
A Practical Monte Carlo Implementationof Bayesian LearningCarl Edward RasmussenDepartment of Computer ScienceUniversity of TorontoToronto, Ontario, M5S 1A4, Canadacarl@cs.toronto.eduAbstractA practical method for Bayesian training of feed-forward neuralnetworks using sophisticated Monte Carlo methods is presentedand evaluated. In reasonably small amounts of computer time thisapproach outperforms other state-of-the-art methods on 5 data-limited tasks from real world domains.1 INTRODUCTIONBayesian learning uses a prior on model parameters, combines this with informationfrom a training set, and then integrates over the resulting posterior to make pre-dictions. With this approach, we can use large networks without fear of over�tting,allowing us to capture more structure in the data, thus improving prediction accu-racy and eliminating the tedious search (often performed using cross validation) forthe model complexity that optimises the bias/variance tradeo�. In this approachthe size of the model is limited only by computational considerations.The application of Bayesian learning to neural networks has been pioneered byMacKay (1992), who uses a Gaussian approximation to the posterior weight distri-bution. However, the Gaussian approximation is poor because of multiple modes inthe posterior. Even locally around a mode the accuracy of the Gaussian approxi-mation is questionable, especially when the model is large compared to the amountof training data.Here I present and test a Monte Carlo method (Neal, 1995) which avoids theGaussian approximation. The implementation is complicated, but the user is not re-quired to have extensive knowledge about the algorithm. Thus, the implementationrepresents a practical tool for learning in neural nets.

1.1 THE PREDICTION TASKThe training data consists of n examples in the form of inputs x = fx(i)g andcorresponding outputs y = fy(i)g where i = 1 : : :n. For simplicity we consideronly real-valued scalar outputs. The network is parametrised by weights w, andhyperparameters h that control the distributions for weights, playing a role similarto that of conventional weight decay. Weights and hyperparameters are collectivelytermed �, and the network function is written as F�(x), although the function valueis only indirectly dependent on the hyperparameters (through the weights).Bayes' rule gives the posterior distribution for the parameters in terms of the like-lihood, p(yjx; �), and prior, p(�):p(�jx;y) = p(�)p(yjx; �)p(yjx) :To minimize the expected squared error on an unseen test case with input x(n+1),we use the mean predictionŷ(n+1) = Z F�(x(n+1))p(�jx;y)dk�: (1)2 MONTE CARLO SAMPLINGThe following implementation is due to Neal (1995). The network weights areupdated using the hybrid Monte Carlo method (Duane et al. 1987). This methodcombines the Metropolis algorithm with dynamical simulation. This helps to avoidthe random walk behavior of simple forms of Metropolis, which is essential if wewish to explore weight space e�ciently. The hyperparameters are updated usingGibbs sampling.2.1 NETWORK SPECIFICATIONThe networks used here are always of the same form: a single linear output unit, asingle hidden layer of tanh units and a task dependent number of input units. Alllayers are fully connected in a feed forward manner (including direct connectionsfrom input to output). The output and hidden units have biases.The network priors are speci�ed in a hierarchical manner in terms of hyperparam-eters; weights of di�erent kinds are divided into groups, each group having it's ownprior. The output-bias is given a zero-mean Gaussian prior with a std. dev. of� = 1000, so it is e�ectively unconstrained.The hidden-biases are given a two layer prior: the bias b is given a zero-meanGaussian prior b � N (0; �2); the value of � is speci�ed in terms of precision � = ��2,which is given a Gamma prior with mean � = 400 (corresponding to � = 0:05) andshape parameter � = 0:5; the Gamma density is given by p(�) � Gamma(�; �) /��=2�1 exp(���=2�). Note that this type of prior introduces a dependency betweenthe biases for di�erent hidden units through the common � . The prior for thehidden-to-output weights is identical to the prior for the hidden-biases, except thatthe variance of these weights under the prior is scaled down by the square rootof the number of hidden units, such that the network output magnitude becomesindependent of the number of hidden units. The noise variance is also given aGamma prior with these parameters.

The input-to-hidden weights are given a three layer prior: again each weight isgiven a zero-mean Gaussian prior w � N (0; �2); the corresponding precision forthe weights out of input unit i is given a Gamma prior with a mean � and a shapeparameter �1 = 0:5 : �i � Gamma(�; �1). The mean � is determined on the toplevel by a Gamma distribution with mean and shape parameter �0 = 1 : �i �Gamma(400; �0). The direct input-to-output connections are also given this prior.The above-mentioned 3 layer prior incorporates the idea of Automatic RelevanceDetermination (ARD), due to MacKay and Neal, and discussed in Neal (1995). Thehyperparameters, �i, associated with individual inputs can adapt according to therelevance of the input; for an unimportant input, �i can grow very large (governedby the top level prior), thus forcing �i and the associated weights to vanish.2.2 MONTE CARLO SPECIFICATIONSampling from the posterior weight distribution is performed by iteratively updatingthe values of the network weights and hyperparameters. Each iteration involves twocomponents: weight updates and hyperparameter updates. A cursory descriptionof these steps follows.2.2.1 Weight UpdatesWeight updates are done using the hybrid Monte Carlo method. A �ctitious dy-namical system is generated by interpreting weights as positions, and augmentingthe weights w with momentum variables p. The purpose of the dynamical systemis to give the weights \inertia" so that slow random walk behaviour can be avoidedduring exploration of weight space. The total energy, H, of the system is the sumof the kinetic energy, K, (a function of the momenta) and the potential energy, E.The potential energy is de�ned such that p(w) / exp(�E). We sample from thejoint distribution for w and p given by p(w;p) / exp(�E �K), under which themarginal distribution for w is given by the posterior. A sample of weights from theposterior can therefore be obtained by simply ignoring the momenta.Sampling from the joint distribution is achieved by two steps: 1) �nding new pointsin phase space with near-identical energies H by simulating the dynamical systemusing a discretised approximation to Hamiltonian dynamics, and 2) changing theenergy H by doing Gibbs sampling for the momentum variables.Hamiltonian Dynamics. Hamilton's �rst order di�erential equations for H areapproximated by a series of discrete �rst order steps (speci�cally by the leapfrogmethod). The �rst derivatives of the network error function enter through thederivative of the potential energy, and are computed using backpropagation. Inthe original version of the hybrid Monte Carlo method the �nal position is thenaccepted or rejected depending on the �nal energy H� (which is not necessarilyequal to the initial energy H because of the discretisation). Here we use a modi�edversion that uses an average over a window of states instead. The step size of thediscrete dynamics should be as large as possible while keeping the rejection ratelow. The step sizes are set individually using several heuristic approximations, andscaled by an overall parameter ". We use L = 200 iterations, a window size of 20and a step size of " = 0:2 for all simulations.Gibbs Sampling for Momentum Variables. The momentum variables areupdated using a modi�ed version of Gibbs sampling, allowing the energy H tochange. A \persistence" of 0:95 is used; the new value of the momentum is aweighted sum of the previous value (weight 0:95) and the value obtained by Gibbssampling (weight (1 � 0:952)1=2). With this form of persistence, the momenta

changes approx. 20 times more slowly, thus increasing the \inertia" of the weights,so as to further help in avoiding random walks. Larger values of the persistence willfurther increase the weight inertia, but reduce the rate of exploration of H. Theadvantage of increasing the weight inertia in this way rather than by increasing L isthat the hyperparameters are updated at shorter intervals, allowing them to adaptto the rapidly changing weights.2.2.2 Hyperparameter UpdatesThe hyperparameters are updated using Gibbs sampling. The conditional distribu-tions for the hyperparameters given the weights are of the Gamma form, for whiche�cient generators exist, except for the top-level hyperparameter in the case of the3 layer priors used for the weights from the inputs; in this case the conditionaldistribution is more complicated and a form of rejection sampling is employed.2.3 NETWORK TRAINING AND PREDICTIONThe network training consists of two levels of initialisation before sampling fornetworks used for prediction. At the �rst level of initialisation the hyperparameters(variance of the Gaussians) are kept constant at 1, allowing the weights to growduring 1000 leapfrog iterations. Neglecting this phase can cause the network to getcaught for a long time in a state where weights and hyperparameters are both verysmall.The scheme described above is then invoked and run for as long as desired, even-tually producing networks from the posterior distribution. The initial 1=3 of thesenets are discarded, since the algorithm may need time to reach regions of high pos-terior probability. Networks sampled during the remainder of the run are saved formaking predictions.The predictions are made using an average of the networks sampled from the pos-terior as an approximation to the integral in eq. (1). Since the output unit is linearthe �nal prediction can be seen as coming from a huge (fully connected) ensemblenet with appropriately scaled output weights. All the results reported here werefor ensemble nets with 4000 hidden units. The size of the individual nets is givenby the rule that we want at least as many network parameters as we have trainingexamples (with a lower limit of 4 hidden units). We hope thereby to be well out ofthe under�tting region. Using even larger nets would probably not gain us much(in the face of the limited training data) and is avoided for computational reasons.All runs used the parameter values given above. The only check that is necessaryis that the rejection rate stays low, say below 5%; if not, the step size shouldbe lowered. In all runs reported here, " = 0:2 was adequate. The parametersconcerning the Monte Carlo method and the network priors were all selected basedon intuition and on experience with toy problems. Thus no parameters need to beset by the user.3 TESTSThe performance of the algorithm was evaluated by comparing it to other state-of-the-art methods on 5 real-world regression tasks. All 5 data sets have previouslybeen studied using a 10-way cross-validation scheme (Quinlan 1993). The tasksin these domains is to predict price or performance of an object from various dis-crete and real-valued attributes. For each domain the data is split into two setsof roughly equal size, one for training and one for testing. The training data is

further subdivided into full-, half-, quarter- and eighth-sized subsets, 15 subsets intotal. Networks are trained on each of these partitions, and evaluated on the largecommon test set. On the small training sets, the average performance and onestd. dev. error bars on this estimate are computed.3.1 ALGORITHMSThe Monte Carlo method was compared to four other algorithms. For the threeneural network methods nets with a single hidden layer and direct input-outputconnections were used. The Monte Carlo method was run for 1 hour on each of thesmall training sets, and 2, 4 and 8 hours respectively on the larger training sets. Allsimulations were done on a 200 MHz MIPS R4400 processor. The Gaussian Processmethod is described in a companion paper (Williams & Rasmussen 1996).The Evidence method (MacKay 1992) was used for a network with separate hyper-parameters for the direct connections, the weights from individual inputs (ARD),hidden biases, and output biases. Nets were trained using a conjugate gradientmethod, allowing 10000 gradient evaluations (batch) before each of 6 updates ofthe hyperparameters. The network Hessian was computed analytically. The valueof the evidence was computed without compensating for network symmetries, sincethis can lead to a vastly over-estimated evidence for big networks where the poste-rior Gaussians from di�erent modes overlap. A large number of nets were trained foreach task, with the number of hidden units computed from the results of previousnets by the following heuristics: The min and max number of hidden units in the 20%nets with the highest evidences were found. The new architecture is picked from aGaussian (truncated at 0) with mean (max � min)=2 and std. dev. 2 + max� min,which is thought to give a reasonable trade-o� between exploration and exploita-tion. This procedure is run for 1 hour of cpu time or until more than 1000 nets havebeen trained. The �nal predictions are made from an ensemble of the 20% (but amaximum of 100) nets with the highest evidence.An ensemble method using cross-validation to search over a 2-dimensional grid forthe number of hidden units and the value of a single weight decay parameter hasbeen included, as an attempt to have a thorough version of \common practise".The weight decay parameter takes on the values 0, 0:01, 0:04, 0:16, 0:64 and 2:56.Up to 6 sizes of nets are used, from 0 hidden units (a linear model) up to a numberthat gives as many weights as training examples. Networks are trained with aconjugent gradient method for 10000 epochs on each of these up to 36 networks,and performance was monitored on a validation set containing 1=3 of the examples,selected at random. This was repeated 5 times with di�erent random validationsets, and the architecture and weight decay that did best on average was selected.The predictions are made from an ensemble of 10 nets with this architecture, trainedon the full training set. This algorithm took several hours of cpu time for the largesttraining sets.The Multivariate Adaptive Regression Splines (MARS) method (Friedman 1991)was included as a non-neural network approach. It is possible to vary the maximumnumber of variables allowed to interact in the additive components of the model.It is common to allow either pairwise or full interactions. I do not have su�cientexperience with MARS to make this choice. Therefore, I tried both options andreported for each partition on each domain the best performance based on thetest error, so results as good as the ones reported here might not be obtainable inpractise. All other parameters of MARS were left at their default values. MARSalways required less than 1 minute of cpu time.

10 20 40 80
0

0.5

1

1.5

2

Auto price

13 26 52 104
0

0.1

0.2

0.3

0.4

0.5

0.6

Cpu

32 64 128 256
0

0.1

0.2

0.3

0.4

0.5

0.6

House

24 48 96 192
0

0.05

0.1

0.15

0.2

0.25
Mpg

11 22 44 88
0

0.2

0.4

0.6

0.8

1

Servo

 Monte Carlo

 Gaussian Evidence

 Backprop

 MARS

 Gaussian Process

0.283

0.364

0.339

0.371

0.304

Geometric mean

Figure 1: Squared error on test cases for the �ve algorithms applied to the �ve problems.Errors are normalized with respect to the variance on the test cases. The x-axis gives thenumber of training examples; four di�erent set sizes were used on each domain. The errorbars give one std. dev. for the distribution of the mean over training sets. No error bar isgiven for the largest size, for which only a single training set was available. Some of thelarge error bars are cut of at the top. MARS was unable to run on the smallest partitionsfrom the Auto price and the servo domains; in these cases the means of the four othermethods were used in the reported geometric mean for MARS.

Table 1: Data Setsdomain # training cases # test cases # binary inputs # real inputsAuto Price 80 79 0 16Cpu 104 105 0 6House 256 250 1 12Mpg 192 200 6 3Servo 88 79 10 23.2 PERFORMANCEThe test results are presented in �g. 1. On the servo domain the Monte Carlomethod is uniformly better than all other methods, although the di�erence shouldprobably not always be considered statistically signi�cant. The Monte Carlo methodgenerally does well for the smallest training sets. Note that no single method doeswell on all these tasks. The Monte Carlo method is never vastly out-performed bythe other methods.The geometric mean of the performances over all 5 domains for the the 4 di�erenttraining set sizes is computed. Assuming a Gaussian distribution of predictionerrors, the log of the error variance can (apart from normalising constants) beinterpreted as the amount of information unexplained by the models. Thus, thelog of the geometric means in �g. 1 give the average information unexplained bythe models. According to this measure the Monte Carlo method does best, closelyfollowed by the Gaussian Process method. Note that MARS is the worst, eventhough the decision between pairwise and full interactions were made on the basisof the test errors.4 CONCLUSIONSI have outlined a black-box Monte Carlo implementation of Bayesian learning inneural networks, and shown that it has an excellent performance. These results sug-gest that Monte Carlo based Bayesian methods are serious competitors for practicalprediction tasks on data limited domains.AcknowledgementsI am grateful to Radford Neal for his generosity with insight and software. This researchwas funded by a grant to G. Hinton from the Institute for Robotics and Intelligent Systems.ReferencesS. Duane, A. D. Kennedy, B. J. Pendleton & D. Roweth (1987) \Hybrid Monte Carlo",Physics Letters B, vol. 195, pp. 216{222.J. H. Friedman (1991) \Multivariate adaptive regression splines" (with discussion), Annalsof Statistics, 19, 1-141 (March). Source: http://lib.stat.cmu.edu/general/mars3.5.D. J. C. MacKay (1992) \A practical Bayesian framework for backpropagation networks",Neural Computation, vol. 4, pp. 448{472.R. M. Neal (1995) Bayesian Learning for Neural Networks, PhD thesis, Dept. of ComputerScience, University of Toronto, ftp: pub/radford/thesis.ps.Z from ftp.cs.toronto.edu.J. R. Quinlan (1993) \Combining instance-based and model-based learning", Proc. ML'93(ed P.E. Utgo�), San Mateo: Morgan Kaufmann.C. K. I. Williams & C. E. Rasmussen (1996). \Regression with Gaussian processes", NIPS8, editors D. Touretzky, M. Mozer and M. Hesselmo. (this volume).

