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Abstract

We present a new technique for structured
prediction that works in a hybrid gener-
ative/discriminative way, using a one-class
support vector machine to model the joint
probability of (input, output)-pairs in a joint
reproducing kernel Hilbert space.

Compared to discriminative techniques, like
conditional random fields or structured out-
put SVMs, the proposed method has the ad-
vantage that its training time depends only
on the number of training examples, not on
the size of the label space. Due to its gener-
ative aspect, it is also very tolerant against
ambiguous, incomplete or incorrect labels.

Experiments on realistic data show that our
method works efficiently and robustly in sit-
uations for which discriminative techniques
have computational or statistical problems.

1. Introduction

We study the problem of structured prediction, i.e. the
task of learning a function f : X — ), where ) is
not just a simple boolean or discrete variable, but can
have a rich substructure. Typical examples are graph-
labeling problems, e.g. in natural language parsing or
image segmentation. While some generative predic-
tion techniques have been known and used for sev-
eral decades, new momentum has been given to the
field by recent discriminative techniques such as con-
ditional random fields (CRFs (Lafferty et al., 2001),
KCRFs (Lafferty et al., 2004)), structured percep-
trons (Collins, 2002; Kashima & Tsuboi, 2004), and
structured mazimum margin techniques (M?N (Taskar
et al., 2003), S-SVM (Tsochantaridis et al., 2005)).

These discriminative methods often achieve superior
performance compared to earlier generative ones, but
they also come with certain disadvantages. In partic-
ular their training is often computationally costly, and
they do not always deal well with training data that
contains very noisy or ambiguous labels.

In this paper we introduce joint-kernel support estima-
tion (JKSE), a new method for structured prediction

that avoids these problems by using a hybrid genera-
tive/discriminative setup. The central idea is to work
with the joint probability density of samples and la-
bels, like generative models do. However, instead of
fully modelling the density itself, we only estimate its
support using a discriminative one-class support vec-
tor machine (Schélkopf et al., 2001). JKSE can handle
both structured input and output spaces through the
use of a joint kernel function over the input and output
domains. It is trained by solving a convex optimization
problems for which efficient standard software pack-
ages are available, making JKSE applicable to datasets
with tens of thousands of examples or more, orders of
magnitude larger than what many other techniques for
structured output prediction can handle.

2. Joint Kernel Support Estimation

Following the common language of the field we formu-
late structured prediction in probabilistic terms as a
MAP-prediction problem. By X we denote the space
of observations and by ) the space of possible outputs.
Note that for our setup it is not required that X or )
decompose into smaller entities like nodes or edges in a
graph. We assume that (sample, label) pairs (z,y) fol-
low a joint-probability density p(z,y), and that a set
of ii.d. samples (z;,¥;)i=1,. n is available for train-
ing. The task then consists of learning a mapping
f+ X — Y that minimizes the expected loss in a clas-
sification sense, i.e. for a new sample x € X', we want
to determine the labeling y € Y that maximizes the
posterior probability p(y|z) or, equivalently, the joint
probability p(x,y).

In joint kernel support estimation we follow a gener-
ative path and form a model of the joint likelihood
p(z,y) from the given training data. However, since
density estimation in high dimensional spaces is no-
toriously difficult, we simplify the problem by assum-
ing that the posterior probability in the feature space
is distinctive, ie. p(ylz) > 0 for correct predic-
tions y and p(y|z) ~ 0 for incorrect y. Consequently,
p(z,y) > 0 only if y is a correct label for z, and it suf-
fices to estimate the support of p(z,y) instead of the
full density. Because p(y|z) ~ 0 implies p(z,y) =~ 0,
we can afterwards still use f(z) := argmax p(z,y) for
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prediction. Note that we do not require p(y|x) to be
unimodal: different y € Y can be “correct” predictions
for x € X, a situation that occurs quite frequently in
realistic structured prediction tasks.

The generative setup limits JKSE’s ability to extrapo-
late, because p(z,y) = p(y|x)p(x) and for a test sample
x € X this expression can vanish not only for wrong
predictions y but also if x lies an area of X not cov-
ered by the training set. However, the generative se-
tups also have certain advantages, e.g., the possibility
for adaptive and online learning by building a smaller
model of p(z,y) first and later extending it without or
with only very little retraining.

2.1. Representation

We model the central quantity of interest p(z,y) by a
log-linear model

plr,y) = o exp(uto(r,y)) (1)
with the partition function Z = nyy exp(wlo(z,y)).
Because our model is generative, Z depends neither on
x nor on y and we will see later that it can be ignored
during both training and inference. Consequently, the
prediction step reduces to

f(z) = argmax, ¢y w'é(z, y) (2)

which is equivalent to a MAP-estimate by Bayes’ rule.

The feature map ¢(x,y) is completely generic. While
in many situations, such as sequence labeling, it is nat-
ural to form ¢(x,y) by a concatenation or summation
of per-site features and neighborhood relations, we do
not formally require such a decomposition. Further-
more, ¢(x,y) does not have to be explicit and in the
following we will assume that it is given only implic-
itly by a suitable positive definite joint kernel function
E:(XxP)x(XxY) —R

2.2. Parameter Learning

To train JKSE, we only need to find a suitable weight
vector w such that the right hand side of (1) reflects
p(x,y) over the training set. Since we are mainly inter-
ested in the support of p(z,y), we use a one-class sup-
port vector machine (1-SVM) concept for this purpose.
It allows the robust estimation of quantiles of proba-
bility densities in high dimensional spaces (Schoélkopf
et al., 2001). 1-SVM training consists of finding the
hyperplane in a latent Hilbert space H that best sepa-
rates the training samples from the origin with the ex-
ception of possible outliers that are identified automat-
ically during the training procedure. A free parameter
v € (0,1] acts as an upper bound to the percentage
of outliers, i.e. the larger v is, the more freedom the
method has to disregard any of the training samples.

In JKSE, the role of the data samples is taken by
(sample, label) pairs, and H is induced by the joint
kernel function k( (z,v), (¢',y')). By dualization, we
can write JKSE training as solving the convex opti-
mization problem

max Z o Ky — Z%‘Kn' 3)
i i

subject to 0 < a; < ﬁ and ), o; = 1, where K;; =
k((zi,9i), (z;,y;)) is the joint-kernel matrix. Note
that the solution to (3) is generally sparse, i.e. most
coefficients «; vanish and need not be considered when
evaluating the JKSFE decision function, which is

f(z) = argmax, oy, Zaik((xuyi)»(%y))~ (4)

i=1

In the following, we will assume that some inference
algorithm for calculating the argmax in (4), or a suit-
able approximation to it, is available.

Note that neither at training nor at prediction time do
we need a method to calculate or approximate the par-
tition function Z. In particular, because JKSE train-
ing relies only on the matrix of joint-kernel values, the
training time depends only on the number of samples
in the training set, not on the structure of the output
space. This is in contrast other techniques for struc-
tured prediction, like CRFs or S-SVMs that require
marginalization or repeated inference over the label
space during training. As an additional advantage,
the automatic identification of outliers in the training
set by a suitable choice of v allows training of JKSE
even on data with a significant number of label errors.

2.3. Large Scale Training

Solving the quadratic optimization problem (3) has in
principle the same computational complexity as train-
ing an ordinary two-class SVM. However, because 1-
SVMs are less popular for pattern recognition tasks,
significantly less effort has been spend on developing
fast training routines and on optimizing the implemen-
tations. Existing packages, e.g. 1ibSVM, can handle
thousands of examples, but not tens of thousands.

We can overcome this limitation by reformulating
JKSE training as a binary classification problem, for
which faster training techniques are available. The
original analysis in (Scholkopf et al., 2001) shows that
—for datasets that can be linearly separated from the
origin and in the hard-margin case (v — 0)—the weight
vector found by optimizing the 1-SVM problem (3) is
equivalent to solving the optimization problem of a
regular support vector machine for binary classifica-
tion with only positive training examples and a clas-
sification hyperplane that passes through the origin.
Equivalently, one can allow arbitrary hyperplanes, but
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augment the training set with a mirrored copy of the
data and inverted labels. In the soft-margin case, there
is a one-to-one correspondence between the parameter
v of the one-class problems and the parameter C of
the two-class problem such that both methods results
in the same separation hyperplane. Consequently, a
1-SVM with model selection over v can equivalently
be implemented by a bias term free SVM with model
selection over C. This allows us to make use of ex-
isting software packages for large scale SVM training,
e.g. (Bordes et al., 2005), to train JKSE with datasets
of tens of thousand of examples or more. For feature
maps that can be computed explicitly, specialized lin-
ear SVM solvers, e.g. (Joachims, 2006; Shalev-Shwartz
et al., 2007; Lin et al., 2008; Hsieh et al., 2008), allow
JKSE training even with millions of examples.

3. Experimental Evaluation

We apply JKSE to a computer vision task that al-
lows us to demonstrate the two major claims that we
made: robustness against large amounts of label noise,
and computational efficiencies of training without iter-
ated inference. We compare JKSE to an S-SVM based
structured prediction method that has recently been
shown to achieve state-of-the-art performance on simi-
lar object detection tasks (Blaschko & Lampert, 2008).

3.1. Object Localization in Images

Object localization by structured prediction can be
modeled by taking the observations to be natural im-
ages and the labels to be bounding boxes of the target
objects. As dataset we use the UIUC Cars set (Agar-
wal et al., 2004) using the multiscale part for train-
ing and the singlescale part for testing. This leaves
us with 108 train images and 170 test images, which
is close to the upper limit of what the S-SVM based
reference implementation is able to handle in reason-
able time. The images are transformed into a stan-
dard feature representation, and the localization ker-
nel from (Blaschko & Lampert, 2008) is used as joint
kernel function. It represents image regions by their
bag-of-visual-words histogram over a four level spatial
pyramid and combines the resulting histograms into
kernel values by either a linear scalar product or a y2-
kernel. The former choice allows fast M AP-inference
using an integral-image trick, whereas the latter is gen-
erally accepted as a better kernel for computer vision
tasks, but the results in a computationally expensive
MAP-inference step that requires an exhaustive scan
over all image locations. Because we also want to mea-
sure the performance of JKSE and S-SVM for training
sets with noisy labels, we simulate label noise by ar-
tificially introducing label errors into the dataset by
swapping bounding box coordinate between different
training images. The percentage of swapped labels is

a free parameter, r, that we vary between 0% (perfect
labels) and 100% (random labels).

3.2. Model Selection

Training JKSE in the situation described takes less
than a second of computation time. Prediction can
be done in the order of seconds for the linear kernel
function, whereas for the x? kernel it takes a several
minutes per image. The S-SVM has identical evalua-
tion time, as it solves the same inference problem, but
for training it requires many iterative solutions of the
MAP estimate, each corresponding to an evaluation of
the prediction function over many images. This proce-
dure is only feasible for the linear kernel, and even with
the fast integral image trick, the total training took
approximately 5 hours. Within this time, on average
close to 3,500 MAP calls were performed accounting
for 97% of total running time.

The long training time makes model selection by cross-
validation impractical. Instead, we rely on a simpli-
fied criterion: we train one S-SVM for each parameter
C € {1073,1072,...,10%} on the full training set. The
resulting weight vectors are treated as classifiers that
we test on a held out set of 1050 smaller images that
are also part of the original dataset, but could not
be used for localization since they are pre-cropped.
For testing, we adopt the C' parameter that yields the
largest area under ROC curve in this setup. For com-
parability, we follow the same procedure for JKSE to
select v € {0.05,0.1,...,1.0}. Note, however, that
JKSE would in fact be fast enough to perform full
cross-validation, and this could be expected to improve
the localization performance to certain extent.

3.3. Results

Localization performance on the UIUCcars dataset is
generally measured by precision-recall curves. The
curves for S-SVM and JKSE are depicted in Figure 1.
We also provide a table of equal-error-rates, i.e. the
error rate where precision equal recall.

The left two plots show the results of S-SVM and
JKSE with linear kernels: S-SVM achieves higher pre-
cision and recall than JKSE for noiseless data as well
as when up to 30% of labels are scrambled. One can
assume that S-SVM'’s Tikhonov regularization success-
fully compensates the disturbance introduced by this
level of label errors. For label error rates of 50%
and more, S-SVM performance takes a huge dive, and
at 90% label errors, performance is basically random.
Performance of JKSE with the same kernel function,
though starting from a lower precision level, decreases
more gradually when the amount of label errors in-
creases. Even for 90% label noise, JKSE achieves
better-than-random localization performance. We at-
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S-SVM | JKSE | JKSE

EER (lin.) | (lin) | (?)

r=0.0 0.18 0.36 0.08
r=0.1 0.16 0.35 0.11
r=0.3 0.27 0.43 0.12
r=0.5 0.76 0.60 0.14
r=0.7 0.55 0.68 0.37
r=0.9 0.92 0.79 0.62

o £ ) 0 o ) £ 00

(a) S-SVM linear kernel (b) JKSE linear kernel

r=1.0 0.91 0.91 0.91

o E) w0 0

(¢) JKSE y2-kernel

Figure 1. Precision-recall plots and equal-error-rates (EER) of localization performance of linear S-SVM, linear JKSE
and x2-JKSE for different levels r of label noise. With an identical kernel, S-SVM dominates JKSE in terms of accuracy.
However, with a non-linear kernel, JKSE performance surpasses S-SVM and it achieves non-trivial localization performance

even with 90% label noise. See the text for further details.

tribute this to a success application of the v-formalism:
at this level v = 0.95 was chosen thereby treating a
large amount of the training data as outliers.

The third plot shows results for JKSE with the x?
kernel function. Clearly, JKSE’s localization accuracy
is improved over the linear case and it also achieves
better results than S-SVM. Adding up to 30% label
noise hardly decreases the accuracy compared to per-
fect labels. For higher noise levels the performance
decreases, however always staying clearly above the
results for S-SVM. Even when 90% of training labels
are randomly chosen, JKSE achieves a recall level of
50% and its precision lies above 40% over most of the
plot. Clearly, the improved performance is a direct
consequence of the use of a better kernel function. It
can be assumed that S-SVM based localization would
profit from using a x? localization kernel as well. How-
ever, as mentioned above, training S-SVM with such
a kernel is not computationally feasible with current
techniques even for small training sets.

4. Conclusions

We have proposed Joint Kernel Support Estimation
(JKSE), a technique that allows structured prediction
with a training procedure that is as efficient and easy
as ordinary SVM training. JKSE relies on a hybrid
generative/discriminative view, modelling of the joint
probability density of sample-label pairs, but doing so
using a one-class SVM for margin-based support esti-
mation. The resulting algorithm is on the one hand
very fast, as no iterated inference has to performed at
training time. On the other hand it is robust, because
it does not assume that all label output labels for a
sample are included in the training set, and it can han-
dle mislabeled data through use of the v-formalism.

From the point of pure classification performance with
identical joint kernel functions, JKSE seems not to be
as powerful as discriminative techniques. However, its
strength lies in the fact that it can be applied in situa-
tion where CRF or S-SVM have problems or even fail:

when training is not computationally feasible or only
so by choosing a suboptimal kernel, and also, when
the provided training data contain incomplete or in-
correct labels. While few of the standard benchmark
datasets in machine learning are of this type, this is
a quite common situation in realistic pattern recog-
nition problems, especially in domains where ground
truth cannot easily be generated even by humans, e.g.,
bioinformatics or medical imaging.

For future work, a further analysis of the assumptions
and the properties of JKSE is required, in particular
regarding the question: for which structured learning
problems knowing the support of p(z,y) is in fact suf-
ficient to achieve good prediction performance?
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