
tional high computational complexity which prevents their usage
for large numbers of samples or online learning to date. We
proposed an approximation to the standard GPR using local
Gaussian processes models inspired by [1], [2]. Due to reduced
computational cost, local Gaussian processes (LGP) is capable
for an online learning. Comparisons with other nonparametric
regressions, e.g. standard GPR, ν-SVR and locally weighted pro-
jection regression (LWPR), show that LGP has higher accuracy
than LWPR and close to the performance of standard GPR and
ν-SVR while being sufficiently fast for online learning.

I. INTRODUCTION

Model-based control, e.g. computed torque control [3] as

shown in Figure 1, enables high speed and compliant robot

control while achieving accurate control with small tracking

errors for sufficiently precise robot models. The controller is

supposed to move the robot which is governed by the system

dynamics [3]

M (q) q̈ + C (q, q̇) + G (q) + ε (q, q̇, q̈) = u , (1)

where q, q̇, q̈ are joint angles, velocities and accelerations

of the robot, u denotes the inputs to the system, M (q) the

inertia matrix of the robot and C (q, q̇) Coriolis and centripetal

forces, G (q) gravity forces and ε (q, q̇, q̈) represents non-

linearities of the robot which are not part of the rigid-body

dynamics due to hydraulic tubes, friction, actuator dynamics,

etc. The model-based tracking control law determines the

generated joint torques or motor commands u such that the

robot follows a desired trajectory qd, q̇d, q̈d. The dynamics

model of the robot can be used as a feed-forward model to

predict the joint torques uFF required to follow the given

desired trajectory while a feedback term uFB ensures the

stability of the trajectory with a resulting control law of

u = uFF + uFB. The feedback term can be a linear control

law such as uFB = Kpe + Kvė, where e = qd−q denotes

the tracking error and Kp,Kv position-gain and velocity-gain,

respectively. If an accurate model in the form of Equation

(1) can be obtained, e.g, the rigid-body model for negligible

Dynamics
Model

Robot
q̈d

q̇d

qd

KvKp

∑

∑

∑+

+ +

−

−+

+

u

qq̇

Fig. 1: Schematic showing computed torque robot control

unknown nonlinearities, the resulting feedforward term uFF

will largely cancel the robots nonlinearities [3].

In real, physical systems, there are frequently many un-

known nonlinearities ε (q, q̇, q̈) such as hydraulic tubes, com-

plex friction, gear boxes, etc, which couple several degrees of

freedom together. Such unknown nonlinearities can dominate

the system dynamics which deteriorates the model [4] and

the resulting tracking error needs to be compensated using

large gains [3]. High feedback gains prohibit compliant control

making the robot less safe for the environment and causing

many problems such as saturation of the actuators, excitation

of the unmodeled dynamics, large error in presence of noise,

large energy consumption etc., and thus should be avoided in

practice. To avoid high-gain feedback, a more accurate dynam-

ics model for computation of uFF is necessary. Since uFF is

a function of qd, q̇d, q̈d, it can be obtained using supervised

learning. The resulting problem is a regression problem which

can be solved by learning the mapping q, q̇, q̈→u on sampled

data [5]–[7] and, subsequently, using the resulting mapping for

determining the feedforward motor commands. As trajectories

and corresponding joint torques are sampled directly from the

real robot, learning the mapping will include all nonlinearities

and not only the ones described in the rigid-body model.

Due to high computational complexity of nonlinear regres-

sion techniques, dynamics models are frequently only learned

offline for pre-sampled desired trajectories [5], [7]. In order

to take full advantage of a learning approach, online learning

is absolute necessity as it allows the adaption due to changes

in the robot dynamics, load or the actuators. Furthermore, a

training data set will never suffice for most robots with a large

number of degrees of freedom and, thus, fast online learning is

necessary if the trajectory leads to new parts of the state-space.

ECSIS Symposium on Learning and Adaptive Behaviors for Robotic Systems

978-0-7695-3272-1/08 $25.00 © 2008 IEEE

DOI 10.1109/LAB-RS.2008.16

59

Recently, there has been a lot of progress in online learning

resulting into sophisticated online learning techniques such as

locally weighted projection regression (LWPR) [1], [8]. Here,

the dynamics are approximated by locally linear functions

covering the relevant state-space and online learning became

computationally feasible due to low computational demands

of the local projection regression which can be performed in

real-time.

From our experience, the major drawback of LWPR is

the required manual tuning of many highly data-dependent

metaparameters. Furthermore, for complex data, large numbers

of local models are necessary in order to achieve a compet-

itive approximation. In contrast to LWPR, Gaussian process

regression (GPR) need less data-specific tuning while yielding

high learning accuracy. However, these advantages result into

a tremendously higher computational cost both during the

prediction step as well as during learning. As a result, this

approach is not used for real-time application to date. In this

paper, we combine the basic idea behind both approaches

attempting to get as close as possible to the speed of local

learning while having a comparable accuracy to Gaussian pro-

cesses regression. This results in an approach inspired by [1],

[2] which uses many local GPs in order to obtain a significant

reduction of the computational cost during both prediction

and learning step, thus, allowing the application of online

learning. The remainder of the paper is organized as follows:

first we give a short review of standard GPR. Subsequently, we

describe our local Gaussian process models (LGP) approach

and discuss how it inherits the advantages of both GRP and

LWPR. Finally, our LGP method is evaluated for learning

dynamics models of real robots for accurate tracking control.

The tracking task is performed in real-time using computed

torque control as shown in Figure 1. The learning accuracy

and performance of our LGP approach will be compared with

the most important standard methods LWPR, standard GPR

[9] and ν-support vector regression (ν-SVR) [10], respectively.

The evaluations are performed with both physically realistic

simulations based on SL [11] as well as two different real

robots, i.e., the SARCOS anthropomorphic master arm and

BARRETT whole arm manipulator.

II. REGRESSION WITH STANDARD GPR

Given a set of n training data points {xi, yi}n
i=1, we intend

to discover the latent function fi(xi) which transforms the

input vector xi into a target value yi given by yi = fi(xi)+εi ,

where εi is Gaussian noise with zero mean and variance σ2
n

[9]. As a result, the observed targets can also be described

by y∼N (
0,K(X,X) + σ2

nI
)
, where K(X,X) denotes the

covariance matrix. As covariance function, a Gaussian kernel

is frequently taken [9]

k (xp,xq)=σ2
sexp

(
−1

2
(xp−xq)T W(xp−xq)

)
, (2)

where σ2
s denotes the signal variance and W the width of the

Gaussian kernel. To make a prediction f̄∗(x∗) for a new input

vector x∗, the joint distribution of the observed target values

and predicted function value is given by

[
y

f̄∗(x∗)

]
∼ N

(
0,

[
K(X,X) + σ2

nI k(X,x∗)
k(x∗,X) k(x∗,x∗)

])
. (3)

The conditional distribution yields the predicted mean value

f̄∗(x∗) with the corresponding variance V (x∗) [9]

f̄∗(x∗) = kT
∗
(
K + σ2

nI
)−1

y = kT
∗α ,

V (x∗) = k(x∗,x∗)− kT
∗
(
K + σ2

nI
)−1

k∗ ,
(4)

with k∗ = k(X,x∗), K = K(X,X) and α denotes the so-

called prediction vector. The hyperparameters of a Gaussian

process with Gaussian kernel are θ = [σ2
n, σ2

f ,W] and their

optimal value for a particular data set can be derived by maxi-

mizing the log marginal likelihood using common optimization

procedures, e.g., quasi-Newton methods [9].

III. LOCAL GAUSSIAN PROCESSES REGRESSION

The major drawback of GPR is the expensive computation

of the inverse matrix (K + σ2
nI)−1 which yields a cost

of O(n3). Many attempts have been made to reduce this

computational obstacle but they mostly follow two strategies:

(i) sparse Gaussian processes (SGP), (ii) mixture of experts

(ME). In SGP, the whole input space is approximated by a

smaller set of so-called inducing inputs [12]–[14]. Here, the

difficulty is to choose an appropriate set of inducing inputs

which essentially summarize the original input space [9]. In

contrast to SGP, ME divide the whole input space in smaller

subspaces by a gating network, within which a Gaussian

process expert, i.e. Gaussian local model, is trained [2], [15].

The computation cost for matrix inversion is then significantly

reduced due to much smaller size of data points within a

local model. However, the ME performance depends largely

on the number of experts for a particular data set. To avoid this

problem, [15] allows the learning process to infer the required

number of experts for a given data set by employing a gating

network related to Dirichlet process. The proposed algorithm

has approximately a complexity of O(n3/M) for training and

O(n2d) for adapting the gating network parameters, where M
denotes the number of experts and d the dimension of input

vector.

In the broader sense, the gating network of ME can be

considered as a clustering process, where the main intention is

to group the whole input data in a meaningful way. Inspired

by locally weighted learning [1], [2], we propose a method

enabling further reduction of computational cost by using a

Gaussian kernel as distance measure for clustering the input

data. The algorithm assigns each input point to the corre-

sponding local model, i.e. specific expert, for which an inverse

covariance matrix is determined. The mean prediction for a

query point is subsequently made by weighted averaging over

local mean predictions using local models in the neighborhood.

Thus, the algorithm consists out of two stages: (i) localization

of data, i.e. allocation of new input points and learning of

corresponding local models, (ii) prediction for a query point.

60

Algorithm 1 Data Allocation and Model Learning

Input: new data point {x, y}.
for k=1 to all local models do

Compute distance to the k-th local model:

wk =exp(−0.5(x− ck)T Dk(x− ck))
end for
Take the nearest local model:

v = max(wk)
if v > wgen then

Insert {x, y} to nearest local model:

Xnew =[X,x], ynew =[y, y]
Update corresponding center:

cnew = mean(Xnew)
Compute inverse covariance matrix

and prediction vector of local model:

Knew = K(Xnew,Xnew)
αnew = (Knew + σ2I)−1ynew

else
Create new model:

ck+1 =x, Xk+1 =[x], yk+1 =[y]
Initialization new inverse covariance matrix

and new prediction vector.

end if

A. Localization of Data and Learning of Local Models

Clustering input data is performed by considering a distance

measure of the input point x to the centers of all local models.

The distance measure wk is given by

wk = exp

(
−1

2
(x− ck)T Dk (x− ck)

)
, (5)

where ck denotes the center of the k-th local model and Dk

a diagonal matrix represented the particular kernel width. The

motivation for using the Gaussian distance in Equation (5)

is that it incorporates a weighted measure controlled by the

distance metrics Dk. For the time being, our distance metrics

are fixed and have to be chosen appropriately. The choice of

Dk will be discussed further in Section IV. Determining the

distance measure wk, we consider only the joint angles and

velocities of the robot, i.e. x=[q, q̇]T . Thus, the localization is

performed in a 14-dim space (7 times joint angle and velocity).

After determining wk for all k local models, the input point

x will be assigned to the nearest local model, i.e. the local

model with the maximal value of distance measure wk.

During the localization process, a new center ck+1, i.e. a

new model, is created, if all distance measures wk fall below

a limit value wgen. The new data point x is then set as new

center ck+1. Thus, the number of local models is allowed to

increase as the trajectories become more complex. Otherwise,

if a new point is assigned to a particular k-th model, the

center ck is updated as mean of local data points. Hence,

we have ck =mean(Xk) ∈ R
14×1, where Xk denotes the set

of local data points. With the new assigned input point, the

inverse covariance matrix of the corresponding local model

can be computed. The localization procedure is summarized

Algorithm 2 Weighted Prediction

Input: query data point x.

Determine M local models next to x.

for k = 1 to M do
Compute distance to the k-th local model:

wk =exp(−0.5(x− ck)T Dk(x− ck))
Compute local mean using the k-th local model:

ȳk = kT
k αk

end for
Compute weighted prediction using M local models:

ŷ=
∑M

k=1 wkȳk/
∑M

k=1 wk .

in Algorithm 1. Here, learning of new data takes place by

adapting the local center and computing the inverse covariance

matrix of local model. Throughout this paper, we assume that

we already have suitable hyperparameters for the Gaussian

kernel as shown in Equation 2.

Considering the algorithm, we mainly have a computational

cost of O(N3) for inverting the local covariance matrix, where

N presents the number of data points in a local model.

Furthermore, we can control the complexity by defining a

limit number for data points in a local model. Since the

number of local data points increases continuously over time,

we can keep this limit by deleting an old data point as a

new one is included. Insertion and deletion of data points

can be decided by evaluating the information gain of the

operation. The cost for inverting the local covariance matrix

can be further reduced, as we need only to update the inverse

matrix once it is computed. The update can be performed using

Sherman-Morrison formula which has a complexity ofO(N2).

B. Weighted Prediction for a Query Point

The prediction for a mean value ŷ is performed by weighted

averaging over M local predictions ȳk. Hence, we have

ŷ =
∑M

k=1 wkȳk∑M
k=1 wk

. (6)

Equation (6) is the solution of the cost function J =∑M
k=1 wk(ȳk− ŷ)2 and can also be motivated probabilistically

[6]. Thus, our prediction ŷ is a weighted least-square solution

of M local predictions ȳk using local models in the neighbor-

hood. Each local prediction ȳk is determined using Equation

(4) and additionally weighted by the distance wk between the

corresponding center ck and the query point x. The search for

M local models can be quickly done using nearest-neighbour-

search algorithm. The prediction procedure is summarized in

Algorithm 2.

IV. EVALUATIONS

We have evaluated our algorithm using high-dimensional

robot data taken from real robots, e.g., the 7 degree-of freedom

(DoF) anthropomorphic SARCOS master arm and 7-DoF

BARRETT whole arm manipulator shown in Figure 2, as

well as a physically realistic SL simulation [11]. First, we

compare the learning performance of LGP with the state-of-

the-art in nonparametric regression, e.g., LWPR, ν-SVR and

61

(a) SARCOS master arm (b) BARRETT WAM

Fig. 2: Robot arms for generation of real data.

standard GPR in the context of approximating robot dynamics.

Subsequently, we use the learned dynamics model for a real-

time control task. For evaluating ν-SVR and GPR, we have

employed the libraries [16] and [17].

A. Dynamics Learning Accuracy Comparison

For the comparison of the accuracy of our method in the

setting of learning inverse dynamics, we use three data sets,

(i) simulation data as described in [7], (ii) data from the

SARCOS master arm [1], (iii) a new data set generated from

our BARRETT arm. Given samples xi = [qi, q̇i, q̈i] as input

and using the corresponding torques y=u as targets, we have

a proper regression problem. For the considered seven degrees

of freedom robot arms, we, thus, have data with 21 inputs (for

each joint, we have an angle, a velocity and an acceleration)

and 7 targets (a torque for each joint). Training takes place

for each DoF separately employing LWPR, ν-SVR, GPR and

LGP, respectively.

Figure 3 gives the normalized mean squared error (nMSE)

in percent of the evaluation on the test set for each of

the three evaluated scenarios, i.e., the simulated arm in

(a), the SARCOS arm in (b) and the BARRETT arm in

(c). Here, the normalized mean squared error is defined as:

nMSE = Mean squared error/Variance of target. During the

localization in LGP, the distance metrics Dloc
k are chosen

as identity matrices, i.e., Dloc
k = I and, subsequently, for

prediction, the distance metrics of each local model is set

reciprocally proportional to the variance of its input data

points, i.e., Dpred
k = 1/var(Xk) ∈ R

14×14. The choice of

Dpred
k has an intuitive interpretation, i.e., the more the data

points disperse in a particular dimension, the broader should

be the corresponding width, i.e. the smaller Dpred
k , for this

dimension. During the prediction on the test set, we take the

most activated local models, i.e. the ones with the shortest

distance to the query point.

The limit value wgen for generating a new local model is

set to be wgen =0.65. In so doing, the training set is clustered

in few local regions (51 for the simulated data, 31 and 33

local models for the SARCOS data and BARRETT data,

respectively) ensuring that each local model has a sufficient

amount of data points for high accuracy (in practice, this

requirement results in more than 50 data points) while having

nMSE [%]
Joint Nr. Lin. Regr. LWPR ν-SVR GPR Local GPR

1 19.2 2.4 1.2 0.6 1.1
2 182.5 2.6 0.5 0.3 0.7
3 19.8 1.5 0.4 0.2 0.5
4 65.6 0.9 0.3 0.2 0.7
5 295.5 5.3 1.4 1.5 2.8
6 27.3 1.7 0.7 0.5 1.2
7 31.9 0.8 0.5 0.3 0.6

TABLE I: Approximation error as nMSE (in percent) for each
DoF using real SARCOS data. Standard GPR, ν-SVR and LGP
show a good learning performance providing higher learning accuracy
compared to LWPR. In contrast to nonparametric methods, traditional
linear regression using analytical model yields large approximation
errors, especially for 2. and 5. DoF. This fact indicates that for those
DoF the analytical model fails to explain the data.

sufficiently few that the solution remains feasible in real-time

(on our current hardware, a Core Duo at 2GHz, that means

less than 900 data points). On average, each local model has

approximately 300 training examples. This small number of

training inputs enables a fast training for each local model,

i.e. the matrix inversion and determination of hyperparameters.

For each local model we determine an optimal set of hyperpa-

rameters using gradient-based optimization of the likelihood

function.

Considering the approximation error on the test set shown

in Figure 3(a-c), it can be seen that LGP generalizes well

even when using only few local models for prediction. In

all cases, LGP outpreforms LWPR while being close in

learning accuracy to GPR and ν-SVR. The mean-prediction is

determined according to Equation (4) where we precomputed

the prediction vector α from training data. When a query point

appears, the kernel vector kT
∗ is evaluated for this particular

point. The operation of mean-prediction has then the order of

O(n) for standard GPR and ν-SVR, respectively, and O(NM)
for LGP, where n denotes the total number of training points,

M number of local models and N number of data points in

a local model. In this example, as we take 4 local models for

LGP prediction we have to deal with about 1500 data points

each time.

The results, as shown in Figure 3 (a-c), indicate that

LGP performs better than LWPR in all cases and is able to

generalize the learned information well even in the presence

of noise. Table I additionally gives a comparison of nonpara-

metric regression methods employed above with the common

linear regression using analytical rigid-body model. The results

reported in Table I are computed using SARCOS data. Here,

the linear regression yields very large approximation error,

especially for the 2. and 5. DoF. Apparently, for these DoF the

nonlinearities (e.g., hydraulic cables, complex friction) cannot

be approximated well. This example shows the difficulty using

the analytical model for control in practice. The imprecise

dynamics model will result in poor control performance for

real system, e.g., large tracking error.

B. Comparison of Computation Speed for Prediction

Due to the fact that only a small amount of local models

in the vicinity are needed during prediction for LGP, the

62

1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

4

Joint Nr.

n
M

S
E

 [
%

]

LWPR
ν−SVR
GPR
LGP

(a) Approximation Error using SL data

1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

Joint Nr.
n

M
S

E
 [

%
]

LWPR
ν−SVR
GPR
LGP

(b) Approximation Error using BARRETT data

1 2 3 4 5 6 7
0

1

2

3

4

5

6

Joint Nr.

n
M

S
E

 [
%

]

LWPR
ν−SVR
GPR
LGP

(c) Approximation Error using SARCOS data

Fig. 3: Approximation error as nMSE (in percent) for each DoF. The error is computed after prediction on the test sets with simulated data
from SL-model, real robot data from BARRETT and SARCOS master arm, respectively. In all cases, LGP outperforms LWPR in learning
accuracy while being competitive to ν-SVR and standard GPR.

0 5000 10000 15000

0.81

1.31

1.81
2.31

3.81

5.81
6.81

Nr. of Training Points

C
om

pu
tin

g
Ti

m
e

[m
s]

 (l
og

ar
ith

m
ic

 s
ca

le
)

LWPR
ν−SVR
GPR
LGP

Fig. 4: Average time in millisecond needed for prediction of 1 query
point. The computation time is plotted logarithmic in respect of
the number of training examples. The time as stated above is the
required time for prediction of all 7 DoF. Here, LWPR presents
the fastest method due to simple regression models. Compared to
global regression methods such as standard GPR and ν-SVR, local
GP makes significant improvement in term of computation time.

computation time is reduced significantly compared to GPR

and ν-SVR. The comparison of prediction speed is shown in

Figure 4. Here, we train LWPR, ν-SVR, GPR and LGP on

5 different data sets with increasing training examples (1065,

3726, 7452, 10646 and 14904 data points, respectively). Sub-

sequently, using the trained models we compute the average

time needed to make a prediction for a query point for all 7

DoF. In the case of LGP, we take a limited number of local

models in the vicinity for prediction as in last experiment.

The results show that the computation time requirements

of ν-SVR and GPR rises very fast with the size of training

data set as expected. LWPR remains the best method in terms

of computational complexity only increasing at a very low

speed. However, as shown in Figure 4, the cost for LGP

is significantly lower than the one ν-SVR and GPR and

increases at a much lower rate. In practice, we can also

curb the computation demands of single models by deleting

old data points, if a new ones are assigned to the model.

As approach to deleting and inserting data points, we can

use the information gain of the corresponding local model

as a principled measure. It can be seen from the results

that LGP represents a compromise between learning accuracy

and computational complexity. For large data sets (e.g., more

than 5000 training examples) LGP reduces the prediction cost

considerably while keeping a good learning performance.

C. Low-Gain Model-based Control

In this section, we use the dynamics models trained in

Section IV-A for a computed torque tracking control task in

the setting shown in Figure 1. Again, we follow the real-

time setup in [7] using the test trajectories described in [7]

as desired trajectories. During the control experiment we set

the feedback gains, i.e., Kp and Kv , to very low values to

take the aim of compliant control into account. As a result,

the dynamics model has a stronger effect on computing the

predicted torque and, hence, a better learning performance of

each method results in a lower tracking error. The control task

is performed in real-time using a physically realistic simulation

of the SARCOS arm in SL [11]. Table II shows the tracking

error, i.e. e = qd−q, as nMSE for all 7 DoF. The tracking

performance over time of joints 1, 2 and 3 are shown in Figure

5 for example, other joints are similar.

As comparison we also compute a simple linear controller

with gravity compensation which is a common approach in

industrial robot control [3]. The robot system is sampled by

480 Hz. For LWPR, we are able to compute the controller

command u for every sample-step, since the torque prediction

is very fast, i.e. less than 1 ms for a prediction for all 7 DoF

(see Figure 4). As GPR and ν-SVR require much longer for a

prediction due to more involved computation, i.e. about 7 ms

for a prediction, we can only update the controller command

63

10 11 12 13 14 15

−0.1

−0.05

0

0.05

0.1

0.15

time [sec]

A
m

p
lit

u
d

e
[r

ad
]

Desired
LWPR
ν−SVR
GPR
LGP

(a) Tracking of 1. Joint

10 11 12 13 14 15

−0.5

−0.4

−0.3

−0.2

−0.1

0

time [sec]
A

m
p

lit
u

d
e

[r
ad

]
(b) Tracking of 2. Joint

10 11 12 13 14 15

−0.4

−0.2

0

0.2

0.4

0.6

time [sec]

A
m

p
lit

u
d

e
[r

ad
]

(c) Tracking of 3. Joint

Fig. 5: Tracking performance of LWPR, ν-SVR, GPR and LGP for joint 1, 2 and 3 as example. Other joints show similar tracking performance.

nMSE [%]
Joint Nr. g. comp. PD LWPR ν-SVR GPR Local GPR

1 27.7 2.5 1.8 1.3 0.9
2 15.1 1.1 1.5 1.7 0.8
3 3.3 0.3 0.3 0.4 0.3
4 12.4 4.8 2.9 3.2 2.2
5 3.6 0.4 0.2 0.4 0.2
6 4.9 0.5 0.4 0.6 0.3
7 13.9 1.8 1.3 1.4 0.8

TABLE II: Tracking error as nMSE (in percent) for each DoF using
test trajectories. The error is computed after a real-time tracking task
over 60 sec. The traditional PD controller with gravity compensation
is inferior to the model-based method. GPR and ν-SVR provide
slightly better results compared to LWPR. LGP gives the best tracking
performance in all cases.

for every 4-th sample-step. In contrast, the controller update

can be done for every 2-th sample-step in case of LGP, whereas

we use 4 local models for prediction each time.

Considering the tracking error reported in Table II, it can

be seen that all computed torque control algorithms clearly

outperform the state-of-the-art PD controller with gravity com-

pensation. Compared LWPR with global regression methods,

i.e. GPR and ν-SVR, the global regression provides only

a slightly better result in spite of higher learning accuracy.

The reason is that the controller command u is updated at

every sample-step for LWPR instead of every 4-th sample-

step for GPR and ν-SVR. Hence, using LWPR the robot can

react much faster towards changes in the trajectories. This

advantage of fast computing compensates the inferior learning

performance of LWPR. As LGP incorporates the strength of

both local and global regressions, i.e. a tradeoff of learning

accuracy and computation complexity, it provides the best

tracking results as shown in Table II.

V. CONCLUSION AND FUTURE PROSPECTS

Using local GP, we combine the fast computation of lo-

cal regression with more accurate regression methods with

less manual tuning. LGP achieves higher learning accuracy

compared to locally linear methods such as LWPR while

having less computational cost compared to GPR and ν-SVR.

The results also show that our approach is promising for an

application in model online-learning which is necessary to

generalize the dynamics model for all trajectories.

REFERENCES

[1] S. Vijayakumar, A. D’Souza, and S. Schaal, “Incremental online learning
in high dimensions,” Neural Computation, 2005.

[2] E. Snelson and Z. Ghahramani, “Local and global sparse gaussian
process approximations,” Artificial Intelligence and Statistics, 2007.

[3] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Dynamics and
Control. New York: John Wiley and Sons, 2006.

[4] J. Nakanishi, J. A. Farrell, and S. Schaal, “Composite adaptive control
with locally weighted statistical learning,” Neural Networks, 2005.

[5] E. Burdet, B. Sprenger, and A. Codourey, “Experiments in nonlinear
adaptive control,” International Conference on Robotics and Automation
(ICRA), vol. 1, pp. 537–542, 1997.

[6] S. Schaal, C. G. Atkeson, and S. Vijayakumar, “Real-time robot learning
with locally weighted statistical learning,” International Conference on
Robotics and Automation, 2000.

[7] D. Nguyen-Tuong, J. Peters, and M. Seeger, “Computed torque con-
trol with nonparametric regression models,” Proceedings of the 2008
American Control Conference (ACC 2008), 2008.

[8] S. Schaal, C. G. Atkeson, and S. Vijayakumar, “Scalable techniques
from nonparameteric statistics for real-time robot learning,” Applied
Intelligence, pp. 49–60, 2002.

[9] C. E. Rasmussen and C. K. Williams, Gaussian Processes for Machine
Learning. Massachusetts Institute of Technology: MIT-Press, 2006.

[10] B. Schölkopf and A. Smola, Learning with Kernels: Support Vector
Machines, Regularization, Optimization and Beyond. Cambridge, MA:
MIT-Press, 2002.

[11] S. Schaal, “The SL simulation and real-time control software
package,” Tech. Rep., 2006. [Online]. Available: http://www-
clmc.usc.edu/publications/S/schaal-TRSL.pdf

[12] J. Q. Candela and C. E. Rasmussen, “A unifying view of sparse
approximate gaussian process regression,” Journal of Machine Learning
Research, 2005.

[13] L. Csato and M. Opper, “Sparse online gaussian processes,” Neural
Computation, 2002.

[14] D. H. Grollman and O. C. Jenkins, “Sparse incremental learning
for interactive robot control policy estimation,” in IEEE International
Conference on Robotics and Automation, Pasadena, CA, USA, 2008.

[15] C. E. Rasmussen and Z. Ghahramani, “Infinite mixtures of gaussian
process experts,” Advances in Neural Information Processing Systems,
2002.

[16] C.-C. Chang and C.-J. Lin, LIBSVM: a library for support vector
machines, 2001, http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[17] M. Seeger, LHOTSE: Toolbox for Adaptive Statistical Model, 2007,
http://www.kyb.tuebingen.mpg.de/bs/people/seeger/lhotse/.

64

