
Max–Planck–Institut für biologische Kybernetik
Max Planck Institute for Biological Cybernetics

Technical Report No. 194

Fast algorithms for
total-variation

based optimization

Álvaro Barbero12 and Suvrit Sra1

26 August, 2010

This Technical Report has been approved by:

Director at MPIK Postdoc at MPIK

Max–Planck–Institut für biologische Kybernetik
Max Planck Institute for Biological Cybernetics

Technical Report No. 194

Fast algorithms for
total-variation

based optimization

Álvaro Barbero12 and Suvrit Sra1

26 August, 2010

1 MPI für biologische Kybernetik
2 Universidad Autónoma de Madrid and Instituto de Ingenierı́a del Conocimiento

This report is available in PDF–format via anonymous ftp at ftp://ftp.kyb.tuebingen.mpg.de/pub/mpi-memos/pdf/tvTR.pdf. The
complete series of Technical Reports is documented at: http://www.kyb.tuebingen.mpg.de/techreports.html

Fast algorithms for total-variation
based optimization

Álvaro Barbero and Suvrit Sra

Abstract. We derive a number of methods to solve efficiently simple optimization problems subject to a total-
variation (TV) regularization, under different norms of the TV operator and both for the case of 1-dimensional and
2-dimensional data. In spite of the non-smooth, non-separable nature of the TV terms considered, we show that
a dual formulation with strong structure can be derived. Taking advantage of this structure we develop adaptions
of existing algorithms from the optimization literature, resulting in efficient methods for the problem at hand.
Experimental results show that for 1-dimensional data the proposed methods achieve convergence within good
accuracy levels in practically linear time, both for L1 and L2 norms. For the more challenging 2-dimensional case
a performance of order O(N2 log2N) for N × N inputs is achieved when using the L2 norm. A final section
suggests possible extensions and lines of further work.

1 Introduction
The total-variation (TV) operator usually appears in the context of image and signal procesing problems, and can
be defined as follows. Given a signal defined as a function f : Ω→ R, where Ω is a bounded open subset ofRD,
the total variation of the signal is defined as

TVd(f) =
∫

Ω

||∇f(x)||pdx,

with ||∇f(x)||p the Lp norm (p ≥ 1) of the gradient of f at x [13]. If Ω is a discrete space which can be represented
as an N ×N matrixX (an square image), this formula can be simplified down to

TV2(X) =
∑
i,j

||∂+Xi,j ||p, (1.1)

∂+Xi,j = (Xi+1,j −Xi,j , Xi,j+1 −Xi,j),

i.e. it is the norm of the discrete gradients of the image. Similarly, for a 1-dimensional signal the TV is defined as

TV1(x) =
∑
i

||xi+1 − xi||p =
∑
i

|xi+1 − xi| (1.2)

where the norm gets reduced to the absolute value (or L1 norm), as each discrete gradient consists of a single-entry
vector.

One common application of the TV operator is the field of image denoising, where it was introduced by Rudin,
Osher and Fatemi in what became to be known as the ROF model [23]. In this setting only a noisy version y of a
true image x is known, and we strive to recover y from x under the assumptions that x should be similar to y and
that the true image x should be smooth, i.e. the gradient of x should be small. In the ROF model this is translated
to the following optimization problem

min
x

1
2
||x− y||22 + λ TVd(x), (1.3)

where λ is a penalty parameter for non-smoothness.
In this work we will show how problems in the form (1.3) can be solved efficiently via a transformation to a

simpler dual formulation, which allows to take advantage of the structure induced by the total variation norm. We
will then analyze several specific cases of this formulation, and show how standard optimization algorithms can be

1

adapted to make use of this structure, resulting in efficient and accurate solvers. Finally we will discuss possible
extensions and means of improvement of this work.

2 Dual and structure of the TV problem

2.1 Matrix formulation of the TV problem

The first step towards deriving the dual of the TV problem (1.3) is rewriting it in matrix form. This is easy for the
1-dimensional case, where we define the matrix

D =

−1 1
−1 1

−1 1
. . .

−1 1
−1 1

∈ R(N−1)×N , (2.1)

so that the 1-dimensional TV operator is

TV1(x) ≈ ||Dx||p. (2.2)

Note that this formulation is equivalent to (1.2) only when p = 1. For other p-norms we can consider this
approach a generalizacion of the 1-dimensional TV operator. This results in the optimization problem

min
x

1
2
||x− y||22 + λ‖Dx‖p. (2.3)

Regarding the 2-dimensional case, the counterpart ofD is defined as

B =

−1 1
.

−1 1
−1 1

.
−1 1
.

−1 1
.

−1 1
−1 1

−1 1
.

.
.

.
.

−1 1

∈ R2(N−1)N×N2
,

so that 2-dimensional TV operator is

TV2(x) ≈ ||B vec(X)||p, (2.4)

2

where vec(X) returns a vectorized version of X , constructed by stacking the columns of X . This results in the
optimization problem

min
x

1
2
||x− y||22 + λ‖B vec(X)‖p. (2.5)

Again, this formulation is equivalent to (1.1) only when p = 1. Conversely, these expressions give rise to different
models for any p > 1. These differences can be stated more clearly when interpreting them as mixed norms. Recall
that a mixed norm is defined as

||x||p,q =

∑
a

(∑
b

|xab|p
)q/p1/q

,

which essentially boils down to considering a block structure in x, applying a norm p in each block, and then
applying a norm q along blocks. Under this point of view, the original TV operator (1.1) can be regarded as a (p, 1)
mixed norm, in which each block is a two-entry vector component. On the other hand, our proposed approach
(2.4) is nothing but a standard p norm. Though this results in a different optimization problem (and thus, model),
we will see that our approach has computational advantages over the more difficult to handle mixed norm.

Whatever the case, we see that the TV operator can be rewritten (or approximated) as an uncostrained convex
problem in the form

min
x

1
2
||x− y||22 + λ‖Mx‖p. (2.6)

While the first term is differentiable, the second term is non-smooth and, more importantly, non-separable, i.e.
cannot be broken down into independent components involving single entries xi. This kind of problem has been
addressed thoroughly in the literature in the form of the so-called “proximity operators” [8], which have the form

ProxR(y) = arg min
x∈X

1
2
||x− y||22 +R(x), (2.7)

where R is another operator. Thus, problem (2.6) is nothing but the proximity operator of the total variation. We
will later see in more detail the importance of this connection. For now, the interesting point is the fact that if we
had a matrix M = I then (2.6) would turn out to be separable. What is more, proximity operators for this cases
exist, which allow to find a solution in closed form for the p = 1 and p = 2 norm cases, and in roughly linear time
for the p =∞ norm [16]. This observation will also be of use in our proposed methods.

2.2 Duality of the TV problem
We show now how the proximity problem (2.6) can be casted into a simple dual problem, and how we can recover
the solution of (2.6) from the solution of this new problem. This can be done by applying Theorem 31.2 in [21],
though we present here an alternative, more straightforward proof. To do so, we first perform the derivations for a
more general form as follows.

Let f : Rn → R be a twice-differentiable, strictly convex function; let r : Rm → R be a closed, proper convex
function, and letB ∈ Rm×n be a matrix (can be a linear operator in general, but we ignore that for now). Consider
the optimization problem

min
x

f(x) + λr(Bx), (2.8)

where λ > 0 is a scalar. To derive the dual of (2.8) introduce an auxiliary variable z = Bx, whereby (2.8)
becomes

minx,z f(x) + λr(z), s.t. z = Bx. (2.9)

Let u be the dual-variables corresponding to the equality constraint. Then, the Lagrangian to (2.9) is

L(x, z,w) = f(x) + λr(z) +wT (Bx− z). (2.10)

The dual function g(w) = infx,z L(x, z,w), so that

g(w) =
(

infx f(x) +wTBx
)

+
(

infz −wTz + λr(z)
)
. (2.11)

3

Both infima in (2.11) may be written as suprema, so that

g(w) =
(
− supx−wTBx− f(x)

)
−
(

supzw
Tz − λr(z)

)
, (2.12)

which are nothing but the Fenchel-duals1 of f and (λr). Thus we obtain

g(w) = −f∗(−BTw)− λr∗(λ−1w). (2.13)

Now, in our case we have f(x) = 1
2‖x− y‖

2
2, and r(x) = ‖x‖p. Then r∗(w) = δ‖w‖q≤1, the indicator

function for dual norm q, which is defined as 1
p + 1

q = 1. Thus, (2.13) simplifies in this case to

g(w) =

{
− 1

2w
TBBTw +wTBy where ‖w‖q ≤ λ,

−∞ otherwise.
(2.14)

Note: completing the square allows us to write the dual-optimization problem as

minw
1
2‖B

Tw − y‖22 s.t. ‖w‖q ≤ λ. (2.15)

Which is, in fact, an instance of the so-called Trust Region Subproblem, in which we optimize a local quadratic
model of some function subject to not leaving a trust region defined by an Lq-norm. This kind of problems have
been studied in depth in the literature, and as we shall see, standard algorithms exist to find a solution efficiently.

Once the solution w∗ to (2.15) has been found we can recover its related primal solution x∗ by noting that, by
the Karush–Kuhn–Tucker optimality conditions, the gradient of the Lagrangian w.r.t. to the primal variables must
be 0 at the optimum. In particular

∂L(x, z,w)
∂x

= 0,

∂

∂x
1
2‖x− y‖

2
2 +BTw = 0,

x = y −BTw,

therefore being able to recover the primal solution easily. What is more, we can also compute the dual gap with
this by noting that for x and w feasible solutions of the primal and dual problems we have

gap(x,u) = 1
2‖x− y‖

2
2 + λ‖Bx‖p − (− 1

2‖B
Tw‖22 +wTBy),

= λ‖Bx‖p −wTBy + ‖BTw‖22,
= λ‖Bx‖p −wTBy +wTBBTw,

= λ‖Bx‖p −wTB(y −BTw),
= λ‖−Bx‖p +wT (−Bx),

which is fast to compute once −Bx is known. The dual gap is a good measure of the quality of an approximate
solution w̃ of the dual, thus being useful as a stopping criterion for an optimization algorithm.

2.3 Structure induced by the TV operator
The special structure of matricesD andB allows to perform very fast products and factorizations, not only because
of their sparsity, but also because of the way their non-zero entries are distributed. Taking advantage of these facts
will prove to be vital for the implementation of an efficient algorithm.

In the 1-dimensional case the matrix D presents itself as a bidiagonal matrix, which allows to compute matrix-
vector products in linear time as follows

Dv = v2:N − v1:N−1, DTv =
[

0
v

]
−
[
v
0

]
,

1Fenchel-dual is defined as: f∗(w) = supx wT x− f(x)

4

where vi:j denotes the vector formed by the entries vi to vj (like in MATLAB notation). Furthermore, the matrices
DDT andDTD present a tridiagonal structure, which allow for an efficent Cholesky-like factorization in the form
M = L∆LT . Also methods for fast eigendecomposition for DDT are available. We will make use of these fast
factorizations in our proposed algorithms. Technical details about how to perform them are presented in Appendix
A.

Regarding the matrix B used in the 2-dimensional case, it can be nicely rewritten in terms of D and the Kro-
necker product operator as

B =
(
IN ⊗ D
D ⊗ IN

)
, (2.16)

with IN the N ×N identity matrix. The Kronecker product hence allows to expressB compactly, while featuring
also a series of nice properties [24]. In our application the most useful of these properties is

Y = CXBT ≡ y = (B ⊗C)x, (2.17)

with y = vec(Y) and x = vec(X). In other words, we are able to transform an equation system expressed
through Kronecker products into a matrix equation system. This is of immediate use for computing matrix-vector
products involvingB, as

Bv =
[
DV
V DT

]
, BTw = DTW1 +W2D, (2.18)

with v ∈ RN2
, w ∈ R2(N−1)N , v = vec(V) ∈ RN×N , w =

[
vec(W1)
vec(W2)

]
, W1 ∈ R(N−1)×N , W2 ∈

RN×(N−1). This saves the need for maintaining an explicit representation forB in memory.
We shall use these structures properties to guarantee fast computations in the methods we will introduce next.

3 1-dimensional Total Variation solvers

3.1 Alternating-Direction Method of Multipliers solver

The primal problem can be solved directly by using the so-called Alternating-Direction Method of Multipliers
(ADMM), [8]. This method works on objective functions in the form

min
x,b

f(x) + g(b) s.t. Lx = b,

which is our case with f(x) = 1
2‖x− y‖

2
2, g(b) = λ‖b‖p and L = D. The method proceeds by alternatively

computing the proximity operator of f and g, eventually converging to an optimum of the problem. The general
procedure is shown in Algorithm 1, where proxL

f (y) = arg minx f(x) + 1
2‖Lx− y‖

2
2.

Algorithm 1 Alternating-Direction Method of Multipliers
Inputs: functions f(x), g(b), matrix L, augmented Lagrangian index γ > 0, stopping tolerance τ .
Initialization: set initial values for p, z.
while stopping criterion > τ do
x = proxL

γf (p− z)
s = Lx
p = proxγg(s+ z)
z = z + s− p

end while

The speed of the algorithm depends heavily on how efficiently can we solve the proximity operators for f and
g. Luckily, in the problem at hand they result to be solvable in closed form or at a linear cost, as on the one hand

5

proxL
γf (p− z) = arg min

x
γf(x) + 1

2‖Lx− p+ z‖22,

= arg min
x
γ 1

2‖x− y‖
2
2 + 1

2‖Lx− p+ z‖22.

0 =
∂

∂x
,

= γ(x− y) +DT (Dx− p+ z),
(γI +DTD)x = γy +DT (p− z),

and so the proximity operator can be computed by solving the tridiagonal equation system defined by γI+DTD,
which is singular for a large enough γ > 0. On the other hand we have

proxγg(s+ z) = arg min
x

1
2‖x− s− z‖

2
2 + γg(x),

= arg min
x

1
2‖x− s− z‖

2
2 + γλ‖x‖p,

= proxγλ‖·‖p
(s+ z),

which essentially is the proximity operator for a standard Lp norm. It has been shown that for the L1 and L2 cases
this operator can be computed in closed form, while for the L∞ case a solution can be found in linear time [8].
For other choices of p no efficient algorithm exists up to our knowledge. Therefore the ADMM method will only
be useful when using the aforementioned norms.

Taking all these considerations into account, a modified algorithm for TV-Lp norm problem is shown as Algo-
rithm 2. As a stopping criterion we measure the absolute amount of change in x, as ‖xt − xt−1‖1.

Algorithm 2 Alternating-Direction Method of Multipliers for TV-Lp norm
Inputs: reference data y, augmented Lagrangian index γ > 0, stopping tolerance τ , norm order p, penalty term
λ.
Initialization: set initial values for p, z.
Precompute tridiagonal factorization of (γI +DTD). (LAPACK: DPTTRF)
while stopping criterion > τ do

Solve tridiagonal system (γI +DTD)x = γy +DT (p− z). (LAPACK: DPTTRS)
s = Dx
p = proxγλ‖·‖p

(s+ z)
z = z + s− p

end while

3.2 TV-L1 case

We now introduce two algorithms to solve (2.15) efficiently for the case where p = 1 (TV-L1 norm). First note
that the dual norm for this case is q = ∞, which is equivalent to impose a lower and upper bound on every entry
of w,

min
w

1
2
||DTw − y||22 (3.1)

s.t. −λ ≤ w ≤ λ,

which is a very simple box-constrained quadratic problem. Several methods are available in the literature to solve
this class of problems efficiently, like TRON [18], L-BFGS-B [6], Projected Newton [4] or SBB [17]. Here we
will adapt the last two ones.

6

Algorithm 3 Projected Newton for box constraints
Inputs: objective function f(x), box constraints l ≤ x ≤ u, initial guess x0, comparison tolerance ε, stopping
tolerance τ , Armijo parameters β, σ.
Definitions: ([x]P)i = min{max{xi, li}, ui}, orthogonal projection of x onto feasible set.
Initialization x = x0.
while stopping criterion > τ do

Compute gradient at x: ∇f(x).
Identify set of active constraints
I = {i|(ui − ε ≤ x,∇f(x)i ≤ −ε)or(li + ε ≥ x,∇f(x)i ≥ ε)}

Construct modified Hessian

Hij =

{
0 if i ∈ I or j ∈ I, i 6= j

∂f(x)
∂xi∂xj

else

Compute updating direction: d = H−1∇f(x).
Armijo rule: find smallest integer m >= 0 such that
f(x)− f([x− βmd]P) ≥ σ(βm

∑
i/∈I ∇f(x)idi +

∑
i∈I ∇f(x)i(xi − [xi − βmdi]P).

Update position: x′ = [x− βmd]P .
end while

3.2.1 Projected Newton
Algorithm 3 shows the general procedure of a Projected Newton method [4] in its box constrained variant.

We will adapt this method to the special case in which the objective function is quadratic in the form f(x) =
xTAx+ b ·x+ c and A is a tridiagonal symmetric matrix with strictly positive diagonal entries α and sub-diagonal
entries β. Problem 3.1 is a special instance of this with A = DDT , which produces αi = 2 ∀i and βi = −1 ∀i.
We will see that by adapting Projected Newton to this particular structure we are able to run every iteration of the
algorithm in linear time. To do so, note first that we can rearrange the rows of the modified Hessian H in a way
that we have the block matrix

H =

∂f(x)
∂x1∂x1

∂f(x)
∂x2∂x2

. . .
∂f(x)
∂xi∂xi

· · · ∂f(x)
∂xi∂xN

...
. . .

...
∂f(x)
∂xN∂xi

· · · ∂f(x)
∂xN∂xN

=
(
diag(AI,I)

AC,C

)

where AI,I denotes the matrix formed by the rows/columns regarding variables in the active set I , and AC,C the
matrix formed by the rows/columns regarding variables not in I (not active).

Now, it should be realized that as the updating direction is in the form d = H−1∇f(x), di = 1
αi
∇f(x)i for

those entries i ∈ I . As αi > 0, this implies that the variables at active contraints are to be updated in a direction
pointing outside the feasible set. As the updated point is in the form [x−βmd]P , those xi−βmdi will be projected
back to their original xi value. Hence, no update is performed for variables in active constraints, and so we can
consider the equivalent update

x′N = [xN − βmdN]P ,
x′I = xI ,

with dN = A−1
N,N∇f(x)N . In this way we only need to deal with a reduced update, involving only non-active

constraints. To compute AC,C we can make use of the following proposition.

Proposition 1. Given A ∈ RN×N tridiagonal matrix and an index set C from elements in [1, N], the matrix AC
which results from removing from A the rows and columns which indexes are not in C (equivalently, keeping only
the rows and columns with indexes in C) is also tridiagonal. Furthermore, if A is symmetric then the diagonal and
sub/superdiagonal entries of AC are in the form

7

α′ = αC ,

β′ = (β � eI−1)I ,

where xC is the vector formed by only the entries of x indexed by elements of C, I is the complementary set of I ,
I− 1 stands for the set of indexes of C being substracted 1, eC is an indicator vector with zeros everywhere except
in the entries indexed by C, which are 1, and � is the point product.

Proof. The proof for α′ is immediate, as αi only appears in AC,C if i ∈ C. For β′, consider first that only one
row/column i is to be removed. If i = 1 only β1 does not appear in AC,C from the sub/superdiagonals. Same
applies for i = N , where only βN−1 vanishes. If any other i applies, then both βi−1 and βi are vanish, but note
that in the resulting matrix the entries immediately to the right and under αi − 1 will be valued 0. Therefore,
what is obtained is essentially the result of setting βi−1 to 0 and removing βi from the resulting β′. Applying this
procedure to every i ∈ C produces the presented formula.

The tridiagonality property of the reduced Hessian AC,C , allows to solve the system AN,NdN = ∇f(x)N for
dC efficiently through the use of the tridiagonal factorization of AN,N (see Appendix A).

Regarding the Armijo rule, we can make use again of the fact that x′I = xI , and so the rule simplifies down to
f(x)− f([x− βmd]P) ≥ σβm∇f(x)C · dC . We can further simplify this by defining δ = [x− βmd]P − x and
noting that

f(x)− f(x+ δ) = f(x)− (f(x) +
1
2
δTAδT + xTAδT + bT δ)

= −(
1
2
δTA+ xTA+ bT)δ

= −(
1
2
δTCAĪ,Ī + xT

(
AC,C
AI,C

)
+ bTC)δC

The non-zero entries of AC,C have already been computed, and multiplying this matrix with any vector can be
done in linear time, owing again to this matrix being tridiagonal. However, AI,C has neither been computed, nor
it is tridiagonal. Nevertheless it should be realized that its rows contain at most two nonzero entries that can be
easily located. This can be seen by noting that for any i ∈ I the row Ai,C cannot contain the αi term as i /∈ C,
and will only keep βi−1 if i − 1 ∈ C, βi if i + 1 ∈ C. Thus, for each row of AI,C we can decide fastly which
entries are non-zero, and are able to multiply it with a vector spending at most two product operations. It should

also be realized that the term xT
(
AC,C
AI,C

)
is indendent of δC , and as such we only need to compute it once per

iteration, regardless of the number of Armijo rule evaluations needed.
Finally, another point of improvement of the standard Projected Newton is the gradient recomputation. As in

this case we have a quadratic function, the gradient can be updated as

∇f(x+ δ) = ∇f(x) +Aδ

= ∇f(x) +
(
AC,C
AI,C

)
δC

where we can use similar strategies to the ones presented for the evaluation of the Armijo rule.
Summing up, the adapted Projection Newton algorithm for quadratic functions with tridiagonal Hessian is shown

in Algorithm 4. As a stopping criterion we use the quantity of total violation of the Karush–Kuhn–Tucker optimal-
ity conditions, which can be shown to be

viol(x) = ||∇f(x)C ||1.

8

Algorithm 4 Projected Newton for tridiagonal Hessian problems
Inputs: objective function in the form f(x) = xTAx+bTx+c,A tridiagonal defined by (α, β), box constraints
l ≤ x ≤ u, initial guess x0, comparison tolerance ε, stopping tolerance τ , Armijo parameters β, σ.
Definitions: ([x]P)i = min{max{xi, li}, ui}, orthogonal projection of x onto feasible set.
Initialization x = x0,∇f(x) = Ax+ b.
while stopping criterion > τ do

Identify set of active constraints
I = {i|(ui − ε ≤ x,∇f(x)i ≤ −ε)or(li + ε ≥ x,∇f(x)i ≥ ε)}

Construct nonzero entries of reduced Hessian: AC,C
Compute tridiagonal factorization: AC,C = L∆LT . (LAPACK: DPTTRF)
Compute updating direction d solving system AC,CdC = ∇f(x)C . (LAPACK: DPTTRS)
Armijo rule: find smallest integer m >= 0 such that for δ = [x− βmd]P − x,

−(1
2δ
T
CAC,C + xT

(
AC,C
AI,C

)
+ bTC)δC ≥ σβm∇f(x)C · dC .

Update position: x′ = x+ δ.

Update gradient: ∇f(x′) = ∇f(x) +
(
AC,C
AI,C

)
δC .

end while

3.2.2 Subspace BB

The Subspace BB method [17] can be regarded as an extension of the Barzilai and Borwein method for the
nonnegative constrained case [3], which combines Barzilai-Borwein stepsizes with a projected gradient approach.
Being a first-order method (no Hessian information is required), the matrix D is only used through matrix-vector
products, and so each iteration can be run in linear time owing to the bidiagonality ofD.

An outline of the SBB algorithm adapted to the problem at hand is shown as Algorithm 5. At each iteration the
set of active constraints is identified, a gradient∇f̃ confined to the subspace defined by the non-active contraints is
constructed, and finally a BB-like stepsize is performed in the direction of the (full) gradient, projecting the result
back into the feasible set.

Even though the original SBB method was designed to deal only with nonnegativity constraints, it can be easily
extended to a box constrained setting. Furthermore in the original SBB algorithm every M iterations a sufficient
descent check is performed, decreasing a stepsize multiplier if this check is not met; we have removed this check
in our implementation, as in all the experiments performed the algorithm managed to achieve convergence without
resorting to it.

Algorithm 5 Subspace BB for TV-L1
Inputs: reference data y, penalty parameter λ, initial guess x0, stopping tolerance τ .
Definitions: ([x]P)i = min{max{xi,−λ}, λ}, orthogonal projection of x onto feasible set.
Initialization x = x0.
while stopping criterion > τ do

Compute gradient∇f = D(DTx− y)
Identify set of active constraints
I = {i|(−λ == xi,∇f(x)i ≤ 0)or(λ == xi,∇f(x)i ≥ 0)}

Construct subspace gradient: [∇f̃]i = [∇f]i if i /∈ I , 0 otherwise.
if iteration number is odd then

Compute stepsize: α = ‖∇f̃‖22
〈∇f̃ ,DDT∇f̃〉 .

else
Compute stepsize: α = 〈∇f̃ ,DDT∇f̃〉

‖DDT∇f̃‖22
.

end if
x = [x− α∇f]+.

end while

9

3.3 TV-L2 case

When p = 2 in (2.3) the dual problem also fancies a q = 2 norm, and so the feasible space is an euclidean ball of
radius λ.

minw
1
2‖D

Tw − y‖22 s.t. ‖w‖2 ≤ λ. (3.2)

This is the most common situation in Trust Region Subproblems, and as such a large number of solvers are
available in the literature, like LSTRS [22], IP-SSM [11] and the method proposed by Moré and Sorensen [19]. A
priori LSTRS is the best option, as it is a well-stablished method and good public implementations are available.
However, the same LSTRS authors recommend to use Moré and Sorensen’s method for the particular case in which
the Cholesky decomposition of A + δI can be computed efficiently, A the Hessian of the objective function and
δ ≥ 0. As we will see, this is the situation in our particular problem, and so we will adapt this method for our case.

The motivation behind Moré and Sorensen’s method can be easily explained by analyzing the KKT conditions
of the problem at hand. We will do this first for a general quadratic objective function in the form gTw+ 1

2w
TAw,

as in [19]. The Lagrangian of the problem can be written as

L(w, α) = gTw + 1
2w

TAw + α(‖w‖22 − λ2),

which at the optimum must meet

∂L(w, α)
∂w

= 0,

g +Aw + αw = 0,
(A+ αI)w = −g.

Also, as a Lagrange multiplier, α ≥ 0 and due to complementarity constraints α(‖w‖22 − λ2) = 0. Joining all
these constraints, we can rewrite the problem as a Constraint Satisfaction Problem in the form

findw s.t.

(A+ αI)w = −g
α ≥ 0
α(‖w‖2 − λ) = 0

. (3.3)

Two situations might happen in the solution of (3.3): eitherw is the interior of the feasible set (‖w‖2 ≤ λ) or it
is in the boundary (‖w‖2 = λ). Ifw is in the interior we necessarily have α = 0, and then the solution is given by
finding a solution to the system Aw = −g. The argument is also valid backwise: if the solution w of the system
Aw = −g is in the interior of the feasible set, then w solves (3.3). Thus, we can easily check whether the solution
is in the interior, and if it is not, we can safely assume ‖w‖2 = λ and work only in the boundary case, which we
address in the following.

The boundary condition is the key to solving the problem. To see this, suppose for now that we have α s.t.
(A+ αI) is definite postive. Then we have

λ2 = ‖w‖22
= ‖−(A+ αI)−1g‖22
= gT (A+ αI)−1T

(A+ αI)−1g

We can now use the eigendecomposition A = QΛQT , with Λ = diag(λ1, . . . , λN) diagonal matrix of eigen-
values sorted in increasing order andQ orthogonal matrix of eigenvectors,

10

λ2 = gT (QΛQT + αI)−1T

(QΛQT + αI)−1g,

= gT (Q(Λ + αI)QT)−1T

(Q(Λ + αI)QT)−1g,

= gTQ(Λ + αI)−1QTQ(Λ + αI)−1QTg,

= gTQ(Λ + αI)−1(Λ + αI)−1QTg,

=
∑
i

γ2
i

(λi + α)2
,

= ψ(α)

with γi = gTQi, Qi i-th column of Q. Thus, the norm of the solution vector is essentially a nonlinear function
ψ of α. Therefore, to solve the problem we need to find an α s.t. ψ(α) = λ2. However, the nonlinearity of ψ
together with the existence of second-order poles at the points where α = −λi might make this task difficult. In
[19] the following strategy is recommended: locate the rightmost pole, which is the one associated with the smallest
eigenvalue λ1, and try to find an α that satisfies the constraint in the “poles-free” interval α ∈ (−λ1,∞). This
approach is reasonable, as limα→−λ1 =∞, limα→∞ = 0 and by continuity ∃ α∗ s.t. ψ(α∗) = λ2. Unfortunately,
this argument might fail, in particular if γ1 = 0 then α∗ might be located in the interval (−∞,−λ1]. This is the so-
called “hard-case”, and to deal with it additional safeguarding measures need to be taken in Moré and Sorensen’s
algorithm, also resulting in slower convergence. Fortunately, in the problem at hand the hard case cannot take
place, namely,

Proposition 2. In a problem in the form (3.2), Moré and Sorensen’s “hard case” cannot happen.

Proof. The rows of the Hessian of (3.2),A = DDT , are linearly independent, thus renderingA positive definite.
As such, every one of its eigenvalues λi > 0. Consequently, the rightmost pole is located at −λ1 < 0, and as by
the KKT conditions (3.3) α ≥ 0, then the solution α∗ ∈ [0,∞).

Corollary 3. It follows that the maximum value of the ψ(α) function is attained at α = 0. Therefore, for any
λ > λMAX = ψ(0) the solution w is always the same point in the interior of the feasible set. Thus, the range of
λ values generating different models is bounded by λ ∈ [0, λMAX].

Therefore, we do not need to worry about the hard case, and can just look for α∗ in the pole-free, smooth interval
[0,∞). To do so, Moré and Sorensen recommend to use Newton’s method for locating the roots of the function

φ(α) =
1
λ
− 1
‖w‖2

= 0,

which is almost linear in the search interval, guaranteeing very fast convergence. Recall that Newton’s method
involves updating our estimate of the function’s root as α′ = α − φ(α)

φ′(α) with φ′(α) derivative of φ(α). By using

‖w‖2 =
∑
i

γ2
i

(λi+α)2 we can see that this derivative is

φ′(α) = − 1

‖w‖
3
2
2

∑
i

γ2
i

1
(λi + α)2

,

and so the update would be

α′ = α+
‖w‖22∑
i

γ2
i

(λi+α)3

· ‖w‖2 − λ
λ

.

This can be further simplified by computing the Cholesky decompositionA+αI = RTR, noting thatRTRw =
−g, and definingRTq = w, as

‖w‖22 = qTRRTq,

= qTQ(Λ + αI)QTq,

= γT (Λ + αI)−2γT ,

11

thus

q = Q(Λ + αI)−
3
2γ,

‖q‖22 = γT (Λ + αI)−
3
2

T

QTQ(Λ + αI)−
3
2γ,

=
∑
i

γ2
i

(λi + α)3
,

and so the update is more compactly expressed as

α′ = α+
‖w‖22
‖q‖22

· ‖w‖2 − λ
λ

.

The procedure as a whole is presented in Algorithm 6. As α is initialized as 0, the first iteration will check
whether the optimal w∗ is in the interior of the feasible set, stopping if that is the case or moving on to an α > 0
otherwise. As a stopping criterion we can use the distance to the boundary |‖w‖22−λ|, except for that first iteration
in which we will also stop if w is in the interior, i.e. ‖w‖22 ≤ λ. Note that this algorithm can be very costly for
a general A + αI , as Cholesky decomposition is an O(N3) procedure for the general case. Fortunately in our
case the tridiagonality ofA allows to do this through a tridiagonal factorization (see Appendix A). In practice this
method is able to converge in a very small number of iterations, thus scaling linearly with the size of the problem.

Algorithm 6 Moré-Sorensen algorithm for definite positive Hessian (optimized for tridiagonal)
Inputs: objective function in the form f(w) = 1

2w
TAw + gTw,A definite positive, trust region parameter λ,

stopping tolerance τ .
Initialization α = 0
while stopping criterion > τ do

Compute Cholesky decompositionA+ αI = RTR. (LAPACK DPTTRF)
Obtain w solving systemRTRw = −g. (LAPACK DPTTRS)
Obtain q solving systemRTq = w. (LAPACK DGTSV)
Update α as: α′ = α+ ‖w‖22

‖q‖22
· ‖w‖2−λλ

end while

4 2-dimensional Total Variation solvers
4.1 2-dimensional ADMM
Given that the primal problem for the 2-dimensional case has a similar form to the 1-dimensional one, we can
apply once again the ADMM method to solve the problem. Note however that the structure of B is noticeably
more complex than that ofD, and so some changes in the algorithm are required.

In principle, the pseudocode presented in Algorithm 2 for the 1-d case could be applied unchanged here. How-
ever, when attempting to solve the equation system induced by the matrix γIN2 + BTB we can no longer rely
on tridiagonality, nor precompute a tridiagonal factorization. To make up for this, note that using the Kronecker
product properties we can write

γIN2 +BTB = γIN2 +
[
(IN ⊗DT) (DT ⊗ IN)

] [IN ⊗D
D ⊗ IN

]
= γIN2 + IN ⊗DTD +DTD ⊗ IN
= γ(IN ⊗ IN) + IN ⊗DTD +DTD ⊗ IN
= IN ⊗ (γIN +DTD) +DTD ⊗ IN

Considering now the system we need to solve, we have Ax = c, where A = γIN2 + BTB = IN ⊗ (γIN +
DTD) +DTD⊗ IN and c = γy+B(p− z). We can now make use of the Kronecker product property (2.17),
obtaining

(γIN +DTD)X +XDTD = C, (4.1)

12

where C is c in matrix form, which can be expressed conveniently using

c = γy +B(p− z)
= γy +

[
(IN ⊗DT) (DT ⊗ IN)

]
(p− z)

= γy +
[
(IN ⊗DT) (DT ⊗ IN)

] [p1 − z1

p2 − z2

]
C = γY +DT (P1 −Z1) + (P2 −Z2)D,

where p1 is the vector containing the first half of p, p2 the second half, equivalently for z1, z2, and P1, Z1

∈ R(N−1)×N , P2, Z2 ∈ RN×(N−1) are their respective matrix forms.
The equation system posed in (4.1) is recognised as the well-known Sylvester equation, for which a solution is

known since long [2]. Given a Sylvester equation in the form AX +XB = C we can find the solution by first
computing the Schur decomposition of matricesA andB as

A = TUTT

B = QVQT ,

where T and Q are orthogonal matrices, U is lower triangular and V upper triangular. A decomposition of this
form is always guaranteed to exist. Now the Sylvester equation can be transformed as

AX +XB = C (4.2)
TUTTX +XQVQT = C

UTTX + TTXQVQT = TTC

UTTXQ + TTXQV = TTCQ.

Defining now X̃ = TTXQ, C̃ = TTCQ we have the system

UX̃ + X̃V = C̃.

Making use now of the triangular structure of U, V it is easy to see that the entries of the solution X̃ can be
computed as

[X̃]ij =
[C̃]ij −

∑i−1
k=1 Uik[X̃]kj −

∑j−1
k=1[X̃]ikVkj

Uii + Vjj
.

As for the computation of [X̃]ij only those entries of X̃ in previous rows/columns are needed, we can safely
compute the entries of X̃ one at a time following either a row or column order. Once X̃ has been obtained we can
recover our original problem solutionX by noting that by the orthogonality of T and Q we haveX = TX̃QT .

Turning now our attention back to the equation system (4.1) we need to solve in the ADMM algorithm, the first
step would be to compute the Schur decompositions of DTD and γIN + DTD. Both matrices are tridiagonal
symmetric, and it can be shown [20] that in this case the resulting Schur decomposition is equivalent to the eigen-
value decomposition, where the eigenvectors have been made orthogonal. This fact is advantageous, as we obtain
a decomposition DTD = TUTT in which U is a diagonal matrix containing the eigenvalues of DTD. What is
more, the eigendecomposition of γIN +DTD can be shown to be T(U + γIN)TT . Thus, we only need to com-
pute the eigendecomposition of the tridiagonal matrixDTD, for which a LAPACK routine exists (DSTEV). Once
that is achieved we can obtain X̃ using (4.2), which in our particular case simplifies down to the easier formula.

X̃ij =
C̃ij

Uii + Ujj + γ
, (4.3)

hence allowing to compute X̃ij in O(N2) time. Unfortunately, computing the Schur decomposition and afterwards
performing the operation X = TX̃TT both involve a cost of order O(N3), turning this into the overall iteration

13

Algorithm 7 Alternating-Direction Method of Multipliers for 2-dimensional TV-Lp norm
Inputs: reference data Y , augmented Lagrangian index γ > 0, stopping tolerance τ , norm order p, penalty term
λ.
Initialization: set initial values for P1, P2, Z1, Z2.
Precompute Schur decomposition (DTD) = TUTT . (LAPACK: DSTEV)
while stopping criterion > τ do

Compute C = DT (P1 −Z1) + (P2 −Z2)D + γY .
Compute C̃ = TTCT .
Solve Sylvester equation UX̃ + X̃U = C̃. (using (4.3))
RecoverX = TX̃TT .
S1 = DX , S2 = XD[

P1

P2

]
= proxγλ‖·‖p

([
vec(S1 +Z1)
vec(S2 +Z2)

])
Z1 = Z1 + S1 −P1, Z2 = Z2 + S2 −P2

end while

cost of the algorithm. While more efficient methods for operating with the eigenvectors of DDT can be devised,
it is unclear whether this can be ported to the eigenvectors ofDTD.

Considering all this we could already write the pseucode of the ADMM method, replacing in Algorithm 2 the
lines corresponding to the solution of the linear equation system. However, it will prove profitable to rewrite the
full algorithm in terms of matrices instead of vectorized versions of them. This version is presented in Algorithm 7.
Note that the original working vectors of the algorithm p, z and s have been transformed into couples of matrices
containing the first or second half of them. As it can be observed in the Algorithm, this allows to cast vector
operations like Bx into two separate, fast matrix products S1 = DX , S2 = XDT , thus saving the need to store
B explicitly in memory. Only in the proximity step it is required to transform those matrices into vector form and
then reorganize the output back to matrix form.

As already stated, the O(N3) computational cost of the algorithm is dominated by the multiplications with
matrix T and the Schur decomposition (though this is only computed once). Regarding the number of iterations
for convergence, this quantity seems to be highly sensitive to the selected value for the parameter γ, for which the
optimal value depends heavily on the size of the input N and the penalty paramter λ. No easy way to choose γ is
available up to our knowledge.

4.2 2-dimensional TV-L1 case
Even though Projected Newton stands among the algorithms presented for the 1-dimensional TV-L1 case, unfor-
tunately its applicability is limited when dealing with bidimensional entries. The problem to be solved is

minw
1
2‖B

Tw − y‖22 s.t. − λ ≤ w ≤ λ, (4.4)

featuring a Hessian BBT . In spite of this Hessian presenting a nice structure based on Kronecker products, this
structure breaks when rows/columns are removed to obtain the reduced Hessian, a necessary step in the Projected
Newton algorithm. Without this structure the ability to perform a Newton step in linear time is lost, thus rendering
the method inefficient.

This is not the case for the SBB algorithm, which still manages to maintain a good running time per iteration.
Algorithm 8 shows an outline of this method adapted for the 2-dimensional case. As expected, the only difference
strives in the use ofB instead of the 1-dimensionalD, which can be computed efficiently in matrix form using the
properties in (2.18).

4.3 2-dimensional TV-L2 case
As in the 1-dimensional case, when p = 2 the problem to solve is nothing but a Trust Region Subproblem, hence
making Moré-Sorensen the algorithm of choice. However, in this case the problem to solve,

minw
1
2‖B

Tw − y‖22 s.t. ‖w‖2 ≤ λ, (4.5)

presents a semidefinite-positive hessianBBT , and thus it contains zero-valued eigenvalues. Recall that the Moré-
Sorensen method consisted in finding the root of the function ψ(α), which presented second-order poles at the−λi

14

Algorithm 8 Subspace BB for 2-dimensional TV-L1
Inputs: reference data y, penalty parameter λ, initial guess x0, stopping tolerance τ .
Definitions: ([x]P)i = min{max{xi,−λ}, λ}, orthogonal projection of x onto feasible set.
Initialization x = x0.
while stopping criterion > τ do

Compute gradient∇f = B(BTx− y)
Identify set of active constraints
I = {i|(−λ == xi,∇f(x)i ≤ 0)or(λ == xi,∇f(x)i ≥ 0)}

Construct subspace gradient: [∇f̃]i = [∇f]i if i /∈ I , 0 otherwise.
if iteration number is odd then

Compute stepsize: α = ‖∇f̃‖22
〈∇f̃ ,BBT∇f̃〉 .

else
Compute stepsize: α = 〈∇f̃ ,BBT∇f̃〉

‖BBT∇f̃‖22
.

end if
x = [x− α∇f]+.

end while

values. Therefore one might expect limα→0 ψ(α) =∞. However, we will see that in fact this does not happen in
the problem at hand.

Proposition 4. In a problem in the form (4.5), Moré and Sorensen’s “hard case” cannot happen. Furthermore
limα→0 ψ(α) = c ∈ R.

Proof. The Hessian of (3.2),A = BBT , is a Gram matrix, and as such, positive-semidefinite. To see that no poles
appear at zero despite the existence of λi = 0 eigenvalues we need to prove that γi = 0 ∀i s.t. λi = 0. This can be
achieved by using the SVD decomposition B = QΣV T , where Q is the eigenvector matrix of BBT = A, V T is
the eigenvector matrix of BTB, and Σ is a diagonal matrix containing the root of the eigenvalues of BBT = A
(or equivalently, BTB). By definition, γi = −yTBTQi, and applying the SVD decomposition we find

γi = −yTBTQi

= −yTV TΣQTQi

= −yTV TΣei
= −λi(yTV Tei)

where ei is an all-zeros vector except for the i-th entry, which is valued 1. From this expression it is clear that
whenever λi = 0, γi = 0. Therefore the are no poles at α = 0, and so limα→0 ψ(α) = c ∈ R. Consequently,
the rightmost pole is located at some point α̃ < 0, and as by the KKT conditions (3.3) α ≥ 0, then the solution
α∗ ∈ [0,∞).

Corollary 5. Equivalently to the 1-dimensional case, it follows that the maximum value of the ψ(α) function is
attained at α = 0. Therefore, for any λ > λMAX = ψ(0) the solution w is always the same point in the interior
of the feasible set. Thus, the range of λ values generating different models is bounded by λ ∈ [0, λMAX].

Being again in the “easy-case” allows us to follow a similar approach to the one applied in the 1-dimensional
case. In spite of this, the singularity of the Hessian A produces some difficulties. To begin with, it is not possible
to compute the Cholesky decomposition for a non definite-positive matrix. Furthermore, on each iteration of the
algorithm we are required to solve the system (A+ αI2N(N−1))w = −g, g = By, which is singular for α = 0.
We will see how to tackle these problems.

Consider the system (A + αI2N(N−1))w = −g to be solved. Making use again of the properties of the
Kronecker product, we find that

15

(A+ αI2N(N−1))w = −g
(BBT + αI2N(N−1))w = −g([

IN ⊗D
D ⊗ IN

] [
(IN ⊗DT) (DT ⊗ IN)

]
+ αI2N(N−1)

)
w = −g([

IN ⊗DDT DT ⊗D
D ⊗DT DDT ⊗ IN

]
+ α

[
IN ⊗ IN−1

IN−1 ⊗ IN

])
w = −g[

IN ⊗ (DDT + αIN−1) DT ⊗D
D ⊗DT (DDT + αIN−1)⊗ IN

]
w = −g[

IN ⊗ (DDT + αIN−1) DT ⊗D
D ⊗DT (DDT + αIN−1)⊗ IN

] [
w1

w2

]
= −

[
g1

g2

]
,

where we have split g and w into two halves, g1, g2 and w1, w2. We can now break down the system into two
smaller though related equation systems, which we can cast into matrix equation systems as follows

{
(IN ⊗ (DDT + αIN−1))w1 + (DT ⊗D)w2 = −g1

(D ⊗DT)w1 + ((DDT + αIN−1)⊗ IN)w2 = −g2{
(DDT + αIN−1)W1 +DW2D = −G1

DTW1D
T +W2(DDT + αIN−1) = −G2

,

where W1, G1 ∈ R(N−1)×N , W2, G2 ∈ RN×(N−1) are the matrix versions of w1, g1, w2, g2. Systems of
these kind are known as generalized Sylvester equations, and in the general case they lack of an easy solution [24].
Fortunately, once again the special structure of our problem makes the solving of this equation system feasible. To
clarify the following derivation, we will use the definitions M = DDT and M̄ = DDT + αIN−1, so that we
can rewrite the equation system as

{
M̄W1 +DW2D = −G1

DTW1D
T +W2M̄ = −G2{

W1 = M̄−1(−G1 −DW2D)
W2 = (−G2 −DTW1D

T)M̄−1 ,

introducing the second equation into the first one, we get

W1 = M̄−1(−G1 −D(−G2 −DTW1D
T)M̄−1D)

M̄W1 = −G1 −D(−G2 −DTW1D
T)M̄−1D

M̄W1 = −G1 +DG2M̄
−1D +MW1D

TM̄−1D

G1 −DG2M̄
−1D = −M̄W1 +MW1D

TM̄−1D

M−1(G1 −DG2M̄
−1D) = −M−1M̄W1 +M−1MW1D

TM̄−1D

C = −(IN−1 + αM−1)W1 +W1D
TM̄−1D,

with C = M−1(G1 −DG2M̄
−1D), which is nothing else but an standard Sylvester equation. Suppose now

that we can compute the eigendecompositionM = TUTT , and we define Ū = U+αIN−1, so that we also have
the eigendecomposition M̄ = TŪTT . Then the equation to solve turns out to be

C = −TU−1ŪTTW1 +W1D
TTŪ−1TTD

CDTT = −TU−1ŪTTW1D
TT +W1D

TTŪ−1TTDDTT

CDTT = −TU−1ŪTTW1D
TT +W1D

TTŪ−1U

TTCDTT = −U−1ŪTTW1D
TT + TTW1D

TTŪ−1U.

16

Defining now

C̃ = TTCDTT

= U−1(TTG1 −TTDG2TŪ−1TTD)DTT

= U−1(TTG1D
TT−TTDG2TUŪ−1) (4.6)

W̃1 = TTW1D
TT,

we can rewrite the equation as

C̃ = −U−1ŪW̃1 + W̃1Ū−1U,

where the coefficient matrices multiplying W̃1 are diagonal. Hence we can solve for W̃1 in a similar fashion to
our solution of the 2-dimensional ADMM method, resulting in

[W̃1]ij =
C̃ij

−U−1
ii Ūii + Ū−1

jj Ujj

=
C̃ij

−1− α
Uii

+ Ujj

Ujj+α

. (4.7)

With this we can recover the originalW1,W2 solutions for our system by noting thatW1D
T = TW̃1TT , and

so

W2 = (−G2 −DTW̃1TT)TŪ−1TT (4.8)
= (−G2T−DTW̃1)Ū−1TT (4.9)

W1 = TŪ−1TT (−G1 −DW2D). (4.10)

Following this procedure we are able to find a solution for the Sylvester system. The most expensive part of the
algorithm is computing the eigendecomposition and performing multiplications with the T matrices. Fortunately
these tasks can be performed on O(N2 log2N) time as we show in Appendix A.

With all this in mind we can solve efficiently the equation system (A+αI2N(N−1))w = −g. Note however that
for the Moré-Sorensen algorithm we need to compute a vector q obtained by solving the system RTq = w, with
R Cholesky decomposition matrix of (A+αI2N(N−1)). Unfortunately, as stated before, computing the Cholesky
decomposition is not easy in this case, and does not even exist for α = 0. To deal with this, note that the only
purpose of q in the algorithm is to compute the norm ‖q‖22, and so we can write

‖q‖22 = (wTR−1)(R−1T

w)
= wT (RTR)−1w

= wT (A+ αI2N(N−1))−1w

= wTv,

with v = (A+ αI2N(N−1))−1w, that is, v can be found by solving the system (A+ αI2N(N−1))v = w, which
has the same form as (A+ αI2N(N−1))w = −g, and thus can be solved following the same procedure.

Algorithm 9 Moré-Sorensen algorithm for 2-dimensional TV-L2
Inputs: reference image Y , trust region parameter λ, stopping tolerance τ , lower bound αmin.
Initialization α = αmin
Compute g = By.
while stopping criterion > τ do

Obtain w solving system (A+ αI2N(N−1))w = −g.
Obtain v solving system (A+ αI2N(N−1))v = w.

Update α as: α′ = α+ ‖w‖22
wT v

· ‖w‖2−λλ
end while

17

Algorithm 10 Subsystem solver for Algorithm 9
Inputs: lagrange parameter α, independent vector v.
Split independent vector v into matricesG1,G2.
Compute C̃ using (4.6).
Compute W̃1 using (4.7).
ComputeW2,W1 using (4.9,4.8).
Assemble back the solution w fromW1,W2.

(a) Running times (b) Dual gap

Figure 1: Running times and dual gap (accuracy) for increasing input data sizes, for the Alternating-Direction Method of
Multipliers (ADMM), Projected Newton (PN-Armijo-Tuned) and SBB (BCLS-tuned), for the TV L1 1-dimensional problem

The resulting algorithm is presented as Algorithm 9, the procedure to solve the equation systems arising in
each step being shown as Algorithm 10. Note that in formulas (4.6,4.7,4.8,4.9) some of the involved terms do not
depend on α, and thus can be precomputed for further savings. Finally, even though the equation systems can be
solved for α = 0, this situation is prone to suffer from numerical instabilities. To overcome this we define a lower
bound αmin ≤ α such that α is always kept in the interval α ∈ [αmin,∞). Even if the solution of the problem
is an w generated by α = 0, Proposition 4 guarantees that a solution for α = αmin for a sufficiently small αmin
(e.g. 10−7) is a reasonable approximation, and in practice produces small a enough dual gap.

5 Experiments
In this section we present some numerical results showing the performance of the developed algorithms. We
will test the running times and accuracy of the solution in two different scenarios: for a fixed-magnitude penalty
parameter λ and increasing sizes of the input data, and for a fixed size of the input data and increasing penalty λ.
For the first scenario we will run several trials over the algorithms in which we will select a random λ in the range
[1 − 100], and increasing values of the input entries ranging from 10 up to 106. In the second scenario we will
maintain a fixed input of size 1000 and vary λ from 10−3 to 103.

5.1 1-dimensional case
Figure 1 shows running times in seconds and dual gap obtained by the algorithms presented to solve the TV L1
problem. For ADMM a coefficient γ = 1 was selected. For Projected Newton the Armijo paramters were β = 0.9
and σ = 0.1.The three algorithms present a similar tendency in their running times as the input grows larger,
though Projected Newton stands as a clear winner, both in running times and accuracy of the solution, specially in
the case of small input data.

On the other hand, when the size of the input is fixed and we increase the penalty λ, large differences arise
between the methods, as can be observed in Figure 2. For small penalties ADMM and specially SBB are very

18

(a) Running times (b) Dual gap

Figure 2: Running times and dual gap (accuracy) for increasing λ penalties, for the Alternating-Direction Method of Multipliers
(ADMM), Projected Newton (PN-Armijo-Tuned) and SBB (BCLS-tuned), for the TV L1 1-dimensional problem.

fast, but the performance largely degrades for large penalties. Conversely Projected Newton runs fastest when the
penalty is large. What is more, Projected Newton provides solutions with good accuracy for all cases. Therefore
we can conclude that for this case Projected Newton is the algorithm of choice.

For L2 case we compare ADMM against Moré-Sorensen in Figure 3. For ADMM we use the rule-of-thumb
of selecting γ =

√
N , which seems to work well in practice. Both methods perform adequately, though Moré-

Sorensen is clearly faster and generally obtains better accuracy in spite of showing larger variance in the quality of
the solutions.

Regarding the effect of λ, in Figure 4 we can clearly see that the performance of ADMM largely degrades
for large values of the penalty, as well as the accuracy of the solution. Running the algorithm with different γ
values somehow alleviates this problem, but there does not seem to be a clear rule for choosing γ approriately.
Conversely Moré-Sorensen seems to work well under any situation and it is parameter-free. Therefore we state
that Moré-Sorensen is the best method for this case of the TV problem.

5.2 2-dimensional case
When using the L1 norm in the 2-dimensional case, the obtained results are poor. Figure 5 shows the performance
of the ADMM method with parameter γ = 1. By comparing this to previous results for the 1-dimensional case,
we can see that the convergence speed is slow. For the proposed extension of SBB to 2 dimensions (results not
shown), even though the cost per iteration is slow, a very large number of iterations are required for convergence,
turning the method impractical. In section 6 we suggest some alternative ideas to tackle this problem.

Figure 6 presents the results for Alternating-Direction Method of Multipliers (ADMM) and Moré-Sorensen
algorithms in the L2 case. For ADMM a γ =

√
N was selected. This time ADMM seems to perform better for

small sizes of input data, although eventually both methods achieve similar performance. Regarding the accuracy,
though, Moré-Sorensen provides better quality solutions.
It must be pointed out that most of the time required by Moré-Sorensen is spent in performing the DST operation.
For this particular implementation the DST was computed by casting it into a FFT operation and using MATLAB’s
internal fft operation. This is not the most efficient way to implement a DFT, and thus a further speed improvement
could be gained by refining this point.

When analyzing the performance of these algorithms for increasing penalty values, we observe a behaviour quite
similar to the one shown for the 1-dimensional case (see Figure 7). While for small penalties both methods behave
similarly, for large penalties the performance of ADMM degrades significantly. On the other hand both methods
provide similar quality of solutions on average, though ADMM is more stable. Unfortunately the two of them fail
to provide acceptable solutions for large penalties. Note however that such large penalties might be too strong for
standard applications of the model, and so may not be as relevant in practice.

19

(a) Running times (b) Dual gap

Figure 3: Running times and dual gap (accuracy) for increasing input data sizes, for the Alternating-Direction Method of
Multipliers (ADMM) and Moré-Sorensen, for the TV L2 1-dimensional problem.

6 Extensions and further work
More complex models making use of a Total Variation regularization could be solved by using the proposed
methods as intermediate solvers. For instance, the function

min
x
f(x) + λ‖Mx‖p,

either for M = D or M = B could be solved by a Trust Region algorithm like the one presented in [16], where
at each step a quadratic model approximating f is constructed and minimized by solving a proximity operator in
the form

arg min
x

1
2‖x− y‖

2
2 + λ‖Mx‖p,

for a certain y, which is exactly the problem we have solved here. In this kind of setting the ability to solve fastly
each of these subproblems is crucial for the performance of the overall algorithm. Having proven that our proposed
algorithms are able to solve this class of problems efficiently and to a good degree of accuracy, we believe that a
Trust Region approach based on them could provide good results also for this general problems.

Other proposals for TV-like problems are found in the literature, e.g. in the context of image deblurring. In [7]
an L1 norm is proposed for the fidelity term instead of the standard L2 norm, resulting in an optimization problem
in the form

min
x
||x− y||1 + λ||Dx||1.

Another proposal in [15] uses the p power of the TV Lp norm, resulting in

min
x

1
2‖x− y‖

2
2 + λ‖Dx‖pp.

In [5] yet more complex extensions of the TV operator are presented. Whether the algorithms proposed in this
work can be extended to these setting is an open question at the moment.

Additionally it would be of interest to test whether an Interior Point (IP) method [25] could overperform the pre-
sented algorithms for the case of the L1 norm. These algorithms are known for their good convergence properties
and their flexibility to tackle a broad range of optimization problems. However, their convergence speed largely
depends on the ability to solve efficiently a relaxed KKT satisfiability equation system. Software libraries such as
CVXOPT [9] allow to plug-in customized solvers for this system, so that the IP method can take advantage of it. A

20

(a) Running times (b) Dual gap

Figure 4: Running times and dual gap (accuracy) for increasing λ penalties, for the Alternating-Direction Method of Multipliers
(ADMM) and Moré-Sorensen, for the TV L2 1-dimensional problem.

preliminary study has revealed that a TV L1 solver based on this approach could be feasible, though further work
is needed to construct a functional implementation. Furthermore whether this approach could be extended to the
L1 2-dimensional case, where we lack of an efficient algorithm, is another point of interest.

Finally, as already mentioned, the most frequent application of the TV regularization is within the context
of image processing, in which it is used for operations such as denoising, inpainting and deblurring [10]. For
these applications a number of software tools are already publicly available. Therefore, to correctly assess the
performance of the algorithms presented here a comparison againts those implementations should be made.

A Fast matrix factorizations

MatricesDDT andDTD present the following tridiagonal structure

DDT =

2 −1
−1 2 −1

−1 2 −1
. . .
−1 2 −1

−1 2

∈ R(N−1)×(N−1),

DTD =

1 −1
−1 2 −1

−1 2 −1
. . .
−1 2 −1

−1 1

∈ RN×N .

Any tridiagonal matrix can be factorized in the formM = L∆LT [14], the factors having the following structure

21

(a) Running times (b) Dual gap

Figure 5: Running times and dual gap (accuracy) for increasing input data sizes (N×N), for the Alternating-Direction Method
of Multipliers (ADMM), for the TV L1 2-dimensional problem.

L =

1
l1 1

l2 1
.

lN−2 1
lN−1 1

, ∆ =

δ1

δ2
. . .

δN

 .

The entries l and δ can be easily computed as δ1 = α1, li = αi−
β2

i−1
δi−1

, δi = βi

δi
. The LAPACK library [1] includes

a very fast routine (DPTTRF) that computes this decomposition, as well as a routine to solve a tridiagonal system
of equations based on this decomposition (DPTTRS).

Additionally, the eigendecomposition of M = DDT = TUTT can also be computed efficiently, with T
eigenvectors matrix and U diagonal matrix with the eigenvalues. A general eigendecomposition incurs in costs of
order O(N3). We can easen this by invoking the arguments in [20], which state that for this particular matrix the
eigenvalues have the closed form expression

λi = 2− 2 cos
(

iπ

n+ 1

)
,

n size of the M matrix, which in our case corresponds to n = N − 1. On the other hand, the eigenvectors follow
the expression

Tkj = βj sin
(
kjπ

n+ 1

)
,

for appropriate normalization factors βj such that ‖vj‖2 = 1 ∀j, which can be computed easily. Thus the eigende-
composition can be performed in closed form with a cost of order O(N2). In addition to this, multiplications by T
can be performed fast by noting that, e.g. in the Tv case we have

[Tv]i =
N−1∑
j=1

vjβj sin
(

ijπ

n+ 1

)
.

This calculation resembles the transformation known as Discrete Sine Transformation of type 1 (DST-I, DST for
short), which presents the following expression

22

(a) Running times (b) Dual gap

Figure 6: Running times and dual gap (accuracy) for increasing input data sizes (N×N), for the Alternating-Direction Method
of Multipliers (ADMM) and Moré-Sorensen, for the TV L2 2-dimensional problem.

[DST (x)]i =
n∑
j=1

xj sin
(

ijπ

n+ 1

)
.

By using the transformation ṽi = viβi, which can be written as ṽ = diag(β)v we find out that

[Tv]i = [DST (ṽ)]i = [DST (diag(β)v)]i.

Therefore we can compute each resulting row of the product by matrix T by performing a DST instead. The DST
operation presents simmetries that allow the use of a divide-and-conquer strategy to speed-up its computation,
much in the way the Fast Fourier Transform is performed, resulting in computational costs of order O(N log2N).
Publicly available libraries like FFTW [12] offer efficient methods to perform this computation. All other possible
products involving T can be computed similarly, namely

[
vTT

]
i

= [diag(β)DST (v)]Ti ,[
TT v

]
i

= [diag(β)DST (v)]i ,[
vTTT

]
i

= [DST (diag(β)v)]Ti .

Therefore a computation in the form m̃v results in a cost of order O(N2 log2(N)). Note also that the Schur de-
composition of a symmetric matrix (likeDDT) coincides with its eigendecomposition, and thus can be computed
in the same way.

For the case of the matrix DTD, it can be shown that the eigenvalues are the same as those for DDT plus a
zero eigenvalue. Unfortunately there is no simple rule to compute the eigenvectors (up to our knowledge), and thus
if the eigenvectors are required a general eigedecomposition for tridiagonal matrices (available in LAPACK) must
be performed.

References
[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Ham-

marling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide. Society for Industrial and Applied Mathe-
matics, Philadelphia, PA, third edition, 1999. ISBN 0-89871-447-8 (paperback). 22

[2] R. H. Bartels and G. W. Stewart. Solution of the matrix equation AX + XB = C. Communications of the
ACM, 15(9):820–826, September 1972. 13

23

(a) Running times (b) Dual gap

Figure 7: Running times and dual gap (accuracy) for increasing λ penalties, for the Alternating-Direction Method of Multipliers
(ADMM) and Moré-Sorensen, for the TV L2 2-dimensional problem.

[3] Jonathan Barzilai and Jonathan M. Borwein. Two-point step size gradient methods. IMA Journal of Numeri-
cal Analysis, 8:141–148, 1988. 9

[4] Dimitri P. Bertsekas. Projected newton methods for optimization problems with simple constraints. SIAM J.
Control and Optimization, 20(2), March 1982. 6, 7

[5] Antoni Buades, Triet M. Le, Jean-Michel Morel, and Luminita A. Vese. Fast cartoon + texture image filters.
IEEE Transactions on Image Processing, 19(8), August 2010. 20

[6] Richard H. Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A limited memory algorithm for bound
constrained optimization. Technical report, Northwestern University, 1994. 6

[7] Tony F. Chan and Selim Esedoglu. Aspects of total variation regularized l1 function approximation. Technical
report, UCLA Mathematics Department, February 2004. 20

[8] Patrick L. Combettes and Jean-Christophe Pesquet. Proximal splitting methods in signal processing. arXiv,
2009. 3, 5, 6

[9] Joachim Dahl and Lieven Vandenberghe. Cvxopt: Python software for convex optimization. URL http:
//abel.ee.ucla.edu/cvxopt/index.html. 20

[10] Joachim Dahl, Per Christian Hansen, Søren Holdt Jensen, and Tobias Lindstrøm Jensen. Algorithms and
software for total variation image reconstruction via first-order methods. Numer Algor, (53):67–92, 2010. 21

[11] Jennifer B. Erway and Philip E. Gill. A subspace minimization method for the trust-region step. SIAM J.
Optim., 20(3):1439–1461, 2009. 10

[12] Matteo Frigo and Steven G. Johnson. The design and implementation of FFTW3. Proceedings of the IEEE,
93(2):216–231, 2005. Special issue on “Program Generation, Optimization, and Platform Adaptation”. 23

[13] Donald Goldfarb and Wotao Yin. Second-order cone programming methods for total variation-based image
restoration. SIAM J. Sci. Comput., 27(2):622–645, 2005. 1

[14] Gene H. Golub and Gerard Meurant. Matrices, Moments and Quadrature with Applications. Princeton
University Press, 2010. 21

[15] Christian Hansen, James G. Nagy, and Dianne P. O’Leary. Deblurring images: matrices, spectra and filtering.
SIAM, 2006. 20

[16] Dongmin Kim, Suvrit Sra, and Inderjit Dhillon. A scalable trust-region algorithm with application to mixed-
norm regression. In Proceedings of the 27th International Conference on Machine Learning, 2010. 3, 20

24

http://abel.ee.ucla.edu/cvxopt/index.html
http://abel.ee.ucla.edu/cvxopt/index.html

[17] Dongmin Kim, Suvrit Sra, and Inderjit S. Dhillon. A non-monotonic method for large-scale nonnegative least
squares. Technical report, University of Texas at Austin and Max-Planck-Institute for Biological Cybernetics,
May 2010. 6, 9

[18] Chih-Jen Lin and Jorge J. Moré. Newton’s method for large bound-constrained optimization problems. SIAM
J. Optim., 9(4):1100–1127, 1999. 6

[19] Jorge J. Moré and D. C. Sorensen. Computing a trust region step. SIAM J. Sci. Stat. Comput., 4(3), September
1983. 10, 11

[20] Dianne P. O’Leary. Scientific computing with case studies. SIAM, 2009. 13, 22

[21] Tyrrell Rockafellar. Convex Analysis. Princeton University Press, 1997. 3

[22] Marielba Rojas, Sandra A. Santos, and Danny C. Sorensen. Algorithm 873: LSTRS: MATLAB software for
large-scale trust-region subproblems and regularization. ACM Trans. Math. Software, 34(2):11, 2008. 10

[23] Leonid I. Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based noise removal algorithms.
Physica D, 60:259–268, 1992. 1

[24] Charles F. Van Loan. The ubiquitous kronecker product. Journal of Computational and Applied Mathematics,
123:85–100, 2000. 5, 16

[25] Stephen J. Wright. Primal-Dual Interior Point Methods. SIAM, 1997. 20

25

	Introduction
	Dual and structure of the TV problem
	Matrix formulation of the TV problem
	Duality of the TV problem
	Structure induced by the TV operator

	1-dimensional Total Variation solvers
	Alternating-Direction Method of Multipliers solver
	TV-L1 case
	Projected Newton
	Subspace BB

	TV-L2 case

	2-dimensional Total Variation solvers
	2-dimensional ADMM
	2-dimensional TV-L1 case
	2-dimensional TV-L2 case

	Experiments
	1-dimensional case
	2-dimensional case

	Extensions and further work
	Fast matrix factorizations

