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Abstract. Sparsity is a fundamental concept of modern statistics, and often the only general principle avail-
able at the moment to address novel learning applications with many more variables than observations. While
much progress has been made recently in the theoretical understanding and algorithmics of sparse point estima-
tion, higher-order problems such as covariance estimation or optimal data acquisition are seldomly addressed for
sparsity-favouring models, and there are virtually no algorithms for large scale applications of these. We provide
novel approximate Bayesian inference algorithms for sparse generalized linear models, that can be used with hun-
dred thousands of variables, and run orders of magnitude faster than previous algorithms in domains where either
apply. By analyzing our methods and establishing some novel convexity results, we settle a long-standing open
question about variational Bayesian inference for continuous variable models: the Gaussian lower bound relax-
ation, which has been used previously for a range of models, is proved to be a convex optimization problem, if and
only if the posterior mode is found by convex programming. Our algorithms reduce to the same computational
primitives than commonly used sparse estimation methods do, but require Gaussian marginal variance estimation
as well. We show how the Lanczos algorithm from numerical mathematics can be employed to compute the latter.

We are interested in Bayesian experimental design here (which is mainly driven by efficient approximate infer-
ence), a powerful framework for optimizing measurement architectures of complex signals, such as natural images.
Designs optimized by our Bayesian framework strongly outperform choices advocated by compressed sensing the-
ory, and with our novel algorithms, we can scale it up to full-size images. Immediate applications of our method
lie in digital photography and medical imaging.

We have applied our framework to problems of magnetic resonance imaging design and reconstruction, and part
of this work appeared at a conference (Seeger et al., 2008). The present paper describes our methods in much
greater generality, and most of the theory is novel. Experiments and evaluations will be given in a later paper.

1 Introduction
Generalized linear models are cornerstones of applied statistics, and are also very frequently used in machine
learning. In many applications from low level computer vision, bio-informatics, neuroscience, information re-
trieval, adaptive filtering and control, or medical image reconstruction, a vast number of features could potentially
be used, although the important ones for any given task are not known a priori. In such contexts, the concept of
sparsity regularization or sparsity priors is of central importance, either to select a relevant subset of features in
a data-driven manner, or to improve estimation or inference by conditioning them on the assumption that a sparse
solution is to be expected.

When sparsity is enforced in least squares (LS) estimation or approximate Bayesian inference, the method is to
concentrate on a small subset of explanatory variables, about which nothing is known explicitly beforehand, and
one might guess that a combinatorial problem is lurking behind the scenes. Fortunately, a surge of recent activity
has established that in many practically relevant cases, feature selection or sparse estimation can be performed
by convex programs (Donoho, 2006; Candès et al., 2006; Donoho and Elad, 2003), which can be solved very
efficiently. Modern algorithms achieve scalability to very many variables by reducing their dominating efforts to
reweighted least squares problems, for which efficient code is in common use.

In this paper, we are interested in Bayesian inference and applications thereof, problems which are distinctly
different from sparse estimation. For example, if u is an unknown image, and y are linear measurements thereof,
an objective for sparse estimation would be to reconstruct u from y through a single point estimate, which can be
obtained by minimizing the negative log likelihood − logP (y|u) plus a sparsity-enforcing regularization term on
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u. In Bayesian applications, the latter is replaced by a sparsity prior distribution P (u), and a sparse estimator is
recovered as the posterior mode: û = argmaxu P (u|y) = argminu [− logP (y|u) − logP (u)] (maximum a-
posteriori (MAP) estimator). However, the main interest is in properties of the posterior distribution other than its
mode, for example in posterior covariances, or in certain information scores formulated as posterior expectations.
While many of the recently studied sparse estimation settings correspond to (convex) posterior maximization in
such models, true Bayesian applications require us to integrate over the posterior, a computation which is much
less well understood in general.

Our motivation is to apply Bayesian inference in domains where sparse estimation is typically used, which
means that our algorithms have to run efficiently for very large numbers of variables, yet still produce useful un-
certainties along with point estimates. We focus on a variational relaxation of inference here, which has been used
before on problems of moderate size. The range of models in the scope of our results here is not restricted to
Gaussian-linear likelihoods, but contains generalized linear models as well, such as logistic regression. We estab-
lish that a wide range of instances of these variational relaxations are convex minimization problems with unique
solutions, an insight which is novel to the best of our knowledge. For example, variational Bayesian treatments
of sparsity models with Laplace sites, of binary classification models, or of combinations thereof, are shown to be
convex problems. In a nutshell, whenever potentials in the model are amenable to Fenchel duality lower bounding
(Jaakkola, 1997; Palmer et al., 2006), and the log posterior is concave (meaning that MAP estimation is convex),
the variational relaxation is proved to be convex.

Beyond this insight, which strengthens a range of prior work, we present novel scalable algorithms to solve
this variational relaxation of Bayesian inference for sparse (generalized) linear models very efficiently, whether
it is convex or not.1 Just as for convex estimation, scalability means that all major computations are reduced to
standard primitives of large scale numerical mathematics and least squares estimation, which have received much
attention already in most computational application fields. This has the very considerable advantage that highly
optimized code can be made to use, and that our methods can be imported into many large scale applications
with minor efforts. We reduce inference to a sequence of reweighted least squares problems, as well as Gaussian
marginal variance computations. These can be reduced further (by standard numerical mathematics algorithms)
to matrix-vector multiplication (MVM) primitives with model matrices, any structure exploitation of which has a
direct impact on our dominating computations, with no further heuristics to be tuned.

Our special interest is in Bayesian experimental design, which is a framework for improving measurement ar-
chitectures automatically, with the aim of obtaining reconstructions of equivalent quality under lower cost. In the
image reconstruction example, which measurement design allows for the best sparse reconstruction of u from y?
To answer this question, we compute design scores (expectations over the current posterior), whose inspection
reveals directions of improvement for the current design. The power of our approach in practice has been demon-
strated for a number of applications already (Steinke et al., 2007; Seeger, 2008; Seeger and Nickisch, 2008), but
the variational approximations and algorithms used there are not scalable and cannot be used in the large scale
domains of interest here. With the novel methods presented here, these settings can be lifted to full-size images,
and problems in medical image reconstruction can be addressed.

On a high level, our approach can be understood as a relaxation of Bayesian inference for distinctly non-Gaussian
generalized linear models to a (small) sequence of Gaussian linear model computations, such as computing means
and marginal variances. The considerable experience with Gaussian random fields in (say) low-level computer
vision can therefore be used to address inference in non-Gaussian models, which represent natural image charac-
teristics such as sparsity much better than Gaussian models do, or in models for discrete observations.

Beyond pure Bayesian applications, the problem of finding very good or even optimal designs for subsequent
sparse image reconstruction does not have a satisfying solution yet. While much is known about good mea-
surements supporting linear LS estimation, nonlinear sparse reconstruction corrects for many shortcomings of the
latter, so that the relevance of many linear design properties is most probably diminished. Recent theoretical results
about sparse convex estimation (Donoho, 2006; Candès et al., 2006; Donoho and Elad, 2003) are not helpful in that
respect, since they focus on truly sparse signals u, while natural images are not well described by sparsity alone
(Weiss et al., 2007). The inappropriateness of theoretical properties such as maximal incoherence or RIP as design
principles for natural image reconstruction has been demonstrated in (Seeger and Nickisch, 2008). However, we
observe in practice that designs optimized by our approach support subsequent sparse MAP reconstruction suc-
cessfully, indeed as well or better than other “more Bayesian” estimates linked to the posterior, such as its mean.
Our method can be used for design optimization, if the objective is sparse MAP estimation. It solves the problem of

1 A local minimum is found if the relaxation is not convex.
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“learning compressed sensing” (Weiss et al., 2007) for large scale signals. Moreover, since current scalable MAP
estimation codes are based on much the same underlying primitives, the added effort of setting up our algorithms
is minor.

The variational relaxation of inference employed here is not novel (Girolami, 2001; Palmer et al., 2006), but
previously known algorithms for solving it are orders of magnitude slower than our approach on the problems con-
sidered here. Moreover, their convergence behaviour is not well characterized. Our contribution basically settles
the question under which conditions the general approach of (Palmer et al., 2006) leads to a convex optimization
problem. Our algorithm development owes ideas to (Wipf and Nagarajan, 2008), whose interest is in aggressively
sparse estimation beyond convex MAP. Our framework moves considerably beyond their method, in generality,
scope, and practical realization. Our convexity proof is novel, and our methods are applicable to more general
models. Our proofs are based on convexity results for certain log determinants, which are novel in machine learn-
ing to our knowledge, and may have other applications there. Our interest is in estimating Bayesian uncertainties,
information which is essentially destroyed in successful sparse estimation, as will be discussed in some detail. The
major computational benefit of sparse estimation, namely many variables becoming exactly equal to zero rapidly, is
responsible for this information loss, so that successful sparse Bayesian inference has to be implemented efficiently
without relying on exact sparsification.

The structure of the paper is as follows. The sparse linear model is introduced in Section 2, where we also
discuss our variational relaxation of Bayesian inference. In Section 3, we prove novel convexity properties of this
relaxation. Our scalable algorithms for solving the variational problem are introduced in Section 4. In Section 5,
we present some extensions, and discuss the relationship to MAP estimation and algorithmic aspects of sparsity.
Bayesian sequential experimental design is discussed in Section 6. We close with a discussion, putting our work
into context, and suggesting applications which would directly benefit from it. Experimental results for our novel
methods will be presented in a later paper.

2 Sparse Bayesian Inference. Variational Approximations
Consider the problem of (natural) image reconstruction introduced in Section 1, which has real-world applica-
tions in computational photography and medical imaging (for example, magnetic resonance imaging or positron-
emission tomography). The image u ∈ Rn of n pixels has to be estimated from linear measurements y ∈ Rm,
where m� n in many situations of practical interest. Such measurements suggest a linear model

y = Xu + ε, ε ∼ N(0, σ2I), (1)

where X ∈ Rm×n is the design matrix, and ε is Gaussian noise of variance σ2. The implied likelihood is Gaus-
sian: P (y|u) = N(y|Xu, σ2I), and maximum-likelihood estimation leads to the famous normal equations of
linear least squares (LS) estimation. However, for m � n, these methods can work poorly for image reconstruc-
tion, mostly because they do not reflect image properties of u at all. For example, it is an established fact of nature
that the projections pTj u of a natural image under zero-mean filters pj , such as nearest neighbour differences (im-
age gradient), wavelet or Fourier coefficients, are distibuted in a distictly non-Gaussian way: most coefficients are
close to zero, while a certain fraction have significant sizes (Simoncelli, 1999). If such super-Gaussian properties
(also known as sparsity of natural images) are encoded in a prior distribution P (u), reconstructions are typically
improved. The non-Gaussianity of P (u) is important here. While a Gaussian prior leads to much simpler, analyti-
cally tractable computations, the main improvement comes from non-Gaussian properties. More details about this
point can be found in (Seeger, 2008).

In this paper, we concentrate on priors of the form P (u) ∝
∏q
i=1 ti(si), where s = Bu. In the image

applications we are interested in here, B may contain local derivative, wavelet, or Fourier filters, but many other
applications come with this structure. For example, with time series data, B may encode temporal differences.
The matricesX andB model the couplings of variables. On the lowest level, exploitable structure in these is what
renders our algorithms scalable. An example for sparsity-favouring sites ti are Laplace (or double exponential)
potentials

ti(si) =
τ̃i
2
e−τ̃i|si|, τ̃i = τi/σ > 0. (2)

For this particular prior and the Gaussian likelihood (1), the MAP estimator is a (convex) quadratic program, the
special case B = I is known as Lasso (Tibshirani, 1996). In general, if all log ti(si) are concave in si, MAP
estimation reduces to a convex program. Another class of sparsity potentials are of the Student’s t type:

ti(si) = (1 + (τi/νi)σ−2s2i )
−(νi+1)/2, τi, νi > 0. (3)
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For these, log ti(si) is neither concave nor convex, and MAP estimation is in general not a convex program. In
comparison with Laplace sites, Student’s t potentials have heavier tails, and for small νi enforce sparsity more
strongly. We refer to a model with likelihood (1) and non-Gaussian sparsity prior P (u) as sparse linear model
(SLM).

Beyond sparsity prior sites, our framework can be used for other models, whose posterior can be written in
the form P0(u)

∏
i ti(si), where P0(u) has Gaussian form (but need not be normalizable), and the ti are scalar

potentials. For example, sparsity sites can be used as likelihood terms, to drive robust regression. Or the ti(si)
may be binary classification likelihoods. Concrete examples will be given below.

2.1 Variational Lower Bounds
Bayesian inference is not analytically tractable in general for sparse linear models (SLMs) with non-Gaussian
sparsity potentials ti(si), and has to be approximated. As motivated in Section 1, we are interested in scalable
relaxations to standard linear optimization primitives, which is why we focus on a variational approach here, with
roots in statistical physics.2 Our restriction to SLMs with priors of factorizable form facilitates the exposition.
Generalizations to non-Gaussian likelihoods and coupled non-Gaussian sites will be given in later sections.

The log partition function logP (y) = log
∫
P (y|u)P (u) du contains the gist of the posterior,3 and is easier

to approximate. It cannot be computed exactly for the SLM, whose posterior is not Gaussian. At this point, we
exploit a property of sparsity potentials mentioned above already: a positive even continuous function ti(si) is
(strongly) super-Gaussian if gi(xi) = log ti(si), xi = s2i /σ

2, is convex and nonincreasing4 for xi > 0 (Palmer
et al., 2006). We can represent this convex function using Fenchel5 duality (Rockafellar, 1970, Sect. 12): gi(xi) =
maxπi>0−xiπi/2− g∗i (−πi/2), resulting in

ti(si) = max
πi>0

e−
1
2σ
−2πis

2
i fi(πi), fi(πi) = e−g

∗
i (−πi/2).

Note that log fi(πi) is concave, since the conjugate function g∗i is convex just as gi. The term “super-Gaussian”
becomes clear now: ti(si) has tight Gaussian-form lower bounds of all possible widths.

Palmer et al. (2006) remark several interesting facts about this “Gaussianification” step. First, there is a close
relationship to scale mixture decompositions (Gneiting, 1997; West, 1987), where a non-Gaussian density ti(si)
is written as a mixture of zero mean Gaussians: ti(si) = Eπi [N(si|0, π−1

i σ2)]. It is shown in (Palmer et al.,
2006) that all scale mixture sites can be lower bounded as above, although fi(πi) is different from the mixture
density. Moreover, they show that the variational approximation that arises from these lower bounds, to be detailed
right below, is equivalent for scale mixture sites to a different variational principle, known as variational (mean
field) Bayes. More details about these relationships are found in (Palmer et al., 2006; Seeger, 2008), together with
references to earlier work exploiting special cases of Fenchel duality lower bounds (Girolami, 2001; Figueiredo,
2003; Jaakkola, 1997; Wipf et al., 2004). The lower bounds for the Laplace (2) are

e−τ̃i|si| = max
πi>0

NU (si|0, σ−2πi)e−(τ2
i /2)π

−1
i , τ̃i = τi/σ, (4)

where we define unnormalized Gaussian functions as

NU (z|b,P) := exp
(
−1

2
zTPz + bTz

)
, P � 0.

For Student’s t sites (3), we obtain

(1 + (τi/νi)σ−2s2i )
−(νi+1)/2 = max

πi>0
NU (si|0, σ−2πi)π

(νi+1)/2
i e−

1
2 (νi/τi)πiC̃, (5)

2 This does not mean that other approximation techniques, such as Markov chain Monte Carlo, cannot be scalable, only that
equivalent relaxations to provably few calls of standard primitives are harder to establish.

3 logP (y) is the cumulant generating function of P (u|y), with a role similar to the generating function for a convergent
series, or the characteristic function for a distribution.

4 Fenchel duality works for any convex gi(xi), but if gi is not nonincreasing, the maximization would not be over πi > 0,
so that at least for some xi, the closest lower bound to ti(si) would not have Gaussian form (which requires πi > 0). However,
since ti(si) = egi(s

2
i /σ

2) is in general a normalizable potential, we can constrain gi(xi) to be nonincreasing without much loss
of generality.

5 Under some additional conditions on gi(xi), Fenchel duality is equivalent to Legendre duality.
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where C̃ = [τi(νi + 1)/(νi e)](νi+1)/2.
The variational relaxation we use here is obtained by plugging the Gaussian-form bounds into P (y), which

results in the lower bound

P (y) ≥ C̃1

∫
N(y|Xu, σ2I)NU (u|0, σ−2BTΠB) du, C̃1 =

q∏
i=1

fi(πi), Π = diagπ. (6)

The right hand side is a Gaussian integral and can be evaluated easily. The variational problem, to be addressed
by our algorithms, is to maximize the lower bound w.r.t. the variational parameters π � 0 (i.e. , πi > 0 for all
i = 1, . . . , q), with the aim of tightening the approximation to logP (y).

The idea of Gaussian-form lower bounding is not restricted to symmetric sites. For example, if ti(si) =
t̃i(si)eαisi , so that t̃i(si) is super-Gaussian, we can bound t̃i(si) as before, then multiply eαisi back (which is
just log-linear). In the following, commiting a slight abuse of nomenclature, we will refer to such ti(si) as super-
Gaussian. For example, Bernoulli potentials used in binary classification are

ti(si) =
(
1 + e−yisi

)−1 =
eyisi/2

2 cosh(yisi/2)
, (7)

and − log cosh(yisi/2) is even and convex as function of s2i (Jaakkola, 1997, Sect. 3.B). The corresponding con-
jugate function is hard to compute analytically, but this is not required in our algorithms, as long as gi(xi) and its
derivative can be computed at any point (see Section 4.3).

In the following, we will address two major problems for this relaxation. In the next section, we will answer
the question under which conditions the variational problem of maximizing the lower bound of (6) is a convex
optimization problem. To this end, we will derive some novel convexity results for certain log determinants. Our
findings have impact on MAP estimation algorithms as well (see Section 5.2).

However, we will see in Section 4 that the variational problem even in a convex case is more difficult to solve
than the corresponding MAP estimation. For the latter, gradient computations come at the cost of solving a single
linear system, while computing a gradient of the variational lower bound w.r.t. π is much more difficult than a
single system. Most previous algorithms for variational problems of this kind (Girolami, 2001; Tipping, 2001;
Minka, 2001) avoid this difficulty by following a step-wise approach, optimizing w.r.t. single components of π in
turn, keeping all others fixed. While an informed scheduling of updates (Tipping and Faul, 2003; Seeger and Nick-
isch, 2008) can render these algorithms feasible on problems of moderate size, their scalability is fundamentally
limited.6 In difficult image reconstruction settings, every site approximation NU (si|0, σ−2πi) has to be visited at
least once (usually several times). But for large n in the hundred thousands, every single scalar update requires the
equivalent of a reweighted least squares estimation. And for problems considered here, where q can be a million
or more, O(q) LS estimations simply cannot be done.

Our second contribution lies in the development of novel classes of algorithms that can cope with such large scale
problems, by decoupling the lower bound criterion complexity in a nested double loop fashion. These algorithms
can be applied in domains where single-site updating is not an option. Also on problems of moderate size, speedups
by orders of magnitude are realized. These algorithms can be applied in general, whether the variational problem
is convex or not.

3 Convexity Properties of Variational Inference
We discussed a general variational relaxation of Bayesian inference for generalized sparse linear models in the
previous section. The relaxation is a special case of variational (mean field) Bayes (Ghahramani and Beal, 2001;
Attias, 2000), or of direct site bounding (Jordan et al., 1997). In this section, we answer the question under which
conditions the variational problem is a convex optimization problem. To this end, we prove a number of novel
convexity properties for parts of the upper bound criterion, thereby laying groundwork for our novel scalable
algorithms introduced in Section 4 as well.

Our problem is to maximize the right hand side of (6). Assume for now that BTΠB is invertible. The
end result remains valid even if this is not the case, as is easily seen by a continuity argument. Let Q(u) :=
C−1

2 NU (u|0, σ−2BTΠB) and Q(y,u) := P (y|u)Q(u). The joint distribution is Gaussian, and

Q(u|y) = N(h, σ2Σ), Σ−1 = A = XTX +BTΠB. (8)
6 These comments apply to sparse Bayesian inference. For sparse estimation, forward selection schedules may well work

for very large n and q, namely because many of the πi are clamped to∞ and never once moved from there (see Section 5.2).
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We have that∫
P (y|u)Q(u) du = Q(y) = |2πσ2Σ|1/2 max

u
Q(y)Q(u|y) = |2πσ2Σ|1/2 max

u
P (y|u)Q(u), (9)

because the maximum of the GaussianQ(u|y) is attained at the mean h. The crucial step here is that we can move
from the integral over u to the maximum over u exactly, which is possible becauseQ is Gaussian. We end up with
P (y) ≥ C1e

−φ(π)/2, where

φ(π) := log |A|+ h(π) + σ−2

(
min
u
‖y −Xu‖2 + sTΠs

)
,

h(π) =
q∑
i=1

hi(πi) = −2
q∑
i=1

log fi(πi),
(10)

and C1 = (2πσ2)(n−m)/2. The variational problem now consists in maximizing the lower bound, or equivalently
minimizing φ(π), w.r.t. the variational parameters π. The Gaussian posterior approximation is Q(u|y), with the
final parameters π plugged in. An algorithmically beneficial side effect of using a lower bound on logP (y), rather
than just an approximation (as other variational methods, such as expectation propagation (Minka, 2001) do), is
that we can usually devise algorithms which provably converge to a local optimum. Still, φ(π) is in general a
coupled, non-convex function of non-standard form, and even∇πφ is hard to compute.

3.1 Some Convexity Results

In this section, we establish some convexity properties of φ in (10). A crucial term in this criterion is log |A|, where
σ2A−1 is the covariance matrix of the approximate posterior (8). At least in hindsight, much of the computational
difficulty is caused by this term (see Section 5.2 for a detailed discussion). Let γ := π−1,i.e. γi = 1/πi. It turns
out that log |A| has a number of convexity properties in terms of π or γ, which are important for obtaining scalable
algorithms, or characterizations of the variational problem in the first place.

Theorem 1 LetX ∈ Rm×n,B ∈ Rq×n be arbitrary matrices, so that

log |A|, A = XTX +BTΠB, Π = diagπ

exists for all π � 0 from an open set. Let γ := π−1, Γ = diag γ.

1. π 7→ log |A| is concave.

2. γ 7→ log |A| is convex.

3. γ 7→ log |A|+ log |Γ| is concave.

4. Let ρi(γi) be concave functions into R+. Then, π 7→ log |XTX +BT ρ(Π)B| is concave, where ρ(Π) =
diag(ρi(πi)).

5. Let ρi(γi) be twice continuously differentiable functions into R+, so that

ρ′′i (γi)ρi(γi) ≥ (ρ′i(γi))
2

for all i and γi. Then, γ 7→ log |XTX +BT ρ(Γ)B| is convex, where ρ(Γ) = diag(ρi(γi)).

6. Let ρi(γi) be concave functions into R+. Then, γ 7→ log |ρ(Γ)| + log |XTX +BT ρ(Γ)−1B| is concave,
where ρ(Γ) = diag(ρi(γi)).

7. Let Q(u|y) be the approximate posterior of (8). Then,

σ−2VarQ[si|y] = δTi BA
−1BT δi ≤ γi.

6



For the proof, (1.) is well known (Boyd and Vandenberghe, 2002, Sect. 3.1.5). The generalization (4.) follows
from (Boyd and Vandenberghe, 2002, Sect. 3.2.4), since π 7→ log |A| is nondecreasing in each πi. (2.) follows
from the more general (5.), using ρi(γi) = γ−1

i , and (3.) follows from (6.), using ρi(γi) = γi. To our knowledge,
(5.) and (6.) are novel, at least we do not know of previous appearences in machine learning. They are proved in
Appendix A.1. The proof of (7.) is a part of the proof of (5.).

Note that (5.) is more general than what we require in the following. For example, it holds for all ρi(γi) = γ−βii ,
βi > 0. For ρi(γi) = eγi , we obtain the convexity of γ 7→ log |XTX+BT exp(Γ)B|, generalizing the logsumexp
function x 7→ log 1T exp(x) (Boyd and Vandenberghe, 2002, Sect. 3.1.5) to matrix values. The convexity of the
latter is behind many properties of exponential families or of maximum-likelihood estimation in log-linear models.
Note also that (7.) gives a precise characterization of γi as sparsity parameter regulating the variance of si. A
similar argument shows that the size of EQ[si|y] is also regulated by γi.

What about the remaining terms in (10)? Here and in the following, we treat φ, h, and fi as functions7 of π or
γ. Based on Theorem 1, we show that γ 7→ φ(γ)− h(γ) is a convex function.

Theorem 2 Our variational relaxation of approximate inference requires the minimization of φ(γ) from (10). The
function γ 7→ φ(γ)− h(γ) is convex for γ � 0.

The convexity of log |A| has been shown in Theorem 1, part (2.). ‖y−Xu‖2 is convex inu. More interestingly,
(u,γ) 7→ sTΓ−1s is jointly convex, since the quadratic-over-linear function (si, γi) 7→ s2i /γi is jointly convex
for γi > 0 (Boyd and Vandenberghe, 2002, Sect. 3.1.5), and s = Bu is linear in u. Now, since minu κ(u,γ) is
convex if κ is jointly convex (Boyd and Vandenberghe, 2002, Sect. 3.2.5), we conclude that γ 7→ φ(γ) − h(γ) is
a convex function.

Therefore, if hi(γi) are convex, the whole variational problem minγ�0 φ is a convex minimization. In the next
section, we establish properties for when this is the case.

3.2 Convex Variational Inference
The statement of Theorem 2 implies that whenever γ 7→ h(γ) is convex, the whole variational problem minγ�0 φ
of interest here is a convex problem with a unique solution. In this section, we show that whenever log ti(si) are
concave functions, and ti(si) are super-Gaussian (see Section 2.1), h(γ) is in fact convex. Moreover, at least in
general, this property is necessary for the convexity of h(γ), and for the convexity of the variational problem. For
notational simplicity, we do not deal with the most general case our result applies for here. For example, P (y|u)
can be replaced by any factor of Gaussian form in u, and the ti(si) can be likelihood sites, or depend on multiple
components of s. Generalizations are given in Section 5.1.

Theorem 3 Consider a model with Gaussian likelihood (1) and a prior P (u) ∝
∏q
i=1 ti(si), s = Bu. Let

each ti(si) be strongly super-Gaussian, meaning that ti(si) = eαisi t̃i(si), where t̃i(si) is an even function,
and gi(xi) = log t̃i(si), xi = s2i , is strictly8 convex and nonincreasing for xi > 0. Moreover, suppose that
gi(si) = log t̃i(si) is concave9 and twice continuously differentiable for si > 0. Then, the variational problem of
minimizing (10) over γ � 0 is a convex optimization problem.

In general, the requirements on the ti(si) are necessary for the convexity to hold. If g′′i (si) > 0 for some si > 0,
then hi(γi) is not convex at some γi > 0. For generalX,B, and y, this means that φ(γ) is not convex either.

The proof is given in Appendix A.2. Our theorem provides a satisfying characterization of the variational
inference relaxation of Section 2. MAP estimation (see Section 1) is a convex problem if and only if (in general)
all log ti(si) are concave. Whenever MAP estimation is convex, and the ti(si) are super-Gaussian, the variational
relaxation is convex as well. Loosely speaking, it is the log-concavity of the posterior that renders the variational
problem convex. This property sets the relaxation used here apart from all other approximate inference methods
for continuous variable models we know of: most of these can be shown to be non-convex in general, even if the
log posterior is concave and has a single mode only.10

7 In general, we adopt the physics convention of treating function values as dependent variables, invariant to reparameteri-
zations of the variables they depend on.

8 We require a slightly stronger notion of super-Gaussianity here, in that gi(xi) has to be strictly convex.
9 Here and elsewhere, we understand function values as variables dependent on their arguments, so that gi(si) = gi(xi).

This convention, widely used in physics, simplifies notation and should not lead to confusions.
10 An example is expectation propagation (Minka, 2001), whose log partition function approximation is non-convex (Op-

per and Winther, 2005), except for trivial cases. Log-concavity of the ti(si) has important consequences for the numerical
properties of the EP algorithm (Seeger, 2008), but they do not imply convexity of the complete problem.
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With a view to Section 4, it is also interesting to ask under which conditions the hi(γi) are concave functions. We
do not have a complete characterization for this case, but can give some examples. If ti(si) = e−τ |si|

α

, α ∈ (0, 2],
then hi(γi) ∝ γβi with β = −α/(α − 2), which is convex iff α ≥ 1. In these cases, ti(si) is log-concave. For
α < 1, hi(γi) is concave. Moreover, if ti(si) is log-convex in si, then

hi(γi) = max
si
−σ−2s2i /γi − 2 log ti(si) = −min

si

(
σ−2s2i γi + 2 log ti(si)

)
,

which is concave in γi, since the argument of minsi is jointly convex in (si, γi) (Boyd and Vandenberghe,
2002, Sect. 3.2.5). Therefore, given that ti(si) is super-Gaussian, its log-{concavity/convexity} implies con-
vexity/concavity of hi(γi). The reverse is not true in general (for the second statement), as can be seen for
ti(si) = e−τ |si|

α

above.
We close this section with some examples. For Laplace sites (2), the Fenchel duality is given by (4), where

hi(γi) = τ2
i γi, a convex function as predicted by our result above. For sparse linear models with Laplace sites,

MAP estimation is a convex quadratic program, with the Lasso as a special case (see Section 2). Variational
inference is a convex problem as well. While the same relaxation has been used before for these SLMs (Girolami,
2001), its convexity has not been established until now.

Second, binary classification Bernoulli likelihood sites (7), also known as logistic potentials, are super-Gaussian
(see Section 2.1), and they are well known to be log-concave. MAP estimation for generalized linear models with
these sites is known as logistic regression, a convex problem typically solved by the iteratively reweighted least
squares (IRLS) algorithm (also known as Fisher scoring). Variational inference for this model is a convex problem,
and our algorithms introduced in Section 4 make use of IRLS as well.

However, Student’s t potentials (3) are not log-concave, and hi(γi) = (νi + 1) log γi + (νi/τi)γ−1
i is neither

convex nor concave. Neither MAP estimation nor variational approximate inference is a convex problem, when
Student’s t sites are used.

We have provided a satisfying characterization of a widely used class of variational approximate inference
methods. For super-Gaussian sites, the variational problem is convex if and only if the search for the posterior
mode is convex. This does not mean that solving the variational problem is computationally as tractable as MAP
estimation (see end of Section 2.1). For example, our posthoc result that the algorithm of (Girolami, 2001) solves
a convex problem, is of little value for measurement design on full-size images, where this algorithm would not
converge in any reasonable amount of time. In the next section, we propose classes of algorithms that solve the
variational problem in a scalable way. While they are still in general more expensive than convex MAP estimation
methods, the precise relationship is clarified in Section 5.2.

4 The Algorithms
In this section, we develop two classes of algorithms for scalable variational inference, maximizing the lower bound
of (6) for SLMs, where the prior is P (u) ∝

∏q
i=1 ti(si), s = Bu, with super-Gaussian sites. Recall that our

goal is to devise scalable algorithms in order to approximate expectations over the posterior P (u|y), in situations
where n, m, and q can all be very large, but the matrices X and B have exploitable structure. More specifically,
we require that matrix-vector multiplications (MVMs) with these and their transposes can be computed rapidly.

These algorithms are independent of our convexity analysis for the variational problem in Section 3. They can
be applied in order to find a local minimum very efficiently in general. If the problem is convex, there is a unique
global optimum, which is found by our methods.

4.1 The First Class
We propose two closely related classes of scalable algorithms for minimizing φ of (10) w.r.t. π � 0 (or equiva-
lently, w.r.t. γ := π−1 � 0). In this section, we introduce the first class. Whether φ is convex in γ or not (see
Theorem 3), it is not obvious how to minimize φ tractably, since even the computation of ∇γφ will be seen to be
a computationally expensive problem.

We make use of a powerful general idea known as double loop algorithms, concave-convex algorithms, or
d.c. programming (difference of convex). Special cases of such algorithms are already heavily used in machine
learning and statistics: the expectation-maximization method (Dempster et al., 1977), variational (mean field)
Bayesian inference (Attias, 2000), or CCCP for approximate inference (Yuille and Rangarajan, 2003), among
many others. The idea is to write φ as sum of a concave and a convex part. We use Fenchel-Legendre duality
once more, in order to upper bound the concave part by a linear function, then minimize the convex upper bound
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to φ globally. The linear upper bounding is done iteratively, in so called outer loop steps, followed by inner
loop convex minimizations. If the concave part is differentiable, the linear upper bound is a tangent plane, and
under mild conditions the resulting double loop algorithm can be shown to be globally convergent, meaning that it
converges to a local minimum point of φ, no matter from where we start.

In Theorem 1, part (3.), we show that γ 7→ log |A|+ log |Γ| is a concave function. Now write h(γ)− log |Γ| =
h∩(γ) + h∪(γ), where h∩ is concave, and h∪ is convex. Note that h(γ) − log |Γ| decomposes as sum of scalar
terms, each depending on a single γi only, and it should in general be possible to find h∩, h∪ which decompose
in the same way. A concave-convex decomposition is never unique: we can always add a concave part to h∩ and
subtract it from h∪. However, since we will replace the concave part by a hyperplane, it is sensible to choose a
decomposition with “minimal” h∩, as close to linear as possible. For tractability, it is also important that both
parts are simple terms composed of standard functions. For example, for Student’s t sites (3), we have that11

h(γ) = (ν + 1)T (log γ) +αT (γ−1), where α = ν ◦ τ−1. Here, x ◦ y := (xiyi)i (Hadamard or Schur product).
A convenient decomposition is h∩(γ) = νT (log γ) and h∪(γ) = αT (γ−1).

Now, if g(γ) := log |A|+ log |Γ|+ h∩(γ), which is concave as sum of concave functions, then

φ(γ) = g(γ) + min
u
h∪(γ) + σ−2

(
‖y −Xu‖2 + sTΓ−1s

)
.

Using the conjugate representation g(γ) = minz�0 z
Tγ − g∗(z), we obtain

φ(γ) ≤ min
u
φz(u,γ), φz(u,γ) := zTγ + h∪(γ) + σ−2

(
‖y −Xu‖2 + sTΓ−1s

)
− g∗(z)

We saw in the proof of Theorem 2 that φz is jointly convex. Our algorithm to minimize φ iterates between outer
loop updates of z ← argmin zTγ − g∗(z) and inner loop convex minimizations of φz , in order to update γ. As a
by-product, we obtain minimum points u, and it is easy to see that at the end of an outer loop, u is the mean12 of
the current posterior approximation Q(·|y).

The inner loop minimization of φz can be done in any order of u and γ. If h∪(γ) =
∑
i h∪,i(γi), as is the

case in general, it is easiest to perform the minimization over γ first, since this decouples into q independent
minimizations

min
γi

ziγi + h∪,i(γi) + σ−2s2i /γi,

leading to the equations zi + (dh∪,i)/(dγi) − σ−2s2i γ
−2
i = 0. For the examples given here, these equations

can be solved analytically, but in general univariate convex minimization can be used in order to solve for the
required quantities (see Section 4.3). Plugging the solutions in, we obtain convex functions h∗∪,i(si). For the case
of Student’s t sites, we have h∪,i(γi) = αi/γi, therefore h∗∪,i(si) = 2(zipi)1/2, pi = αi + s2i /σ

2 (recall that
αi = νi/τi). The remaining inner loop problem is

min
u
σ−2‖y −Xu‖2 +

q∑
i=1

h∗∪,i(si), s = Bu. (11)

This problem is of standard form, and can be solved generically by the iteratively reweighted least squares (IRLS)
algorithm, a variant of the Newton-Raphson method. This method, which is discussed in detail in Section 4.3, pro-
ceeds in Newton steps, each of which requires the solution of a single linear system with a matrix of the same form
as A (8), only that Π is replaced by a different positive diagonal matrix, and a simple line search. Convergence
is typically attained after few iterations (less than thirty), and each step is reduced to a single (reweighted) least
squares problem. Therefore, the inner loop minimization fulfils our criteria of scalability.

The outer loop updates of z, given γ, require the minimization of zTγ − g∗(z) for the concave function g∗(z).
It is not in general possible to analytically obtain g∗(z). By duality, g∗(z) can at any point be evaluated by
minimizing zTγ − g(γ) over γ, which is a convex problem, but is hard in general. Fortunately, none of this is
necessary. For fixed γ, the minimizer zopt is such that

zToptγ − g(γ) = g∗(zopt) = min
γ̃
zToptγ̃ − g(γ̃),

11 We adopt Matlab vectorization notation: log γ := (log γi)i, τ−1 := (1/τi)i, . . .
12 We abuse notation slightly by treating u as variable to optimize over here.
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so that ∇γzToptγ − g(γ) = zopt − ∇γg(γ) = 0. We just have to compute the gradient of g at γ. Using the fact
that d log |A| = tr Σ(dA) = trBΣBT (dΠ), we arrive at

zopt = ∇γg(γ) = π +∇γh∩(γ)− π2 ◦ diag−1
(
BΣBT

)
.

Since h∩(γ) =
∑
i h∩,i(γi), the main difficulty is the computation of the diagonal of BΣBT . A glance at (8)

reveals that we need to compute Gaussian marginal variances: (VarQ[si |y])i = σ2 diag−1(BΣBT ). This is
the second primitive we require in our algorithms. As opposed to least squares estimation, this computation is not
usually done in non-Bayesian applications. It is important to note that we require all marginal variances in parallel.
A single variance could be obtained as the solution of a least squares problem, but computing zopt by solving q
such problems is certainly not feasible. Nevertheless, there are algorithms from numerical mathematics which can
be used to estimate these variances, and they reduce to the same primitives as does least squares estimation. In
practice, the number of outer loop updates required to gain convergence is small, usually five or six iterations are
sufficient. The variance estimation problem is discussed in more detail in Section 4.5.

This concludes the specification of our first class of algorithms. To understand the considerable computational
benefits of the double loop structure, note that a single gradient computation∇γφ is as expensive as an outer loop
update in our scheme: both require all q Gaussian marginal variances. By bounding the log |A| part, which causes
the complexity (see Section 5.2), we reduce the number of expensive steps required until convergence drastically,
compared to standard gradient descent algorithms. We follow the double loop strategy even if h(γ) is convex, since
the decoupled inner loop criterion is much more efficient to minimize than φ itself. Some general characteristics
of our algorithms are given in Section 4.4.

4.2 The Second Class

Our second class of algorithms is closely related to the first one, but involves another twist. Again, our aim is to
devise a double loop scheme. From Theorem 1, part (1.), we know that π 7→ log |A| is concave. We can try to
decompose h = h∩(π) + h∪(γ) (recall that γ = π−1), h∩ concave in π, and h∪ convex in γ. For example, for
Laplace sites (4), we have that h = (τ 2)Tγ, which is convex, so that h∪(γ) = (τ 2)Tγ and h∩(π) = 0.

We can now proceed much as for the first class above, but treating g(π) := log |A|+h∩(π) as concave function
in π. By Fenchel’s inequality (Rockafellar, 1970, Sect. 12): g(π) ≤ zTπ − g∗(z) for z � 0. But this upper
bound is also a convex function of γ � 0 (since zi > 0 for all i), which is the additional observation we make use
of here. We obtain the convex inner loop problem

min
γ

min
u
zT (γ−1) + h∪(γ) + σ−2

(
‖y −Xu‖2 + sTΓ−1s

)
− g∗(z),

which is treated much as in Section 4.1. The independent minimizations are now minγi h∪,i(γi)+(zi+σ−2s2i )/γi.
If pi = zi + σ−2s2i , the stationary equations are (dh∪,i)/(dγi) − piγ−2

i = 0. Plugging the solutions in gives rise
to convex functions h∗∪,i(si), and the inner loop optimization is done by the IRLS algorithm. For Laplace sites,

h∪,i(γi) = τ2
i γi, so that h∗∪,i(si) = 2τip

1/2
i . For the outer loop update,

zopt = diag−1
(
BΣBT

)
+∇πh∩(π).

If h∩ decomposes, the main effort here is again to compute the Gaussian variances of Q(s|y).
Characteristics of the second class, as well as a comparison with the first, are given in Section 4.4. The main

idea is the same as for the first class: difficult coupling terms in φ are bounded by simple decoupling functions, so
that the complexity of computing ∇γφ is shifted into a few outer loop updates. If R = σ−2 minu [‖y −Xu‖2 +
sTΓ−1s], the relationship between the two classes is given by

φ[1]
z ≥ log |A|+ log |Γ|+ (h− log |Γ|)︸ ︷︷ ︸

zTγ−g∗(z)+h
[1]
∪ ≥

+R = φ = log |A|+ h︸ ︷︷ ︸
≤zT (γ−1)−g∗(z)+h

[2]
∪

+R ≤ φ[2]
z .

The superscripts distinguishing the two classes will be dropped in the sequel, where it will always be clear from
the context which class is used.
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Hybrid Variant
The coupling term log |A| is bounded in either of our classes, making use of Fenchel’s inequality for concave

functions. In cases where the second class does not apply, the following hybrid variant can be used. Suppose that
h(γ) = h∩(γ) + h∪(γ), where h∩ is concave, h∪ is convex. We can upper bound log |A| ≤ zT (γ−1) − g∗(z)
and h∩(γ) ≤ zT∩γ− g∗∩(z∩). Since h∩(γ) decouples, z∩ and g∗∩(z∩) are easy to compute. In the inner loop, γi is
eliminated by minγi h∪,i(γi) + pi/γi + z∩,iγi, where pi = zi + σ−2s2i . For Student’s t sites (see Section 4.1), we
have that h∗∪,i(si) = 2(z∩,i(αi + pi))1/2, and finally γ′i = ((αi + p′i)/z∩,i)

1/2. Moreover, the outer loop update is
z∩ = (ν + 1) ◦ π.

4.3 The Inner Loop Optimization
In this section, we show how to efficiently solve the inner loop problem (11). The structure of φz(u) is the sum of
a least squares term and a decomposing penalty. Therefore, the Newton-Raphson algorithm reduces to a standard
method called iteratively reweighted least squares (IRLS). We describe a single Newton step here, starting from u.
Let r := y −Xu denote the residual vector. Then,

dσ−2‖r‖2 = −2σ−2rTX(du), d2σ−2‖r‖2 = 2σ−2(du)TXTX(du).

If θi := (σ2/2)(dh∗∪,i)/(dsi), ρi := (σ2/2)(d2h∗∪,i)/(ds
2
i ), then

g := ∇uφz = −2σ−2
(
XTr −BTθ

)
,

H := ∇∇uφz = 2σ−2
(
XTX +BT (diagρ)B

)
.

Note that ρi ≥ 0, by the convexity of h∗∪,i. The Newton search direction is

d := −H−1g =
(
XTX +BT (diagρ)B

)−1 (
XTr −BTθ

)
.

The computation of d requires to solve a system with the matrix H, which is of the same form as A. This is
precisely the computation required for least squares estimation with the likelihood P (y|u) and the Gaussian prior
N(s|0, (diagρ)−1). Such systems are generally solved approximately by the linear conjugate gradients (LCG)
algorithm (Golub and Van Loan, 1996). The cost per iteration of LCG is dominated by a MVM with H, which
translates to single MVMs with X, B, and its transposes respectively. Our scalability requirements are therefore
met.

A line search along d can be run in negligible time. If f(t) := (σ2/2)φz(u + td), then

f ′(t) = −(Xd)Tr + t‖Xd‖2 + (Bd)Tθ(t).

Here, θ(t) is in terms of s(t) = s + tBd. If we precompute Xd, (Xd)Tr, ‖Xd‖2, and Bd, f(t) and f ′(t)
can be evaluated in O(q). No further MVMs are required during the line search. Each line search is started with
t0 = 1. Note that a line search seems essential in practice. Especially in the beginning, or after X has just been
extended in a sequential design loop (see Section 6), a full Newton step (t = 1) would lead to a large increase
of the criterion, and significantly smaller t need to be taken. During later stages, the first choice t = 1 is usually
accepted, due to the self-scaling properties of the Newton method. Finally, once u′ = argminφz(u) is found, γ′

is updated as minimizer w.r.t. γ, solving the scalar stationary equations once more.
For the case of Laplace sites and the second class, recall that h∗∪,i(si) = 2τip

1/2
i , pi = zi + σ−2s2i . Therefore,

θi = τisip
−1/2
i and ρi = τizip

−3/2
i . For Student’s t sites, h∗∪,i has the same form, but τ2

i is replaced by zi, and
zi by αi = νi/τi. Finally, if h∗∪,i(si) cannot be determined analytically, the procedure detailed in Appendix A.3
can be used, which does not increase the computational complexity. In some cases, even hi(γi) may not be known
explicitly, or may be cumbersome to obtain analytically (see Section 2.1). We show in Appendix A.3 how our
algorithms can be run based on computations of gi(xi) and its derivative only.

4.4 Properties of the Algorithms
In this section, we analyze characteristics of the two classes of algorithms, relating them to each other, and showing
how they compare with the sparse estimation method of (Wipf and Nagarajan, 2008), which inspired some of our
work here. Properties of the variational problem they adress, are analyzed in Section 3.
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First, the algorithms in either class can be shown to converge globally, i.e. to find a local minimum point from any
starting point, if the outer loop updates are done exactly. This is seen just as in (Wipf and Nagarajan, 2008), whose
arguments apply here as well. If the variational problem itself is convex (see Section 3), the algorithms converge to
the global optimum from any starting point. In a nutshell, the argument goes as follows. The upper bound φz has
the same tangent plane at γ than φ. Therefore, the inner loop optimization is guaranteed to decrease φ substantially
if ∇γφ is not equal to zero. Note that the convergence proof does not require the inner loop optimization to find
the minimum of φz . In fact, a single line search along the first Newton direction would be sufficient. On the other
hand, the outer loop updates have to be done to high accuracy to retain the guarantee, which can be problematic in
large scale settings. This point is discussed in more detail in Section 4.5.

Our first class of algorithms can be seen as generalization of the sparse estimation method in (Wipf and Nagara-
jan, 2008). While they considered the special case B = I only, their method can be generalized to any B, using
the facts proved in Theorem 1. It is obtained as limit of the Student’s t case in Section 4.1, setting νi = 0 for all
i. In this case, referred to as automatic relevance determination (ARD), the prior sites ti(si) are not normalizable.
Moreover, as can be seen from Section 4.3, their inner loop criterion becomes

σ−2‖y −Xu‖2 + 2σ−1

q∑
i=1

z
1/2
i |si|.

Solving for u is a quadratic program, whose special case for B = I is the Lasso (see Section 2). Due to the
nondifferentiable criterion, special code is required (but see Section 5.2), while our inner loops can be implemented
more easily. On the other hand, for the inner loop solution u′, many components in s′ = Bu′ are exactly zero,
and this fact can be exploited to find u′ very efficiently. Moreover, much effort is concentrated on designing fast
algorithms for Lasso, at least for certain B (unfortunately the most studied case, B = I , for which very efficient
soft thresholding algorithms are known, is not very useful in the context of natural images). The exact sparsity
of s′ is even more useful for computing outer loop updates efficiently. Namely, since γ′i = σ−1z

−1/2
i |s′i|, we see

that γ is exactly sparse just as s′. If there are d non-zeros in γ, the computation13 of zopt can be done based on a
system matrix of size d×d. However, this computationally beneficial role of sparsity can be expected in the sparse
estimation context only. This important point is discussed in more detail in Section 5.2. Variational approximate
inference, with the aim of a useful uncertainty representation, is harder to do in practice than sparse estimation,
and we show how the added complexity can be addressed computationally.

How generally applicable is either class of algorithms? First, we require a Gaussian-form lower bound on ti(si).
If the site is super-Gaussian, Fenchel duality provides a tight lower bound. Non-symmetric sites can also be dealt
with in our framework, as long as lower bounds are known (see Section 2.1 for binary classification Bernoulli
sites). If they make use of two parameters,i.e. are of the form ti(si) ≥ NU (si|bi, πi)fi(πi, bi), the extension given
in Appendix A.4 may be applicable.

Second, in order to apply the first class, we require a decomposition of h(γ) − log |Γ| into a sum of concave
and convex functions. Such a decomposition can always be found in principle, although we also require that the
parts have a simple tractable form, and are at least differentiable. In all cases of convex log ti(

√
·) we know of, this

second requirement does not limit the applicability. We have seen above that h∗∪,i(si) may not be differentiable,
which precludes the direct usage of IRLS for solving the inner loop problems. However, ARD above is the only
case we know of where this happens, and the ARD sites ti(si) do not correspond to normalizable priors.

On the other hand, in order to apply the second class of algorithms, h(γ) has to be decomposed as h∩(π) +
h∪(γ). This is simple if h(γ) is convex itself, since h∩(π) = 0 then. Laplace sites (2) and Bernoulli potentials (7),
as well as all super-Gaussian, log-concave potentials, can be treated this way. However, a simple decomposition
does not seem to exist in many other cases.

Note that whenever h(γ) is convex, the first class of algorithms can be applied as well, using h∪(γ) = h(γ)−
log |Γ|. However, in this case, the second class seems to be the more direct approach. For Laplace potentials, the
inner loop criterion for the second class is more sparsity-enforcing than for the first.

The SLM can be configured with different sparsity prior sites. In this paper, Laplace and Student’s t sites are
treated explicitly. For the former, variational inference is convex. For the latter, the posterior is multi-modal,

13 The computation of zopt is slightly complicated if some γi = 0. From Section 4.1, we have that zi = πi(1−πiz̃i), where
z̃i = 0, and πi =∞. If the subscripts “0” (“1”) denote the part of γ which is zero (non-zero), andA1 = XTX+BT

1 Γ−1
1 B1,

a careful computation shows that z0 = diag−1([B0A
−1
1 BT

0 ]−1). The zi do not in general become zero.
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and our algorithms search for a local optimum. The choice of sparsity potentials should depend on the problem
addressed.

How are the algorithms initialized? In practice, we found it useful to start with z = ε1 for some ε > 0 (say:
1/20), and with u = 0. We also explored the alternative of setting π ∝ 1, u = 0, and start with an update of z,
but this led to less stable behaviour and required more running time.

4.5 Estimation of Gaussian Variances
Recall from Section 4.1 that the outer loop steps in our algorithms require the estimation of Gaussian variances z̃ =
diag−1(BΣBT ) = σ−2(VarQ[si|y])i, which would also be required for the gradient computation∇γφ. Variance
computations are not usually required in the context of sparse MAP estimation (see Section 5.2). Certainly, the
vector z̃ cannot be estimated by solving a single or few linear systems. In this section, we discuss a generic way
of estimating these variances en bulk, using the Lanczos algorithm from numerical mathematics. Further details
are given in Appendix B. This section is technically more difficult than the others, and can be skipped in a first
reading.

If the precision matrix A of the Gaussian posterior approximation Q(u|y) is sparse, the variances can be
estimated in some cases using Gaussian belief propagation. For example, the algorithm in (Wainwright et al.,
2001) can be used, which works by embedding a sequence of spanning trees, then does Gaussian propagation on
these trees. Another interesting approach for Gaussian Markov random fields is given in (Malioutov et al., 2006a).
However, A is neither sparse nor has graphical model structure14 in general. In (Schneider and Willsky, 2001),
the Lanczos algorithm (Golub and Van Loan, 1996) is used in order to estimate Gaussian posterior variances.
The connection can be understood by noting that a single marginal variance can be estimated by running linear
conjugate gradients (LCG) for the system Av = BT δi, then z̃i = δTi Bv. One way to regard the Lanczos
algorithm is that it explicitly builds up a low rank representation of A, which allows to solve many linear systems
in parallel with the same matrix A, but different right hand sides. More specifically, k iterations of Lanczos
produce Q(k) = (q(1) . . . q(k)) ∈ Rn×k with orthonormal columns, and T (k) ∈ Rk×k tridiagonal, such that
Q(k)TAQ(k) = T (k). The extremal eigenvectors ofA can be well approximated in the column span ofQ(k) even
for small k, and the convergence of such eigenvector estimates can be efficiently monitored within the Lanczos
recursion. A Lanczos iteration requires a single MVM withA, thus the same effort in principle than a single LCG
iteration.

We obtain a Lanczos estimator for z̃ by replacing Σ in the exact expression by Q(k)T (k)−1Q(k)T , resulting in
z̃(k) := diag−1(BQ(k)T (k)−1Q(k)TBT ). It is shown in Appendix B that z̃(k) = z̃(k−1) + v(k) ◦ v(k), where
v(k) obeys the recursion v(k) = e−1

k (Bq(k) − dk−1v
(k−1)). Therefore, z̃(k) converges against z̃ monotonically

from below15 in every component. We can also estimate log |A|, featuring in the criterion part g∗(z), by log |T (k)|,
although the latter value is not critically required in order to run our methods. While other estimators could be
derived from the Lanczos method, the monotonicity of z̃(k) would be lost (see end of this section). Moreover, the
components of z̃(k) correspond to the best estimate after k iterations of LCG for the systems Av = BT δi, if the
same starting vector is used for all of them.

While the basic recurrence of the Lanczos algorithm is easy to describe, this apparent simplicity is treacherous.
Useful Lanczos implementations involve a lot of extra technology, and in general they require O(nk) memory
(details are given in Appendix B).

In general, a Lanczos estimate is good if the full expression dominantly depends on the extremal eigenvalues and
eigenvectors, which tend to converge rapidly. An ideal case, for which most Lanczos codes seem to be optimized,
is given by a matrixA with a geometrically decaying spectrum bounded away from zero. This implies a geometric
decay of the spectrum of Σ as well, so that z̃(k) converges to z̃ rapidly. In applications with a geometric spectral
decay of the A matrices, modern Lanczos codes, such as ARPACK16, can be used. Unfortunately, for problems of
our interest here (high-quality image reconstruction from non-local measurements), the system matrices A often
exhibit a spectral decay which is roughly linear (with the possible exception of beginning and end). In such cases,
‖z̃(k) − z̃‖/‖z̃‖ converges approximately linearly, and a close approximation of z̃ requires k ≈ n iterations
of Lanczos, which is not tractable. Moreover, since the Lanczos iteration delivers optimal approximations of
eigenvalues and eigenvectors, given that k MVMs with A can be used, there may be no better generic method to

14 To be precise,A would be the precision matrix of the Gaussian graphical model Q(u|y), and its sparsity pattern encodes
graph structure. In cases where such an interpretation applies, this structure is normally independent of the value of π.

15 From Theorem 1, (7.), we know that z̃i ∈ [z
(k)
i , γi] for any i and k.

16 Available at http://www.caam.rice.edu/software/ARPACK/.
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approximate z̃, if no additional knowledge about A is used. To be clear, the problem in these cases is not that
A is ill-conditioned, but that the dependence of z̃ on the eigendecomposition of A is spread across much of the
spectrum. In other words, A does not have any low rank approximation which is close in the spectral norm. In
numerical mathematics, structural knowledge about the system matrix is used in order to precondition the Lanczos
algorithm, which can in principle be used to improve its spectral properties. Such preconditioning strategies are
not in the scope of this paper, but remain an important topic for further investigations.

To conclude so far, we have seen that the Lanczos estimator z̃(k) for z̃ can be computed using k MVMs with
A. On the other hand, for certain system matrices A arising in practice (in problems of image reconstruction),
z̃(k) will not be very close to z̃ in many components. This creates a problem for the global convergence proof
of Section 4.4, which relies on exact computations of z̃. In these situations, we cannot claim that our method is
provably globally convergent in practice. Moreover, since the g∗(z) term in φz cannot be computed exactly, we
cannot check for sure whether an outer loop step improved the criterion. From our experience on such problems,
the algorithm is well behaved, in that the approximate φz rapidly decreases, then jitters slightly around a value and
can be stopped. Since even∇γφ cannot be computed reliably, it is questionable whether a generic precise stopping
rule can be found. Establishing such rules in particular cases of interest remains an open problem for future work.

The estimation of z̃ is the most difficult computation required in our class of methods. It is done only once
in each outer loop iteration, and typically only few iterations are needed at all. Recall from Section 4.1 that
for a gradient descent method, z̃ would have to be estimated in every single step. In Section 5.2, we compare
our variational inference methods to certain MAP estimation algorithms on the same model, showing that on a
purely computational level, they mainly differ in the computation of z̃ (required for inference, but not for MAP
estimation). It goes without saying that if Gaussian models with precision matrix A (under arbitrary positive π)
admit a better specific estimator for (VarQ[si|y])i, this should be preferred over our generic Lanczos solution here.
Or the Lanczos method could be run with preconditioning, based on system knowledge. For example, if A has
a sparse graphical model structure, Gaussian belief propagation on modified graphs is used to precondition LCG
(Malioutov et al., 2006b), and these ideas could be used to precondition the Lanczos algorithm as well.

Surprisingly, in our experiments of main interest here, the bad relative accuracy of our estimator of z̃ does not
seem to have a major impact at all. Although the spectral decay of A is linear, and the variance estimates have
significant errors, the L2 reconstruction errors are often slightly better for smaller numbers of Lanczos iterations
k than for exact computations. Here is an idea why this might be the case. Importantly, z̃(k) approaches z̃
componentwise from below, so we generally use underestimates. Moreover, the inner loop sparsity penalty for
Laplace sites is 2

∑
i τi(zi + s2i /σ

2)1/2 (see Section 4.2; recall that zi = z̃i in this case), which is stronger for
smaller zi. An underestimate of zi leads to a stonger sparsity penalty on si in the subsequent inner loop, and
this amplification happens mostly on those si, whose true zi values would be moderately small. More sparsity is
implied for s than what is specified by the prior. While this effect could be self-amplifying, it seems to be benign
or even slightly beneficial in our applications, maybe because the Laplace sparsity potentials are not strong enough
in the first place.

One may not be this lucky in other applications, or with other models. Indeed, it would be preferable to work
with proper estimators, and adjust the model and its potentials for the right degree of sparsity. Certainly, finding
better Gaussian variance estimators is an important point for future work.17

5 Extensions
In this section, we collect a number of extensions of the approximate inference algorithms described in Section 4.
Moreover, we discuss the precise relationship to closely related MAP estimation methods, pinning down the added
complexity of variational inference.

5.1 Direct Generalizations
It should be obvious that our framework is not limited to sparse linear models with factorizing Gaussian likelihood.
It can be applied whenever the posterior can be written as the normalized product of univariate sites, whose argu-
ments are linear combinations of u, and if each of the sites has Gaussian-form lower bounds. For example, Laplace
or Student’s t sites can be used as likelihood terms for robust regression (Tipping and Lawrence, 2005). Binary

17 However, in the absence of such, or of a different approximate inference method as scalable as ours, the only alternative
seems to not do Bayesian experimental design on a large scale at all. Fortunately, this narrow “fundamentalist” view on
anything vaguely Bayesian (often ignoring real-world aspects such as running time or user-friendlyness) does not hamper work
in machine learning.
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classification with Bernoulli sites is discussed in Section 2.1. We can also deal with multivariate non-Gaussian
sites, as long as corresponding multivariate lower bounds are given.18 Π and Γ become block-diagonal in such
a setting. All convexity properties discussed in Section 3.1, as well as Theorem 3, remain valid if positivity re-
quirements on scalars are replaced by requirements of positive definiteness on square blocks. The sites can have
overlapping supports, since our methods can certainly deal with matricesB that do not have full rank.

We can also in principle accommodate fully coupled sites, as long as they are Gaussian. For example, the
likelihood P (y|u) may come with a general covariance matrix Π(0)−1. This case is accommodated by replacing
σ−2‖y−Xu‖2 above by (y−Xu)TΠ(0)(y−Xu), and σ−2XTX byXTΠ(0)X in the system matrices. In this
case, MVMs with Π(0) (the inverse covariance matrix) have to be computed inside LCG and Lanczos iterations.

In this paper, our interest in scalable approximate Bayesian inference is mainly driven by experimental design
applications to improve linear measurement architectures for images (see Section 6). Bayesian inference has many
other applications, and while we do not pursue any of them in detail here, we close this section with some remarks
about how our algorithms could be employed. First, the partition function P (y) of Section 2.1 is an important
concept on its own, besides being a favourable target for variational relaxations. It is the marginal likelihood of
the data, where the unknown parameters u have been integrated out. Bayes factors (Kaas and Raftery, 1995)
are differences of log partition functions for different models of the same data, and they are routinely used for
model selection (they are the Bayesian equivalent to likelihood ratio statistics). The variational relaxation we
employ results in a bound on the log partition function, and our algorithms can be used to evaluate these bounds
rapidly.19 Moreover, a powerful method for adjusting free hyperparameters, such as the τi scale parameters in (2),
consists of maximizing the marginal likelihood P (y) of the data. This is implemented easily within our variational
framework, by just maximizing the lower bound to logP (y) instead. Technically, it is equivalent to maximum
likelihood learning of parameters in an undirected graphical model, and the derivatives of the lower bound w.r.t.
hyperparameters have the usual form of simple posterior expectations. The maximization of our bound w.r.t. the
noise variance σ2 is a convex problem if the relaxation is convex, as will be shown elsewhere. However, in general,
hyperparameter optimization by marginal likelihood techniques is a non-convex problem.

5.2 Relationship to MAP Estimation. Added Complexity of Variational Inference

Our variational approximate inference methods are, from a purely computational viewpoint, closely related to
MAP estimation algorithms for the same underlying posterior. A related point is made in (Wipf and Nagarajan,
2008), where they compare convex MAP with non-convex sparsity estimators. In this section, we will see that it
is precisely the step from MAP estimation to variational inference which makes the outer loop updates hard. The
added complexity of variational inference versus MAP estimation can be quantified precisely in this case. With
this analogy in mind, we can give weight to the core messages of this paper, towards the end of this section.

The problem of maximum a posteriori (MAP) estimation for the sparse linear model is

max
u

N(y|Xu, σ2I)
∏
i

ti(si).

It is convex if the ti(si) are log-concave functions. Given that the ti(si) are super-Gaussian, as we assume in the
rest of this section, Theorem 3 states that the variational inference approximation we employ, is convex as well. In
fact, it is closely related to particular MAP estimation techniques. A key step in Section 3 is (9), where

∫
(. . . ) du

is replaced by |2πσ2Σ|1/2 maxu(. . . ), an equality for Gaussian integrals. This implies that the MAP problem can
be written in much the same form as the approximate inference problem, only that the log |A| term vanishes. For
the general case, the MAP estimation problem is equivalent to

min
u

min
γ
h(γ) + σ−2‖y −Xu‖2 + σ−2sTΓ−1s, h(γ) = −2

q∑
i=1

log fi(1/γi).

By Theorem 3, h(γ) is convex, therefore the whole criterion is jointly convex in (u,γ), which allows us to
interchange the ordering of minu and minγ , and we can solve the MAP problem by iteratively updating u and γ.

18 For example, Fenchel bounds may be generalized to multivariate scale mixtures. The latter are useful to specify correla-
tions in non-Gaussian priors. In the context of natural images, certain filter responses in s are known to be typically correlated,
and multivariate scale mixture priors have been used in this context (Portilla et al., 2003).

19 Some caution is necessary here, due to the problems noted in Section 4.5.
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This algorithm has been proposed in (Figueiredo, 2003) for the case of Laplace sites. Our Theorem 3 implies that
the same algorithmic recipe can be applied to other models as well, for example (sparse) logistic regression.20

In general, for sites that may not be log-concave, h(γ) = h∩(γ) + h∪(γ). The concave part h∩(γ) is upper
bounded by Fenchel’s inequality, whence we repeatedly need to solve inner loop convex problems of the form

min
u

min
γ
zTγ + h∪(γ) + σ−2‖y −Xu‖2 + σ−2sTΠs.

These inner loop steps are exactly the same as for the approximate inference method discussed in Section 4.1.
However, the outer loop updates of z are different: zopt = ∇γh∩(γ). Since h∩ typically decouples, these updates
are simple. The log |A| term, coupling the sites, is not present in the MAP estimation context. For example, for
Student’s t sites (3), we have that zopt = (ν + 1) ◦ π.

Our observations here are related to (Wipf and Nagarajan, 2008, Sect. 3). Recall from Section 4.4 that their
method is useful for sparse estimation, yet does not compute the MAP estimator for the underlying model with
Student’s t sites, but also features a log |A| coupling term. In their context, the coupling term helps to be very
aggressively sparse. Our goal is not sparsity feature selection, but rather a faithful approximation of posterior
covariances. As shown below, explicit sparsity destroys such covariance information. Since the MAP estimator
for the sparse linear model exhibits exact sparsity in general, as does the method of (Wipf and Nagarajan, 2008),
neither is useful for our purposes. The added complexities of obtaining meaningful uncertainty estimates required
for Bayesian experimental design (see Section 6) are precisely the outer loop computations, which consist of bulk
marginal variance estimations. As shown in Section 4.5, this added complexity is considerable, at least in terms of
technology required. While the algorithm of (Wipf and Nagarajan, 2008) features a log |A| term as well, its role
is to enhance the degree of sparsity (i.e. , the number of γi = 0) beyond convex MAP estimation. The high degree
of exact sparsity in γ helps them in turn to compute the marginal variances more efficiently (see Section 4.4).

We have seen that if γ becomes exactly sparse to a high degree, it is easy to implement algorithms such as ours
efficiently, because the coupling matricesA are effectively only as large as the number of non-zeros in γ. In sparse
estimation, γ has many zeros at the final solution, and in most algorithms, γ is sparse from the beginning. In this
setting, single-site updating algorithms (see Section 2.1) can be applicable to large problems, since single updates
are cheap due to the sparsity, and the true sparse optimum may be found in a moderate number of steps. However,
when the goal is approximate inference for estimating uncertainties such as posterior variances or covariances,
exact sparsity of γ cannot be expected. By Theorem 1, (7.), the posterior variance estimate VarQ[si|y] is upper
bounded by σ2γi. If γi = 0, the method asserts that there is no posterior variance in si at all. By setting γi = 0, si
is fixed to zero exactly, with absolute posterior certainty. This means that also the estimated correlation between
si and any other sj is zero. Since computational savings through exact sparsity can only be expected if most γi are
set to zero, this means that in the corresponding posterior Q(u|y), there is no uncertainty about the large majority
of the si, and no correlations between these and the few coefficients that survive. Basically, most coefficients are
just eliminated. Q(u|y) exists on the hyperplane corresponding to the few surviving coefficients only. The very
sensible and important question about how sure the method is in switching any of the si off, cannot be answered,
not even a ranking among the eliminated coefficients can be extracted. In our opinion, it makes little sense to
approximate Bayesian inference with such drastic side conditions, which do not come from the model or the data,
but are nothing but artefacts due to the overly sparse approximation technique.

One of the main messages of our paper is that sparsity is an important statistical principle, not only for point
estimation, but also if data analysis with meaningful uncertainty estimates is the goal. However, in this case, the
common practice of clamping many variables to zero exactly, which is successfully used in sparse estimation, to all
of our knowledge cannot be used. The goal of faithful posterior approximations has to be reached without relying
on exact sparsity, and other large scale numerical techniques have to be used. The algorithms we use here, such
as Lanczos or LCG, do not require exact sparsity in the variables to scale to very large problems. They are fast,
because structure in the model matrices X and B is exploited for efficient MVMs. This structure may be sparsity
(in the matrices, not in γ or s), but does not have to be. For example, if an image is to be reconstructed from Fourier
samples, MVMs with X can make use of the Fast Fourier Transform and related signal processing code. At the

20 These MAP estimation algorithms may not be globally convergent for sparsity-enforcing sites, at least no proof has been
given in (Figueiredo, 2003). The problem is that many γi have to become exactly zero eventually, since the MAP estimator for
sparse linear models is provably sparse. However, if the algorithm attends some u such that si = 0 for s = Bu, then γi and
si remain clamped at zero ever after. A global convergence proof for these MAP estimation methods is complete only if it is
shown that only such si become zero, which are in fact zero at the true solution (assuming, of course, that all si 6= 0 initially).
This problem does not occur for variational inference applications, since no γi can ever become zero there.
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moment, the dominating interest in sparsity in machine learning and statistics, both in theory and in practice, seems
to be to obtain ever sparser estimators, as close as possible to the most extreme case of all: L0 regularization.21

In some settings, such as some applications of sparse estimation, this may be the real goal (although by far the
most experiments in sparse estimation papers we have seen, work with artificially generated data). But in others,
certainly of at least equal importance in practice, it is not. Uncertainty estimates are basically destroyed by overly
aggressive sparsification. Beyond experimental design, uncertainty estimates are acknowledged to be important in
optimal decision theory. Decision-making systems based on aggressive sparse estimation may run fast, but also
run the risk of getting it wrong with absolute confidence.

Compressed Sensing of Natural Images
Our experimental design method is about compressed sensing of real-world signals, and we close this section

with a comment about compressed sensing and sparse estimation, which is in line with the core message of our pa-
per. Natural images are approximately sparse in transform domains, such as wavelet or Fourier: the filter responses
follow a power law, with a concentration close to zero (see Section 2). But for non-synthetic images, they are never
exactly zero, not even in single coefficients, and certainly the dominating coefficients are not distributed uniformly
at random. To see this, just transform an image, permute the wavelet coefficients randomly, and transform back:
you will never retrieve anything like an image. In (Candès and Romberg, 2006, Sect. 2.2), a natural image is arti-
ficially sparsified by setting small wavelet coefficients to zero, and this latter signal (which is not a natural image)
is then reconstructed from random measurements. It goes without saying that such a pre-sparsifying oracle is not
something you can buy for your camera or your MR scanner: it is not realizable, and examples like this cannot tell
us much about how MAP reconstruction from random measurements performs on real natural images.

Comprehensive studies on natural images can do that. The results in (Seeger and Nickisch, 2008) indicate that
random measurements perform poorly on natural images, and some theoretical arguments for why this might the
case, have been given in (Weiss et al., 2007). They show that for signals with a spectral decay (power as a function
of spatial frequency) exhibited by natural images, the signal-to-noise ratio (SNR) of random measurements tends
to zero rapidly. But the full story is likely to be even more interesting. In results to be reported elsewhere, we
compare different ways of sampling 2d Fourier coefficients, which have the same density of samples as a function
of distance from the Fourier space origin, so should give rise to the same SNR, according to the arguments of
(Weiss et al., 2007). However, there is a large spread in reconstruction errors from these designs, and again,
randomized designs work worst.

The problem of optimizing designs for image measurement devices is of high importance in practice, in compu-
tational photography, and even more so in medical imaging, or with cameras operating beyond the visible wave-
lenghts. It is a fascinating one to study, owing to the complexity of natural images, and the constraints and error
sources coming with the devices. But to all of our present knowledge, it is not solved by uniformly randomizing
the measurement design. We hope that our work here, which allows to optimize measurement designs for full
images, will help along the recognition that compressed sensing is a problem about real-world signals, not about
truly sparse, unstructered random vectors, and that more work than uniform random sampling is needed in order
to solve it adequately.

6 Bayesian Experimental Design

In this paper, the main motivation for our scalable approximate inference method, which can posteriors over entire
images, is that this allows us to optimize the image measurement design X through Bayesian sequential design.
The setup we use here has been described in detail in (Seeger et al., 2007; Seeger, 2008), and its usefulness for opti-
mizing image measurement architectures has been demonstrated in (Seeger and Nickisch, 2008). A clear outcome
from the latter study was that while significant reductions in reconstruction error are realized by switching from
linear to sparse MAP reconstruction, it is the optimization of the measurement design specifically for sparse MAP
estimation that allows for much larger gains. In fact, once good designs are used, the differences in reconstruction
errors between MAP and least squares reconstruction tend to be minor. In previous work, images of moderate size
(such as 64× 64) were dealt with, but the inference methods used there are not scalable. Our novel variational al-
gorithms can be used for significantly larger images, and for the model used in these references (SLM with Laplace

21 The NP-hardness of this problem helps to understand some part of the apparent attractiveness of aggressive sparsification.
But coming ever closer to a computationally hard problem with efficient relaxations does not automatically mean that real-world
problems are solved better.
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prior sites) solves a convex problem. In this section, we demonstrate how the design score computations can be
scaled up accordingly, making use of the Lanczos algorithm once more.

6.1 Sequential Design Score Computation

In sequential experimental design22 (Chaudhuri and Mykland, 1993; Fedorov, 1972),X is built up through several
rounds. In each round, a set of candidates X∗ ∈ Rd×n of equal size is scored, and the winner (maximizing the
score) is appended to X. A candidate scores highly if its measurements are deemed to reveal as much novel
information about u as possible, given what is already known at the beginning of the round. In the following, we
discuss the scoring for a single round, starting from (X,y) and P (u|y). We employ the entropy difference score
here,

H[P (u|y)]− EP (y∗|y) [H[P (u|y,y∗)]] ,

which quantifies the reduction in posterior uncertainty (Seeger, 2008). Note that reduction in uncertainty is scored
globally over all of u. Importantly, the posterior correlations are fully contained in this score, setting it apart from
scores based purely on marginals of u. As discussed in (Seeger, 2008), its maximizer depends on the full posterior
covariance matrix.

If Q(u|y) = N(h, σ2Σ) is the approximation (8) to the current posterior P (u|y), we approximate this score
by

∆(X∗) := log |Σ|+ log
∣∣Σ−1 +XT

∗ X∗
∣∣ = log

∣∣I +X∗ΣXT
∗
∣∣ , (12)

the entropy difference betweenQ(u|y) and an updated Gaussian, whereX∗ is appended toX, and y∗ ∼ Q(y∗|y)
to y. This is an approximation, because we do not adapt the variational parameters π of Q(u|y) to the new data,
but keep them at their old values. This approximation is mainly done for efficiency reasons, since our aim is to
score many candidates in each round. Note that no integration over y∗ is required for the ∆(X∗) computation.
Details are given in (Seeger, 2008).

Suppose there are N candidates of d rows each. The computation of (12) for these requires the solution of
N d linear systems with A, but different right hand sides, which is not feasible to do with LCG in applications
of our interest. We came across a related problem in Section 4.5 already, and our approach once more involves
the Lanczos algorithm. Recalling the notation there, if T (k) = L(k)L(k)T (Cholesky decomposition; L(k) is

bidiagonal) and Q̃
(k)

:= Q(k)L(k)−T (this computation is O(nk) only), then

I +X∗ΣXT
∗ ≈ I + V T

∗ V∗, V∗ := Q̃
(k)T

XT
∗ ,

if Σ is replaced by its Lanczos low rank approximation. Finally, the score is computed using a Cholesky decompo-
sition of this d× d matrix, or of I + V∗V T

∗ (which has the same determinant) if k < d. In the applications we are
interested in, MVMs with large X matrices are efficient, so the V∗ for the different candidates are best computed
en bulk, given sufficient memory. On the other hand, these score computations can directly be parallelized, given

Q̃
(k)

.
The approximation described here manifests the role of the Lanczos matrices Q(k), T (k) of A as principal

representation of the approximate posterior itself. Once these are computed, they can be used to answer rather
arbitrary posterior queries, such as marginal variances of s = Bu (in Section 4.5) or entropy difference design
scores.

6.2 Other Design Setups. Relation to Classical Design

In the previous section, we showed how to compute the design score (12) for many unrelated candidates. In this
section, we consider some other optimization settings for ∆(X∗).

First, consider d = 1, so ∆(x∗) = log(1 + xT∗Σx∗). As noted in (Seeger and Nickisch, 2008), the global
maximizer of ∆(x∗) among all unit-norm vectors x∗ is the eigenvector corresponding to the largest eigenvalue of
Σ (Horn and Johnson, 1985, Sect. 4.2). This makes sense intuitively, since the uncertainty in xT∗ u is largest for this

22 We use the term “experimental design” in a narrow sense, compared to what readers from statistics may be familiar with.
We wish to quantify amounts of information in parts of experiments, and to exploit this inference to optimize the measurements
automatically, where the sole aim is to obtain faithful reconstructions faster or at a lower cost. Classical ED (in our sense)
concentrates on the Fisher information matrix of an estimator. For sparse MAP estimation, this matrix is not well defined, due
to the shrinkage-to-zero properties (see also Section 5.2). Bayesian ED is not plagued by these problems.
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direction.23 It should be clear now that finding optimal extensions of X with Bayesian experimental design needs
an estimate of the whole posterior covariance matrix: its single node marginals are not enough. We can use the
Lanczos algorithm (see Section 4.5) in order to find the optimal direction. In fact, finding extremal eigenvectors is
typically the main application of this algorithm. Recalling the discussion of convergence properties in Section 4.5,
we note that if Lanczos is applied to A with a geometrically decaying spectrum, its minimal eigenvector (the
maximal eigenvector of Σ = A−1) comes out last. In such a situation, packages like ARPACK run Lanczos
on A−1 instead, which requires LCG in each iteration. However, for applications of our interest here, the linear
spectral decay of A means that eigenvectors from both ends of the spectrum converge rapidly, so we can just run
Lanczos onA, until the minimal eigenvector converges.

It is also possible to compute ∂∆(X∗)/(∂α) if ∂X∗/(∂α) is known. If M = I + X∗ΣXT
∗ and W∗ =

Q̃
(k)T

(∂X∗/(∂α))T , then
∂∆(X∗)/(∂α) = trM−1

(
W T
∗ V∗ + V T

∗ W∗
)
.

If k < d, we can work with I + V∗V T
∗ instead.

How difficult is the optimization of ∆(X∗) in general, over infinitely many candidatesX∗? For the case d = 1,
we have to maximize the convex quadratic xT∗Σx∗, which is easy if the feasible set of x∗ is a Euclidean ball or
ellipse: the solution is a generalized eigenproblem. However, in general, convex quadratic maximization is a hard
problem, even for linear constraints on x∗. This is not surprising, since finding the optimal design in a Gaussian
linear model is already a hard problem in principle, at least for large n and q.

From a purely computational viewpoint, our optimization of ∆(X∗) is related to classical sequential D-optimal
design, or its Bayesian analogue for Gaussian linear models (Chaloner and Verdinelli, 1995), with the important
difference that the Fisher information matrix (which would be XTX for the Gaussian linear model) is replaced
by the posterior precision matrix A here. Therefore, the work referenced in (Chaudhuri and Mykland, 1993) can
be used in our framework as well. In the nomenclature of (Chaloner and Verdinelli, 1995), our sparse Bayesian
design framework is nonlinear. While they note that P (u|y) is often approximated by a Gaussian, none of the
methods they refer to uses a modern variational approximation. With smooth non-Gaussian sites, the Laplace
approximation is typically employed in statistics to obtain a Gaussian posterior approximation. However, in the
case of sparse linear models, the log posterior is strongly singular at its mode, so that the Laplace approximation is
not well defined. Moreover, the fact m � n invalidates the typical justification for this approximation, as well as
all asymptotic results about it we know of. Classical D-optimal design, as well as its Bayesian variant for Gaussian
linear models, are linear techniques, meaning that the design score to optimize does not depend on the observations
y. The design optimization is done without ever looking at any real data. In the applications of our interest, while
the linearity of the measurements and the sparsity properties of the signal u can be motivated well, the model
setup certainly does not perfectly represent the true data-generating process. The dependence of design decisions
on data gathered along the process is an important feature of the our method, rendering it robust against model
mismatch, which is surely present. Nonlinear sequential design based on maximum likelihood estimation has been
analyzed in (Chaudhuri and Mykland, 1993), and an interesting point for future research would be to extend their
analysis to settings such as ours, where modern variational approximations of the posterior covariance matrix are
used in place of the inverse Fisher information matrix, and MAP or posterior mean estimators replace maximum
likelihood techniques.

7 Discussion
Many modern applications of statistical inference and estimation come with a large number of latent variables, of-
ten many more than the number of independent datapoints. While a recent surge of activity has established efficient
convex methods for sparse point estimation from such data, little work has been done on higher-order problems for
sparsity-favouring models, such as estimating confidences and dependencies, or optimizing measurement architec-
tures. These problems can be addressed by Bayesian inference, but the commonly used standard approaches, such
as Laplace approximation or Markov chain Monte Carlo, either do not apply (the Hessian is strongly singular at
the mode; see also Section 5.2) or do not run fast enough for many real-world setups. Variational approximations
to Bayesian inference have been applied to sparse linear models (Tipping, 2001; Girolami, 2001; Figueiredo, 2003;
Wipf et al., 2004), but the algorithms known so far scale up to large problems only if the main objective is sparse

23 However, our simplifying assumption leading to (12) is also witnessed here, in that the outcome of a measurement x∗
is assumed to mainly reduce the uncertainty in xT∗ u alone, while any further non-Gaussian “spread” of uncertainty reduction
(which could happen, if π was updated for the score computation) is ignored.
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estimation once more. Moreover, the variational relaxations as well as the algorithms for solving them, have not
been given satisfying characterizations.

In this paper, we concentrate on a widely used general variational relaxation based on Gaussian-form lower
bounds (Jaakkola, 1997; Palmer et al., 2006; Girolami, 2001), which for a range of models is equivalent to the
variational (mean field) Bayes technique. We settle a long-standing question for this approximation, by showing
that the variational problem is a convex minimization if and only if the search for the posterior mode is. Moreover,
and probably of more importance in practice, we provide the first truly scalable algorithms for solving this min-
imization (whether convex or not) on large scale models. Scalability is achieved, just as in many convex sparse
estimation algorithms, by reducing the dominating efforts to problems of standard form, with very well developed
solutions in numerical mathematics: least squares estimation, and variance estimation in Gaussian random fields.
If code for these primitives is in place, the implementation of our methods is straightforward. Our setup is generic
and can be configured with little effort to models featuring sparsity potentials (Laplace, Student’s t; see (Palmer
et al., 2006) for further super-Gaussian potentials), binary classification likelihoods, or many other exponential
family sites. Since the dominating computations are spent in standard primitives, no additional heuristics have to
be tuned. Moreover, structure in the model coupling matrices (measurement design, prior filters) can be exploited
very effectively.

Our main interest in this paper is Bayesian experimental design, with the aim of optimizing measurement ar-
chitectures for natural images. Uniform random sampling is not enough to find useful measurement designs for
real-world signals (this point is discussed in more detail at the end of Section 5.2). The ability of estimating poste-
rior covariances is crucial for finding good designs, and methods for aggressive sparse estimation cannot in general
be used towards this end (they are important for reconstruction, once a good design has been found). Moreover,
the queries required to improve a design can be approximated using the same primitives our inference algorithms
rely on.

Our algorithms are of the double loop, or difference of convex type, which holds much promise for many
problems in machine learning. The idea is to decouple a criterion φ, for which even the gradient is hard to compute,
by upper bounding a critical part, so that the resulting bound φz can be minimized efficiently. This decoupling
is successful if much of the criterion structure is still contained in the bound, so that only a few outer loop steps
(re-fits of the bound) are required until convergence. This may not happen for all instances of our algorithms. If
strong couplings are eliminated by the bounding step, the inner loop optimization tends to converge rapidly without
much progress in φ, and many outer loop steps are required. Since double loop algorithms are increasingly used
in machine learning and statistics (EM algorithm, CCCP, variational Bayes), it is an important point for further
research to understand under which conditions they work well, and what can be done if they do not.24

The algorithms proposed here have been shown to work well on challenging large scale medical imaging prob-
lems, but are certainly useful in many other applications as well. In time series, filtering, or tracking problems,
large state spaces could be endowed with sparsity priors, involving potentials between subsequent time points.
Systems biology applications create datasets with very many latent variables, and experimental design can be used
there to save on expensive experiments (Steinke et al., 2007). Sparsity models can also be used to analyze data
from neural cell recordings, allowing for sharper predictions than traditional second order correlation analysis
(Gerwinn et al., 2008). Our methods should be especially interesting for low-level computer vision applications,
since sparsity-enforcing models represent natural image statistics much better than purely Gaussian ones, yet our
methods draw exclusively on primitives such as mean and variance estimation in Gaussian Markov random fields,
for which recently very efficient algorithms have been proposed (Malioutov et al., 2006a,b). In this sense, our
algorithms reduce inference for certain non-Gaussian MRFs to (repeated) computations in Gaussian MRFs. The
SLMs we employ in this paper, are already used for problems such as image denoising or super-resolution, by
way of sparse estimation. Beyond these applications close to machine learning, our techniques can be imported
rather easily into application fields, where least squares estimation or lower-level signal processing techniques are
dominatingly used, simply because our methods are configured solely in terms of such well-studied computational
primitives.

Finally, we hope that our work here contributes to the wider recognition of scalable Bayesian approximations
in computational application fields. It should become clear from our results that maximum a posteriori (MAP)
estimation is not Bayesian inference (see Section 5.2 for a discussion), although even in machine learning or com-
puter vision, Bayesian techniques are often equated with MAP throughout. Bayesian inference is about integration,

24 Some hints may come from loopy belief propagation for discrete graphical models, where double loop methods like CCCP
(Yuille and Rangarajan, 2003) have been proposed, yet are much too slow to be practical.
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while MAP is about optimization towards a single point estimate. While MAP estimates of the unknowns them-
selves can often be computed by convex programming, covariances between variables or other uncertainty queries
cannot properly be estimated this way. Variational approximations reduce Bayesian integration to optimization
problems, and although by far the most work in this field is done on discrete graphical models, similar principles
apply to continuous variable models as well. In fact, our work shows that resulting algorithms can fit in seemlessly,
running on the same computational primitives than MAP or least squares estimation, and thereby deal with long-
range couplings and strongly non-local measurements in a way that is not currently possible for discrete random
fields methods.
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A Further Details
In this section, we collect details of arguments which have been ommitted in the text.

A.1 Proof of Theorem 1
In this section, we provide the proof of Theorem 1. We begin with (5.). Define A = XTX + BT ρ(Γ)B for
now, where ρi(γi) > 0 for all i, and ψ1 = log |A|. We have that dψ1 = trSD with S = BA−1BT and
D = ρ′(Γ)(dΓ). Now, since dA−1 = −A−1(dA)A−1, we have that

d2ψ1 = − trSDSD + trSρ′′(Γ)(dΓ)2 = trDSD(g(Γ)− S),

where gi(γi) = ρ′′i (γi)/(ρ′i(γi))
2. Since S � 0 (positive semi-definite) we can write S = VV T with some matrix

V, and d2ψ1 = tr(DV)T (g(Γ) − S)DV. If we can show that g(Γ) − S � 0, then for γ(t) = γ + t(∆γ), we
have that ψ′′1 (0) = trMT (g(Γ)−S)M ≥ 0 for all small ∆γ, whereM = ρ′(Γ)(∆Γ)V. This implies convexity
of ψ1.

Next, we show that ρ(Γ)−1 − S � 0. Our proof employs the identity

rTM−1r = max
x

2rTx − xTMx, (13)

which holds wheneverM � 0 (positive definite). For any vector r ∈ Rq , we have that

rTBA−1BTr = max
x

2rTBx − xT
(
XTX +BT ρ(Γ)B

)
x ≤ max

k=Bx
2rTk − kT ρ(Γ)k,

using (13) and xTXTXx = ‖Xx‖2 ≥ 0. Now, if the maximum is taken over all k ∈ Rq , the expression cannot
become smaller, so

rTSr ≤ max
k

2rTk − kT ρ(Γ)k = rT ρ(Γ)−1r,

using (13) once more. Therefore, ρ(Γ)−1 −S � 0. Note that this argument, applied to ρi(γi) = γ−1
i and r = δi,

proves (7.).
Collecting all parts, the convexity of γ 7→ ψ1 is implied by g(Γ) − ρ(Γ)−1 � 0. An elementary computation

shows that the latter is implied by ρi(γi)ρ′′i (γi) ≥ (ρ′i(γi))
2 for all γi. This completes the proof of (5.).

We continue with (6.). Define A = XTX +BT ρ(Γ)−1B, and ψ2 = log |A| + log |ρ(Γ)|. The concavity of
γ 7→ ψ2 is shown by induction on q, the number of rows of B. Assume for now that XTX is nonsingular. First,
let q = 1, and b = BT . Then,

log ρ1(γ1) + log
∣∣XTX + ρ1(γ1)−1bbT

∣∣ = log
∣∣XTX

∣∣+ log
(
ρ1(γ1) + bT (XTX)−1b

)
.

Now, log(·) is concave and nondecreasing, so the concavity for q = 1 follows from (Boyd and Vandenberghe,
2002, Sect. 3.2.4). If q > 1, letB = (BT

<q b)T andA<q = XTX +BT
<qρ(Γ<q)−1B<q . Then,

ψ2 = log |ρ(Γ)|+ log
∣∣A<q + ρq(γq)−1bbT

∣∣ = log |ρ(Γ<q)|+ log |A<q|+ log
(
ρq(γq) + bTA−1

<qb
)
.
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The sum of the first two terms is concave by assumption. Since log(·) is concave and nondecreasing, the concavity
of the final term follows from the concavity of γ 7→ bTA−1

<qb (Boyd and Vandenberghe, 2002, Sect. 3.2.4). Using
(13), we have

bTA−1
<qb = max

x
2bTx − xTA<qx = max

x
Q(x)− vT ρ(Γ<q)−1v,

with v = B<qx and Q(x) a concave quadratic. If ρ = ρ(γ<q), the right hand side argument of maxx is jointly
concave as a function of (x,ρ), ρ � 0 (negative quadratic-over-linear, see Section 3.1), so that ρ 7→ bTA−1

<qb =:
κ(ρ) is concave for ρ � 0 (Boyd and Vandenberghe, 2002, Sect. 3.2.5). Moreover, for any i ∈ {1, . . . , q} and any
∆ > 0,

κ(ρ + ∆δi) = bT
(
A<q −

∆
ρi(ρi + ∆)

bib
T
i

)−1

b ≥ bTA−1
<qb = κ(ρ),

so κ is nondecreasing in each of its arguments, and the concavity of γ 7→ bTA−1
<qb follows from (Boyd and

Vandenberghe, 2002, Sect. 3.2.4). This concludes the proof, under the assumption thatXTX is invertible.
If XTX is singular, define ψε2 as above, but with XTX → XTX + εI . ψε2 is concave for all ε > 0. For

any γ � 0 s.t. ψ2(γ) > −∞, ψε2 converges uniformly to ψ2 on a closed environment of γ (ψ2 and all ψε2 are
continuous), so that ψ2 is concave around γ. This completes the proof of (6.).

A.2 Proof of Theorem 3
In this section, we prove Theorem 3. In fact, by Theorem 2, we only need to establish the convexity of h(γ) =
−2
∑
i log fi(1/γi). Recall super-Gaussianity from Section 2.1. To simplify notation, we ignore some positive

scaling, they do not alter convexity properties. We also ignore additional linear terms αisi in log ti(si), since they
can be dealt with as noted at the end of Section 2.1, leading to an additional linear term in φ(γ). In the following,
we pick an index i ∈ {1, . . . , q}, and drop the corresponding subscript.

Let x = s2 and g(s) = g(x) = log t(s). g(s) is odd, and we only deal with s ≥ 0 in the following. s 7→ g(s)
is concave and twice continuously differentiable for s > 0, and x 7→ g(x) is strictly convex and nonincreasing for
x > 0. By Fenchel duality,

h(γ) = g∗(−1/γ) = sup
s≥0

f = sup
x≥0

f, f = −s2/γ − g(s) = −x/γ − g(x).

We start with a simple, general observation. Let 0 < γ < γ′, so that −g(0) < h(γ), h(γ′) < ∞. If s∗ :=
argmaxs f(s, γ) is a maximum point,25 then s∗ > 0, and h(γ′) ≥ −s2∗/γ′ − g(s∗) > −s2∗/γ − g(s∗) = h(γ).
Therefore, if γ0 = sup{γ | f(s, γ) ≤ −g(0) ∀s} (γ0 = 0 if this set is empty), then s∗ = 0, h(γ) = −g(0) for
0 < γ ≤ γ0, and for γ > γ0, h is strictly increasing, and s∗ > 0 (note that s∗ = ∞ is allowed). Therefore, it
suffices to show that h is convex at all γ where s∗ ∈ (0,∞).

Here and in the following, g′ = dg/(ds), etc. We use the notation fs = ∂f/(∂s), functions are evaluated at
(s∗, γ) if nothing else is said. Now, fs = −2s∗/γ − g′(s∗) = 0, so that

g′(s∗) = −2s∗/γ. (14)

Next, x 7→ g(x) is twice continuously differentiable as well. We have x∗ = s2∗ at γ. fx is continuously dif-
ferentiable, and g′′(x) > 0 by the strict convexity of g(x). By the implicit function theorem, x∗(·) is contin-
uously differentiable at γ, and since h(γ) = f(x∗(γ), γ), h′(γ) exists. Moreover, 0 = (d/dγ)fx(x∗(γ), γ) =
fx,γ + fx,x(dx∗)/(dγ), so that (dx∗)/(dγ) = γ−2/g′′(x∗) > 0, and x∗ is increasing in γ.

From fs = 0, we have that h′(γ) = fγ = s2∗/γ
2 = (g′(s∗))2/4 by (14). Now, g′(s) is nonincreasing by the

concavity of g(s), and g′(s∗) < 0 by (14), which means that s∗ 7→ h′(γ) is nondecreasing. Since s2∗ is increasing
in γ, so is s∗. Therefore, γ 7→ h′(γ) is nondecreasing, thus h(γ) is convex for s∗ ∈ (0,∞).

It remains to show necessity of the concavity of g(s). Suppose that g′′(s̃) > 0 for some s̃ > 0. From (14)
we see that g′(s∗) < 0 whenever s∗ > 0, and by the same equation, there exists a γ̃ > 0 so that s∗(γ̃) = s̃.
But if g′′(s∗) > 0 at γ̃, then s∗ 7→ h′(γ) is decreasing at s∗ = s̃, and just as above h′(γ) is decreasing at γ̃,
so that h(γ) is not convex. Reverting to subscripts, suppose that hi is not convex at γ̃i > 0. Setting y = 0 in
(10) leaves us with φ = h(γi) + log |A|, viewed as a function of γi. We can easily construct a setup so that
∂2 log |A|/(∂γ2

i ) < −h′′i (γ̃i)/2 at γi = γ̃i, showing that φ is not in general convex.
25 We do not require that s∗ is unique (f(s∗, γ) is unique, since x 7→ f(x, γ) is concave), but only that f(s∗, γ) > f(0, γ). If

the supremum is not attained at any point, then s∗ =∞ (by the continuity of f , this happens only if maxs∈[0,s0] f(s, γ) < h(γ)
for all s0).
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A.3 Generic Inner Loop Criterion
Recall the inner loop criterion (11), and its minimization by IRLS (see Section 4.3). In this section, we show how
IRLS can be run if h∗∪,i(γi) cannot be determined analytically. In this case, its value and θi, ρi have to be computed
on demand for each si encountered. In the following, we fix i ∈ {1, . . . , q} and drop the subscript.

We only treat first class inner loops, the procedure for the second class is very similar. Let k(s, γ) = zγ +
h∪(γ)+(s2/σ2)γ−1. Then h∗∪(γ) = k(s, γ∗), where the minimizer γ∗ is found by univariate convex minimization.
Since kγ(s, γ∗) = 0, we have that θ = (σ2/2)(2/σ2)s/γ∗ = s/γ∗. Next, because kγ(s, γ∗) = 0 for all s, then
0 = (d/ds)kγ(s, γ∗) = ks,γ + kγ,γ · (dγ∗)/(ds) (always evaluated at s, γ∗), leading to

dγ∗
ds

=
sγ∗

s2 + γ∗κ
, κ =

σ2

2
γ2
∗h
′′
∪(γ∗). (15)

Finally, ρ = (dθ)/(ds) = (γ∗)−1[1− θ(dγ∗)/(ds)] = κ/(s2 + γ∗κ).
Moreover, not even h∪(γ) needs to be known analytically. We show how to deal with the case h∪(γ) = h(γ),

other cases being similar. All we need is code in order to compute g(x) and its first and second derivative. Recall
that g(x) is convex, and h(γ) = −minx≥0 l(x, γ), with l(x, γ) = x/γ + 2g(x). The procedure requires the
computation of h(γ), h′(γ), and h′′(γ) on demand. First, h(γ) = −l(x∗, γ), where x∗ is found by univariate
convex minimization. Since lx = 0 (all functions evaluated at (x∗, γ)), we have that h′(γ) = −lγ = x∗/γ

2.
Moreover, (d/dγ)lx(x∗(γ), γ) = 0, so that (dx∗)/(dγ) = γ−2/(2g′′(x∗)) (recall that g′′(x∗) > 0). Therefore,
h′′(γ) = γ−4((2g′′(x∗))−1 − 2x∗γ). The second derivative is needed in (15) only, we have that

κ = γ−1
∗ σ2

(
1

4γ∗g′′(x∗)
− x∗

)
,

where x∗ = x∗(γ∗).

A.4 Two-Parameter Gaussian Site Bounds
If ti(si) is not even, the Gaussian-form lower bound may not be centered at zero, as happens in the case of Bernoulli
potentials (7). More generally, the Gaussian form may come with a second parameter b̃i controlling its position.
In this case, Q(u) = C−1

2 NU (s|σ−2b̃, σ−2Π). Our criterion φ remains as in (10), but sTΠs is replaced by

sTΠs − 2b̃
T
s. Let b := Π−1b̃ and s̃ := Bu − b. Then,

φ(γ, b) = log |A| − σ−2bTΠb + h(γ, b) + σ−2 min
u

(
‖y −Xu‖2 + s̃TΠs̃

)
.

Here, (u,γ, b) 7→ s̃TΠs̃ is jointly convex, giving rise to an inner loop much as in Section 4.3. Moreover,
(γ, b) 7→ −bTΠb is jointly concave, so that either of our classes of algorithms can be generalized (using bounds
linear in b and γ).

B The Lanczos Algorithm
The Lanczos algorithm (Golub and Van Loan, 1996) is a standard tool of numerical mathematics. For a linear
system Ax = c, where A ∈ Rn×n is positive definite, the linear conjugate gradients (LCG) algorithm (Golub
and Van Loan, 1996) is a method to approximate x∗ = A−1c, by minimizing the convex quadratic q(x) :=
2cTx−xTAx. In each iteration, a single matrix-vector multiplication (MVM) withA is required. The sequence
of Krylov subspaces is defined as Kk := span{c,Ac, . . . ,Ak−1c}. The outcome of LCG after k iterations is the
minimizer of q(x) within Kk. The Lanczos algorithm is an extension of LCG. In iteration k, a unit norm vector
q(k+1) is generated, which is orthogonal to all previous q(j), j ≤ k, so that Kk = span{q(1), . . . , q(k)}. In the
Lanczos sequence, q(k+1) is generated by a recurrence involving q(k) and q(k−1) only, and still only a single MVM
with A per iteration is required. On finite-precision computers, a number of additional techniques are required to
obtain a useful algorithm (see Appendix B.1). In general, the quantities of interest to be estimated by the Lanczos
method do not depend on the right hand side c. We follow the custom of using randomly drawn unit norm vectors
c.

The Lanczos method constructs an orthonormal Q(k) := (q(1) . . . q(k)) and a tridiagonal T (k) with main diag-
onal α ∈ Rk and subdiagonal β ∈ Rk−1, so that Q(k)TAQ(k) = T (k). Here, leading eigenvalues of A are close
to leading eigenvalues of T (k) rapidly, and this convergence of eigenvalues and eigenvectors can be tested within
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the algorithm itself (Parlett and Scott, 1979). The rough idea behind Lanczos estimates of linear functions ofA or
Σ = A−1 is to plug in the following low rank approximations

A 7→ Q(k)T (k)Q(k)T , Σ 7→ Q(k)T (k)−1Q(k)T .

If the function of interest depends on the spectrum of A only, the spectrum of T (k) is used instead. For example,
the Lanczos estimate of z̃ = diag−1(BΣBT ) in Section 4.5 is given by

z̃(k) := diag−1
(
BQ(k)T (k)−1Q(k)TBT

)
.

Since the T (k) are tridiagonal and nested, it is easy to derive a recurrence for these estimates. T (k) is positive
definite just as A. Let T (k) = L(k)L(k)T be its Cholesky decomposition, where L(k) is lower triangular. The
factors are bidiagonal, say e := diag−1(L(k)), and d ∈ Rk−1 the subdiagonal. The following recurrence takes us
from L(k−1) to L(k):

dk−1 = βk−1/ek−1, ek =
√
αk − d2

k−1.

Here, d0 = 0. Let V (k) := BQ(k)L(k)−T . It is easy to see that the sequence V (k) is nested, so that V (k) =
(v(1) . . .v(k)). Moreover, we have the recurrence

v(k) = e−1
k

(
Bq(k) − dk−1v

(k−1)
)
,

which depends on the last recent v(k−1) only. Finally,

z̃(k) = diag−1(V (k)V (k)T ) = z(k−1) + v(k) ◦ v(k).

Since z(k)
i = z

(k−1)
i + (v(k)

i )2, the estimates z̃(k) are nondecreasing in each component, and converge towards z̃
from below. Recall from Section 4.5 that this monotonicity property has important implications in practice. In our
implementation, we also estimate log |A|, required in the computation of g∗(z), by log |T (k)| (the recurrence for
L(k) leads to a recurrence for these estimates), although this is not required in order to run our algorithms.

B.1 Lanczos Implementations
A word of warning: the Lanczos algorithm is a powerful method to approximate spectral information of very
large structured matrices, but the simple three-point recurrence it is based on, hides much of the complications
in practice. Without a number of additional mechanisms, significantly more difficult than the recurrence, an im-
plementation on a finite-precision computer fails almost surely. Orthogonality is rapidly lost among the Lanczos
vectors, which leads to the method getting stuck in a subspace. Ironically, this degradation is a byproduct of the
recurrence being so successful: it is caused by Ritz vectors (estimates of eigenvectors of A in Krylov subspaces
Kk) converging. The full story, one of the fascinating ones in numerical mathematics, is given in (Parlett and Scott,
1979). But even the three-term recurrence itself is easily done wrong, as pointed out by Paige. We use the variant
approved in (Paige, 1976).

We ignore preconditioning for now. Let A be the system matrix, and c be a unit norm starting vector, corre-
sponding to the right hand side in linear conjugate gradients. The algorithm is given in Algorithm 1.

From a practical viewpoint, the most important point in Algorithm 1 is the re-orthogonalization step: r(k) (to
become the new q(k+1)) has to be orthogonalized (or deflated) against all previous q(j), j ≤ k. For a moderate
number of iterations, this can be done naively, say by Gram-Schmidt, but we incur a cost of O(nk2) for this
strategy, which for large k dominates the running time of the whole method. More advanced techniques have been
proposed, where r(k) is orthogonalized only against previously converged Ritz vectors (Parlett and Scott, 1979).
However, they require more than the full matrix Q(k) to be stored in memory, and eigendecompositions of some
of the T (k) have to be done. In most Lanczos applications, the spectrum ofA decays geometrically, and queries of
interest depend on few leading eigenvectors only. Generic codes such as ARPACK (see Section 4.5; Matlab eigs
calls this code) seem to be tailored towards such spectral behaviour. If the system matrices A in a variational
inference application are of this sort, these standard codes can be used. Unfortunately, as discussed in Section 4.5,
the spectral behaviour ofA in natural image reconstruction problems is different, and standard codes may be slow
or even fail. Our strategy in such cases is described at the end of this section.
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Algorithm 1 Lanczos algorithm
Require: OperatorA. Initial c, ‖c‖ = 1
q(1) = c. u(1) = Aq(1)

for k = 1, 2, . . . do
αk = q(k)Tu(k)

Update estimates
r(k) = u(k) − αkq(k)

Re-orthogonalize r(k)

βk = ‖r(k)‖. Stop if too small
q(k+1) = r(k)/βk
u(k+1) = Aq(k+1) − βkq(k)

end for

Both LCG and Lanczos can typically be improved by preconditioning. The idea is to design some invertible C,
so that systems withC andCT can be solved very rapidly (say, in O(n)), and at the same time, Ã = C−1AC−T

has better properties as system matrix than A itself. For example, even the simple choice C = (diagA)1/2

can lead to Ã being better conditioned than A. If A is sparse, C can be computed by an incomplete Cholesky
decomposition with small amount of fill-in. The Lanczos algorithm of Algorithm 1 can be run with a preconditioner
C, by simply replacing A by Ã and c by C−1c everywhere. The system matrices A in the application of our
interest here are sufficiently well conditioned, and we do not use preconditioning at present. As noted in (Schneider
and Willsky, 2001), preconditioning could in principle be used to improve spectral properties of Ã in comparison to
A. For specialA coming from structured graphical models, such strategies have been proposed (see Section 4.5).
However, in the image reconstruction applications of main interest here, such structure is not present. Research in
preconditioners for these setups is an important topic for future work.

Lanczos with Lazy Selective Orthogonalization

The dilemma of linear spectral decay ofA in applications of our interest here has been discussed in Section 4.5.
The comments at the end of that section show that the resulting inaccuracy of Lanczos estimates do not invali-
date reconstruction estimates or Bayesian design scores. However, other applications, or similar applications on
different data, may rely more strongly on accurate posterior variance estimates.

We do not know of numerical mathematics work discussing this problem. Standard codes such as ARPACK just
fail in these cases, or are very slow. Once more, the problem is not that leading eigenvectors of A are not found,
but rather (ironically) that they converge rapidly. Time and memory requirements of modern Lanczos codes scale
badly with the number of converged Ritz vectors. But the variance estimates we require depend significantly on a
large part of the eigenspectrum of A: they will be accurate only once many Ritz vectors have converged. Without
additional structural knowledge about A, there is probably little hope for principled improvement. But even for
the specific structure of main interest here (image reconstruction from non-local Fourier measurements and local
finite difference gradient potentials), which is heavily used in medical image reconstruction, we do not know of
any prior analysis of LCG or Lanczos that would be helpful here.

Our present solution is to use Lanczos with complete (naive) re-orthogonalization, whenever the total run-
ning time is not dominating by the deflations. This variant is easiest to code and requires the least amount of
memory. We use Gram-Schmidt deflation.26 Our implementation also contains a modification of selective re-
orthogonalization (Parlett and Scott, 1979), which is faster than the naive approach, but not drastically so (in the
image reconstruction applications). In the language of Parlett and Scott (1979), a direct implementation of their
scheme pauses in almost every iteration, and the running time is (perversely!) dominated by the eigendecompo-
sitions of T (k) (required to test for converged Ritz vectors), and the re-computation of these vectors. Moreover,
the strategies to avoid frequent pauses given there basically do not work in our case. A closer look reveals that
their bounds are approximate themselves, relying on a favourable spectral decay ofA as well. Our most important
modification is that at a pause, previously converged Ritz vectors are assigned to present ones, without having to
re-compute them. This assignment strategy is based on the assumption that a converged Ritz vector will appear at

26 Some experiments showed that Householder orthogonalization, advocated in (Golub and Van Loan, 1996), is not more
accurate in our case, but runs significantly slower, presumably because fast BLAS primitives can be exploited to a lesser degree.
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all subsequent pauses just as well. We still have to recompute the eigendecomposition of T (k) at every pause.27

Second, we do not use the heuristics of (Parlett and Scott, 1979), since they are not reliable in our case, but rather
allow for pauses only at every fourth (or so) iteration.
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