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Abstract

Attempting to model human categorization and similarity judgements is both a
very interesting but also an exceedingly difficult challenge. Some of the diffi-
culty arises because of conflicting evidence whether human categorization and
similarity judgements should or should not be modelled as tooperate on a mental
representation that is essentially metric. Intuitively, this has a strong appeal as it
would allow (dis)similarity to be represented geometrically as distance in some
internal space. Here we show how asinglestimulus, carefully constructed in a
psychophysical experiment, introducesl2 violations in what used to be an internal
similarity space that could be adequately modelled as Euclidean. We term this one
influential data point aconflictual judgement. We present an algorithm of how to
analyse such data and how to identify the crucial point. Thusthere may not be a
strict dichotomy between either a metric or a non-metric internal space but rather
degrees to which potentially large subsets of stimuli are represented metrically
with a small subset causing a global violation of metricity.

1 Introduction

The central aspect of quantitative approaches in psychology is to adequately model human be-
haviour. In perceptual research, for example, all successful models of visual perception tacitly
assume that at least simple visual stimuli are processed, transformed and compared to some inter-
nal reference in a metric space. In cognitive psychology many models of human categorisation,
too, assume that stimuli “similar” to each other are groupedtogether in categories. Within a cat-
egory similarity is very high whereas between categories similarity is low. This coincides with
intuitive notions of categorization which, too, tend to rely on similarity despite serious problems
in defining what similarity means or ought to mean [6]. Work onsimilarity and generalization in
psychology has been hugely influenced by the work of Roger Shepard on similarity and categoriza-
tion [12, 14, 11, 4, 13]. Shepard explicitly assumes that similarity is a distance measure in a metric
space, and many perceptual categorization models follow Shepard’s general framework [8, 3].

This notion of similarity is frequently linked to a geometric representation where stimuli are points
in a space and the similarity is linked to an intuitive metricon this space, e.g. the Euclidean metric.
In a well-known and influential series of papers Tversky and colleagues have challenged the idea of
a geometric representation of similarity, however [16, 17]. They provided convincing evidence that
(intuitive, and certainly Euclidean) geometric representations cannot account for human similarity
judgements—at least for the highly cognitive andnon-perceptualstimuli they employed in their
studies. Within their experimental context pairwise dissimilarity measurements violated metricity,
in particular symmetry and the triangle inequality. Technically, violations of Euclideanity translate



into non positive semi-definite similarity matrices (“pseudo-Gram” matrices) [15], a fact, which
imposes severe constraints on the data analysis procedures. Typical approaches to overcome these
problems involve leaving out negative eigenvalues altogether or shifting the spectrum for subsequent
(Kernel-)PCA analysis [10, 7]. The shortcomings of such methods are that they assume that the data
really are Euclidean and that all violations are only due to noise.

Shepard’s solution to non-metricity was to find non-linear transformations of the similarity data
of the subjects to make them Euclidean, and/or use non-Euclidean metrics such as the city-block
metric (or other Minkowski p-norms withp 6= 2)[11, 4]. Yet another way how metric violations
may arise in experimental data—whilst retaining the notionthat the internal, mental representation
is really metric—is to invoke attentional re-weighting of dimensions during similarity judgements
and categorisation tasks [1]. Here we develop a position in between the seeming dichotomy of
“metric versus non-metric” internal representations: Ouralternative and complementary suggestion
is that a potentially very small subset—in fact a single observation or data point or stimulus—of
the data may induce the non-metricity, or at least a non-Euclidean metric: in a theoretical setting
it has been shown that systematic violation of metricity canbe due to aninterestingsubset of the
data—i.e. not due to noise [5]. We show howconflictual judgmentscan introduce metric violation
in a situation where the human similarity judgments are based upon smooth geometric features and
are otherwise essentially Euclidean.

First we present a simple model which explains the occurrence of metric violations in similarity data,
with a special focus on human similarity judgments. Thereafter both models are tested with data
obtained from psychophysical experiments specifically designed to induceconflictual judgments.

2 Modeling metric violations for single conflictual situations

A dissimilarity functiond is calledmetricif: d(xi, xj) > 0 ∀ xi, xj ∈ X , d(xi, xj) = 0 iff xi = xj ,
d(xi, xj) = d(xj , xi) ∀ xi, xj ∈ X , d(xi, xk) + d(xk, xj) > d(xi, xj) ∀ xi, xj , xk ∈ X . A
dissimilarity matrixD = (Dij) will be calledmetricif there exists a metricd such thatDij = d(·, ·).
D = (Dij) will be called squared Euclidean if the metric derives froml2.

It can be shown thatD is l2 (Euclidean) iffC = − 1
2QDQ is positive semi-definite (Q = I − 1

nee′

be the projection matrix on the orthogonal complement ofe = (1, 1, . . . 1)′). C is called the Gram
matrix. An indefiniteC will be called apseudo-Gram matrix. A non-metricD is, a fortiori, nonl2
and thus its associatedC is indefinite. On the other hand, whenC is indefinite, we can conclude
thatD is nonl2, but not necessarily non-metric. Non-metricity ofD must be verified by testing the
above four requirements.

We now introduce a simple model for conflictual human similarity. Let {f1, f2, . . . fn} be a basis.

A given data pointxi can be decomposed in this basis asxi =
∑n

k=1 α
(i)
k fk. The squaredl2 distance

betweenxi andxj therefore reads:dij = ||xi − xj ||
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. However this

assumes constant feature-perception, i.e. a constant mental image with respect to different tasks.
In the realm of human perception this is not always the case, as illustrated by the following well
known ambiguous figure (Fig. 1). We hypothesise that the ambiguous perception of such figures
corresponds to some kind of “perceptual state-switching”.If the state-switching could be experi-
mentally induced within a single experiment and subject, this may cause metric or at least Euclidean
violations by thisconflictual judgment.

A possible way to model such conflictual situations in human similarity judgments is to introduce
states{ω(1), ω(2) . . . ω(d)}, ω(l) ∈ R

n for l = 1, 2, . . . d, affecting the features. The similarity judg-
ment between objects then depends on the perceptual state (weight) the subject is in. Assuming that
the person is in stateω(l) the distance becomes:dij = ||xi−xj ||
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With no further restriction this model yields non-metric distance matrices.

ω may vary between different subjects reflecting their different focus of attention, thus we will not
average the similarity judgments over different subjects but only over different trials of one single
subject, assuming that for a given personω is constant.

In order to interpret the metric violations, we propose the following simple algorithm, which allows
to specifically visualize the information coded by the negative eigenvalues. It essentially relies upon
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Figure 1: Left: What do you see? A young lady or an old woman? Ifyou were to compare this
picture to a large set of images of young ladies or old women, the perceptual state-switch could
induce large individual weights on the similarity. Right: Simple data distribution (left) used in the
proof of concept illustration in subsection 2.1.

the embedding of non-metric pairwise data into a pseudo-Euclidean space (see [2, 9] and references
therein for details):

non squared-EuclideanD
C = −1/2QDQ

−−−−−−−−−−−−−→ C with negative eigenvalues

C
spectral decomposition

−−−−−−−−−−−−−−−→ V ΛV > = V |Λ|
1

2 M |Λ|
1

2 V >

X∗

P = |ΛP |
1/2V >

P ,

whereV is the column matrix of eigenvectors,Λ the diagonal matrix of the corresponding eigenval-
ues andM the block-matrix consisting of the blocksIp×p, −Iq×q and0k×k (with k = n − p − q)
The columns ofX∗

P contain the vectorsxi in p-dimensional subspaceP .

Retaining only the first two coordinates (P = {v1, v2}) of the obtained vectors corresponds to a
projection onto the first two leading eigendirections. Retaining the last two (P = {vn, vn−1}) is a
projection onto the last two eigendirections:

This corresponds to a projection onto directions related tothe negative part ofC and containing the
information coded by thel2 violations.

2.1 Proof of concept illustration: single conflicts introduce metric violations

We now illustrate the model for a single conflictual situation.

Consider a weightω(l) constant for all feature-vectors, taken to be the unit vectorsek in this example.
Then we havedij =

(
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2
2, where‖ · ‖2 is the

usual unweighted Euclidean norm.

For a simple illustration we take 16 points distributed in two Gaussian blobs (Fig. 1, right) with
squared Euclidean distance given byd2 to represent the objects to compare. Suppose an experi-
mental subject is to pairwise compare these objects to give it a dissimilarity score and that a con-
flictual situation arises for the pairs(2, 3), (7, 2) and (6, 5) translating in a strong weighting of
these dissimilarities. For the sake of the example, we chosethe (largely exaggerated) weights to be
150, 70 and220 respectively, acting as follows:d(2, 3) = d2(2, 3) · 150, d(7, 2) = d2(7, 2) · 70,
d(6, 5) = d2(6, 5) · 220. The correspondingd is non-Euclidean and its associatedC is indefinite.
The spectrum ofC is given in Fig. 2, right, and exhibits a clear negative spectrum.

Fig. 2 shows the projection onto the leading positive and leading negative eigendirections of the both
the unweighted distance (top row) and the weighted distancematrix (bottom row). Both yield the
same grouping in the positive part. In the negative eigenspace we obtain a singular distribution for
the unweighted case. This isnot the case for the weighted dissimilarity: we see that the distribution
in the negative separates the points whose mutual distance has been (strongly) weighted. The infor-
mation contained in the negative part, reflecting the information coded by metric orl2 violations,
codes in this case for the individual weighting of the (dis)similarities.
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Figure 2: Proof of concept: Unperturbed dissimilarity matrix (no conflict) and weighted dissimi-
larity matrix (conflict). Single weighting of dissimilarities introduce metric violations and hencel2
violations which reflect in negative spectra. The conflictual points are peripheral in the projection
onto the negative eigenspace centered around the bulk of points whose dissimilarities are essen-
tially Euclidean. Note that because of the huge weights, these effects are largely exaggerated in
comparison to real world judgments.

3 Experiments

Twenty gray-scale256 x 256-pixel images of faces were generated from the MPI-face database1. All
faces were normalized to have the same mean and standard deviation of pixel intensities, the same
area, and were aligned such that the cross-correlation of each face to a mean face of the database
was maximal. Faces were presented at an angle of 15 degrees and were illuminated primarily with
ambient light together with an additional but weak point source at 65 degrees azimuth and 25 degree
eccentricity.

To show the viability of our approach we require a data set with a good representation of the notion of
facial similarity, and to ensure that the data set encompasses both extremes of (dis-)similarity. In the
absence of a formal theory of facial similarity we hand-selected a set of faces we thought may show
the hypothesised effect: Sixteen of the twenty faces were selected because prior studies had shown
them to be consistently and correctly categorised as male orfemale [18]. Three of the remaining
four faces were females that previous subjects found very difficult to categorise and labelled them
as female or male almost exactly half of the time. The last face was the mean (androgynous) face
across the database. Figure 3 shows the twenty faces thus selected.

Prior to the pairwise comparisons all subjects viewed all twenty facessimultaneouslyarranged in
a 4 x 5 grid on the experimental monitor. The subjects were asked toinspect the entire set of faces
to obtain a general notion of the relative similarity of the faces and they were instructed to use the
entire scale in the following rating task. Subjects were allowed to view the stimuli for however
long they wanted. Only thereafter did they proceed to the actual similarity rating stage. Pairwise
comparisons of twenty faces requires

(

20
2

)

= 190 trials; each of our four subjects completed four
repetitions resulting in a total of 760 trials per subject.

During the rating stage faces were shown in pairs in random order for a total duration of 4 seconds
(200 msec fade-in, 3600 msec full contrast view, 200 msec fade-out). Subjects were allowed to
respond as fast as the wished but had to respond within 5 seconds, i.e. 1 second after the faces
had disappeared at the very latest. Similarity was rated on adiscrete integer scale between 1 (very
dissimilar) and 5 (very similar). The final similarity rating per subject was the mean of the four
repetitions within a single subject.

1The MPI face database is located athttp://faces.kyb.tuebingen.mpg.de



1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20

Figure 3: Our data set: Faces1 to 8 are unambiguous males, faces9 to 16 are unambiguous females.
Faces17 to 19 are ambiguous and have been attributed to either sex in roughly half the cases. Face
20 is a mean face.

All stimuli were presented on a carefully linearised Siemens SMM21106LS gray-scale monitor
with 1024 x768 resolution at a refresh rate of 130Hz driven by a Cambridge Research Systems
Visage graphics controller using purpose-written software. The mean luminance of the display was
213 cd/m2 and presentation of the stimuli did not change the mean luminance of the display.

Three subjects with normal or corrected-to-normal vision—naive to the purpose of the experiment—
acted as observers; they were paid for their participation.

We will discuss in detail the results obtained with the first subject. The results from the other subjects
are summarized.

In order to exhibit how a single conflictual judgment can break metricity, we follow a two-fold
procedure: we first chose a data set of unambiguous faces whose dissimilarities are Euclidean or
essential Euclidean. Second, we compare this subsets of faces to a set with those very same unam-
biguous males and females extended by one additional conflict generating face creating (see Figure
4 for aschematicillustration).

Figure 4: The unambiguous females and unambiguous males lead to a pairwise dissimilarity ma-
trix which is essentially Euclidean. The addition of one single conflicting face introduces thel2
violations.



3.1 Subject 1

We chose a subset of faces which has the property that their mutual dissimilarities are essentially
Euclidean (Fig. 5). The conflict generating face is19 and will be denoted asX . Fig. 5 shows that
the set of unambiguous faces is essentially Euclidean: the smallest eigenvalues of the spectrum are
almost zero. This reflects in an almost singular projection in the eigenspace spanned by the eigen-
vectors associated to the negative eigenvalues. The projection onto the eigenspace spanned by the
eigenvectors associated to the positive eigenvalues separates males from females which corresponds
to the unique salient feature in the data set.
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Figure 5: Left: Spectrum with only minorl2 violations, Middle: males vs. females. Right: when
a metric is (essentially) Euclidean, the points are concentrated on a singularity in the negative
eigenspace.

In order to provoke the conflictual situation, we add one single conflicting face, denoted byX . This
face has been attributed in previous experiences to either sex in 50 % of the cases. This addition
causes the spectrum to flip down, hinting at a unambiguousl2 violation, see Fig. 6. Furthermore,
it can be verified that the triangle inequality is violated inseveral instances by addition of this
conflicting judgment reflecting that violation indeed is metric in this case.
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Figure 6: Left: Spectrum withl2-violations, Middle: males vs. females. Right: The conflicting face
X is separated from the bulk of faces corresponding to the Euclidean dissimilarities.

The positive projection remains almost unchanged and againseparates male from female faces with
X in between, reflecting its intermediate position between the males and the females. In the negative
projection theX can be seen as separating of the bulk of points which are mutually Euclidean. This
corresponds to the effect, albeit not as pronounced, described in the proof of concept illustration 2.1.
Thus we see that the introduction of a conflicting face withina coherent set of unambiguous faces is
the cause of the metric violation.

3.2 Subject 2 and 3

The same procedure was applied to the similarity judgments given by Subject 2 and 3. Since the
individual perceptual states are incommensurable betweendifferent subjects (the reason why we do
not average over subjects but only within a subject) the extracted Euclidean subset were different
for each of them. However, the process which created thel2-violation is the same. Figures 7 and
8 show this process: a conflicting observation destroys the underlying Euclidean structure in the
judgements.

Both for Subject 2 and 3 theX lying between the unambiguous faces reflects outside the bulk of
Euclidean points concentrated around the singularity in the negative projections.
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Figure 7: Subject 2: In the upper row, the subset of faces which whose dissimilarities are Euclidean.
The lower row shows the effect of introducing a conflicting faceX and the subsequent weighting.
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Figure 8: Subject 3: In the upper row, the subset of faces which whose dissimilarities are essentially
Euclidean. The lower row shows the effect of introducing a conflicting faceX and the subsequent
weighting.

Again we obtain that the introduction of a single conflictingface within a set of unambiguous faces
for which the human similarity judgment is essentially Euclidean introduces thel2 violations. This
strongly corroborates our conflict model and the statement that metric violations in human similarity
judgments have a specific meaning, a conflictual judgment forthis case.

4 Conclusion

We presented a simple experiment in which we could show how a single, purposely selected stimulus
introducesl2 violations in what appeared to have been an internal Euclidean similarity space of
facial attributes. Importantly, thus, it may not be that there is a clear dichotomy in that internal
representations of similarity are either metric or not, rather that they may be for “easy” stimuli but
“ambiguous” ones can cause metric violations—at leastl2 violations in our setting. We have clearly
shown that these violations are caused by conflictual pointsin a data set: the addition of one such
point caused the spectra of the Gram matrices to “flip down” reflecting thel2 violation.



Further research will involve the acquisition of more pairwise similarity judgements in conflicting
situations as well as the refinement of our existing experiments. In particular, we would like to know
whether it is possible to create larger, scalable conflicts,i.e. conflicts which lead to a much stronger
re-weighting and thus to clearer separation of the conflicting point from the bulk of Euclidean points.
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[9] E. Pȩkalska, P. Paclík, and R. P. W. Duin. A generalized kernel approach to dissimilarity-based classifi-
cation.Journal of Machine Learning Research, 2:175–211, 2001.

[10] B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel eigenvalue problem.
Neural Computation, 10:1299–1319, 1998.

[11] R. N. Shepard. The analysis of proximities: Multidimensional scaling with an unknown distance function.
Psychometrika, 27(2):125–140, 1962.

[12] R.N. Shepard. Stimulus and response generalization: Astochastic model relating generalization to dis-
tance in psychological space.Psychometrika, 22:325–345, 1957.

[13] R.N. Shepard. Toward a universal law of generalizationfor psychological science. Science,
237(4820):1317–1323, 1987.

[14] Roger N. Shepard, Carl I. Hovland, and Herbert M. Jenkins. Learning and memorization of classifications.
Psychological Monographs, 75(13):1–42, 1961.

[15] W. S. Torgerson.Theory and Methods of Scaling. John Wiley and Sons, New York, 1958.

[16] A. Tversky. Features of similarity.Psychological Review, 84(4):327–352, 1977.

[17] A. Tversky and I. Gati. Similarity, separability, and the triangle inequality. Psychological Review,
89(2):123–154, 1982.

[18] F. A. Wichmann, A. B. A. Graf, E. P. Simoncelli, H. H. Bülthoff, and B. Schölkopf. Machine learning
applied to perception: decision-images for classification. In Advances in Neural Information Processing
Systems 17, pages 1489–1496. MIT Press, 2005.


