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Abstract

We present a theoretical study on the discriminative clustering framework, re-
cently proposed for simultaneous subspace selection via linear discriminant analy-
sis (LDA) and clustering. Empirical results have shown its favorable performance
in comparison with several other popular clustering algorithms. However, the in-
herent relationship between subspace selection and clustering in this framework
is not well understood, due to the iterative nature of the algorithm. We show in
this paper that this iterative subspace selection and clustering is equivalent to ker-
nel K-means with a specific kernel Gram matrix. This provides significant and
new insights into the nature of this subspace selection procedure. Based on this
equivalence relationship, we propose the Discriminative K-means (DisKmeans)
algorithm for simultaneous LDA subspace selection and clustering, as well as an
automatic parameter estimation procedure. We also present the nonlinear exten-
sion of DisKmeans using kernels. We show that the learning of the kernel matrix
over a convex set of pre-specified kernel matrices can be incorporated into the
clustering formulation. The connection between DisKmeans and several other
clustering algorithms is also analyzed. The presented theories and algorithms are
evaluated through experiments on a collection of benchmark data sets.

1 Introduction
Applications in various domains such as text/web mining and bioinformatics often lead to very high-
dimensional data. Clustering such high-dimensional data sets is a contemporary challenge, due to the
curse of dimensionality. A common practice is to project the data onto a low-dimensional subspace
through unsupervised dimensionality reduction such as Principal Component Analysis (PCA) [9]
and various manifold learning algorithms [1, 13] before the clustering. However, the projection may
not necessarily improve the separability of the data for clustering, due to the inherent separation
between subspace selection (via dimensionality reduction) and clustering.

One natural way to overcome this limitation is to integrate dimensionality reduction and clustering
in a joint framework. Several recent work [5, 10, 16] incorporate supervised dimensionality reduc-
tion such as Linear Discriminant Analysis (LDA) [7] into the clustering framework, which performs
clustering and LDA dimensionality reduction simultaneously. The algorithm, called Discrimina-
tive Clustering (DisCluster) in the following discussion, works in an iterative fashion, alternating
between LDA subspace selection and clustering. In this framework, clustering generates the class
labels for LDA, while LDA provides the subspace for clustering. Empirical results have shown the
benefits of clustering in a low dimensional discriminative space rather than in the principal com-
ponent space (generative). However, the integration between subspace selection and clustering in
DisCluster is not well understood, due to the intertwined and iterative nature of the algorithm.

In this paper, we analyze this discriminative clustering framework by studying several fundamental
and important issues: (1) What do we really gain by performing clustering in a low dimensional
discriminative space? (2) What is the nature of its iterative process alternating between subspace
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selection and clustering? (3) Can this iterative process be simplified and improved? (4) How to
estimate the parameter involved in the algorithm?

The main contributions of this paper are summarized as follows: (1) We show that the LDA pro-
jection can be factored out from the integrated LDA subspace selection and clustering formulation.
This results in a simple trace maximization problem associated with a regularized Gram matrix of
the data, which is controlled by a regularization parameter λ; (2) The solution to this trace max-
imization problem leads to the Discriminative K-means (DisKmeans) algorithm for simultaneous
LDA subspace selection and clustering. DisKmeans is shown to be equivalent to kernel K-means,
where discriminative subspace selection essentially constructs a kernel Gram matrix for clustering.
This provides new insights into the nature of this subspace selection procedure; (3) The DisKmeans
algorithm is dependent on the value of the regularization parameter λ. We propose an automatic
parameter tuning process (model selection) for the estimation of λ; (4) We propose the nonlinear
extension of DisKmeans using the kernels. We show that the learning of the kernel matrix over
a convex set of pre-specified kernel matrices can be incorporated into the clustering formulation,
resulting in a semidefinite programming (SDP) [15]. We evaluate the presented theories and algo-
rithms through experiments on a collection of benchmark data sets.

2 Linear Discriminant Analysis and Discriminative Clustering
Consider a data set consisting of n data points {xi}n

i=1 ∈ Rm. For simplicity, we assume the data is
centered, that is,

∑n
i=1 xi/n = 0. Denote X = [x1, · · · , xn] as the data matrix whose i-th column is

given by xi. In clustering, we aim to group the data {xi}n
i=1 into k clusters {Cj}k

j=1. Let F ∈ Rn×k

be the cluster indicator matrix defined as follows:
F = {fi,j}n×k, where fi,j = 1, iff xi ∈ Cj . (1)

We can define the weighted cluster indicator matrix as follows [4]:

L = [L1, L2, · · · , Lk] = F (FT F )−
1
2 . (2)

It follows that the j-th column of L is given by

Lj = (0, . . . , 0,

nj︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0)T /n

1
2
j , (3)

where nj is the sample size of the j-th cluster Cj . Denote µj =
∑

x∈Cj
x/nj as the mean of the j-th

cluster Cj . The within-cluster scatter, between-cluster scatter, and total scatter matrices are defined
as follows [7]:

Sw =
k∑

j=1

∑

xi∈Cj

(xi − µj)(xi − µj)T , Sb =
k∑

j=1

njµjµ
T
j = XLLT XT , St = XXT . (4)

It follows that trace(Sw) captures the intra-cluster distance, and trace(Sb) captures the inter-cluster
distance. It can be shown that St = Sw + Sb.

Given the cluster indicator matrix F (or L), Linear Discriminant Analysis (LDA) aims to compute
a linear transformation (projection) P ∈ Rm×d that maps each xi in the m-dimensional space to
a vector x̂i in the d-dimensional space (d < m) as follows: xi ∈ IRm → x̂i = PT xi ∈ IRd,
such that the following objective function is maximized [7]: trace

(
(PT SwP )−1PT SbP

)
. Since

St = Sw + Sb, the optimal transformation matrix P is also given by maximizing the following
objective function:

trace
(
(PT StP )−1PT SbP

)
. (5)

For high-dimensional data, the estimation of the total scatter (covariance) matrix is often not reliable.
The regularization technique [6] is commonly applied to improve the estimation as follows:

S̃t = St + λIm = XXT + λIm, (6)
where Im is the identity matrix of size m and λ > 0 is a regularization parameter.

In Discriminant Clustering (DisCluster) [5, 10, 16], the transformation matrix P and the weighted
cluster indicator matrix L are computed by maximizing the following objective function:

f(L,P ) ≡ trace
(
(PT S̃tP )−1PT SbP

)

= trace
(
(PT (XXT + λIm)P )−1PT XLLT XT P

)
. (7)
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The algorithm works in an intertwined and iterative fashion, alternating between the computation
of L for a given P and the computation of P for a given L. More specifically, for a given L, P is
given by the standard LDA procedure. Since trace(AB) = trace(BA) for any two matrices [8], for
a given P , the objective function f(L, P ) can be expressed as:

f(L,P ) = trace
(
LT XT P (PT (XXT + λIm)P )−1PT XL

)
. (8)

Note that L is not an arbitrary matrix, but a weighted cluster indicator matrix, as defined in Eq. (3).
The optimal L can be computed by applying the gradient descent strategy [10] or by solving a kernel
K-means problem [5, 16] with XT P (PT (XXT + λIm)P )−1PT X as the kernel Gram matrix [4].
The algorithm is guaranteed to converge in terms of the value of the objective function f(L,P ), as
the value of f(L,P ) monotonically increases and is bounded from above.

Experiments [5, 10, 16] have shown the effectiveness of DisCluster in comparison with several other
popular clustering algorithms. However, the inherent relationship between subspace selection via
LDA and clustering is not well understood, and there is need for further investigation. We show
in the next section that the iterative subspace selection and clustering in DisCluster is equivalent
to kernel K-means with a specific kernel Gram matrix. Based on this equivalence relationship,
we propose the Discriminative K-means (DisKmeans) algorithm for simultaneous LDA subspace
selection and clustering.

3 DisKmeans: Discriminative K-means with a Fixed λ
Assume that λ is a fixed positive constant. Let’s consider the maximization of the function in Eq. (7):

f(L,P ) = trace
(
(PT (XXT + λIm)P )−1PT XLLT XT P

)
. (9)

Here, P is a transformation matrix and L is a weighted cluster indicator matrix as in Eq. (3). It
follows from the Representer Theorem [14] that the optimal transformation matrix P ∈ IRm×d can
be expressed as P = XH , for some matrix H ∈ IRn×d. Denote G = XT X as the Gram matrix,
which is symmetric and positive semidefinite. It follows that

f(L,P ) = trace
((

HT (GG + λG) H
)−1

HT GLLT GH
)

. (10)

We show that the matrix H can be factored out from the objective function in Eq. (10), thus dramat-
ically simplifying the optimization problem in the original DisCluster algorithm. The main result is
summarized in the following theorem:
Theorem 3.1. Let G be the Gram matrix defined as above and λ > 0 be the regularization param-
eter. Let L∗ and P ∗ be the optimal solution to the maximization of the objective function f(L, P ) in
Eq. (7). Then L∗ solves the following maximization problem:

L∗ = arg max
L

trace
(

LT

(
In − (In +

1
λ

G)−1

)
L

)
. (11)

Proof. Let G = UΣUT be the Singular Value Decomposition (SVD) [8] of G, where U ∈ IRn×n

is orthogonal, Σ = diag (σ1, · · · , σt, 0, · · · , 0) ∈ IRn×n is diagonal, and t = rank(G). Let U1 ∈
IRn×t consist of the first t columns of U and Σt = diag (σ1, · · · , σt) ∈ IRt×t . Then

G = UΣUT = U1ΣtU
T
1 . (12)

Denote R = (Σ2
t + λΣt)−

1
2 ΣtU

T
1 L and let R = MΣRNT be the SVD of R, where M and

N are orthogonal and ΣR is diagonal with rank(ΣR) = rank(R) = q. Define the matrix Z as
Z = Udiag

(
(Σ2

t + λΣt)−
1
2 M, In−t

)
, where diag(A,B) is a block diagonal matrix. It follows that

ZT
(
GLLT G

)
Z =

(
Σ̃ 0
0 0

)
, ZT (GG + λG)Z =

(
It 0
0 0

)
, (13)

where Σ̃ = (ΣR)2 is diagonal with non-increasing diagonal entries. It can be verified that

f(L,P ) ≤ trace
(
Σ̃

)
= trace

(
(GG + λG)+ GLLT G

)

= trace
(
LT G (GG + λG)+ GL

)

= trace
(

LT

(
In − (In +

1
λ

G)−1

)
L

)
, (14)

where the equality holds when P = XH and H consists of the first q columns of Z.
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3.1 Computing the Weighted Cluster Matrix L

The weighted cluster indicator matrix L solving the maximization problem in Eq. (11) can be com-
puted by solving a kernel K-means problem [5] with the kernel Gram matrix given by

G̃ = In −
(

In +
1
λ

G

)−1

. (15)

Thus, DisCluster is equivalent to a kernel K-means problem. We call the algorithm Discriminative
K-means (DisKmeans).

3.2 Constructing the Kernel Gram Matrix via Subspace Selection
The kernel Gram matrix in Eq. (15) can be expressed as

G̃ = U diag (σ1/(λ + σ1), σ2/(λ + σ2), · · · , σn/(λ + σn)) UT . (16)

Recall that the original DisCluster algorithm involves alternating LDA subspace selection and clus-
tering. The analysis above shows that the LDA subspace selection in DisCluster essentially con-
structs a kernel Gram matrix for clustering. More specifically, all the eigenvectors in G is kept
unchanged, while the following transformation is applied to the eigenvalues:

Φ(σ) = σ/(λ + σ).

This elucidates the nature of the subspace selection procedure in DisCluster. The clustering algo-
rithm is dramatically simplified by removing the iterative subspace selection. We thus address issues
(1)–(3) in Section 1. The last issue will be addressed in Section 4 below.

3.3 Connection with Other Clustering Approaches
Consider the limiting case when λ →∞. It follows from Eq. (16) that G̃ → G/λ. The optimal L is
thus given by solving the following maximization problem:

arg max
L

trace
(
LT GL

)
.

The solution is given by the standard K-means clustering [4, 5].

Consider the other extreme case when λ → 0. It follows from Eq. (16) that G̃ → UT
1 U1. Note that

the columns of U1 form the full set of (normalized) principal components [9]. Thus, the algorithm
is equivalent to clustering in the (full) principal component space.

4 DisKmeansλ: Discriminative K-means with Automatically Tuned λ

Our experiments show that the value of the regularization parameter λ has a significant impact on
the performance of DisKmeans. In this section, we show how to incorporate the automatic tuning
of λ into the optimization framework, thus addressing issue (4) in Section 1.

The maximization problem in Eq. (11) is equivalent to the minimization of the following function:

trace

(
LT

(
In +

1
λ

G

)−1

L

)
. (17)

It is clear that a small value of λ leads to a small value of the objective function in Eq. (17). To
overcome this problem, we include an additional penalty term to control the eigenvalues of the
matrix In + 1

λG. This leads to the following optimization problem:

min
L,λ

g(L, λ) ≡ trace

(
LT

(
In +

1
λ

G

)−1

L

)
+ log det

(
In +

1
λ

G

)
. (18)

Note that the objective function in Eq. (18) is closely related to the negative log marginal likelihood
function in Gaussian Process [12] with In + 1

λG as the covariance matrix. We have the following
main result for this section:
Theorem 4.1. Let G be the Gram matrix defined above and let L be a given weighted cluster
indicator matrix. Let G = UΣUT = U1ΣtU

T
1 be the SVD of G with Σt = diag (σ1, · · · , σt)

as in Eq. (12), and ai be the i-th diagonal entry of the matrix UT
1 LLT U1. Then for a fixed L,

4



the optimal λ∗ solving the optimization problem in Eq. (18) is given by minimizing the following
objective function:

t∑

i=1

λai

λ + σi
+ log

(
1 +

σi

λ

)
. (19)

Proof. Let U = [U1, U2], that is, U2 is the orthogonal complement of U1. It follows that

log det
(

In +
1
λ

G

)
= log det

(
It +

1
λ

Σ1

)
=

t∑

i=1

log (1 + σi/λ) . (20)

trace

(
LT

(
In +

1
λ

G

)−1

L

)
= trace

(
LT U1

(
It +

1
λ

Σt

)−1

UT
1 L

)
+ trace

(
LT U2U

T
2 L

)

=
t∑

i=1

(1 + σi/λ)−1ai + trace
(
LT U2U

T
2 L

)
, (21)

The result follows as the second term in Eq. (21), trace
(
LT U2U

T
2 L

)
, is a constant.

We can thus solve the optimization problem in Eq. (18) iteratively as follows: For a fixed λ, we
update L by maximizing the objective function in Eq. (17), which is equivalent to the DisKmeans
algorithm; for a fixed L, we update λ by minimizing the objective function in Eq. (19), which is a
single-variable optimization and can be solved efficiently using the line search method. We call the
algorithm DisKmeansλ, whose solution depends on the initial value of λ.

5 Kernel DisKmeans: Nonlinear Discriminative K-means using the kernels
The DisKmeans algorithm can be easily extended to deal with nonlinear data using the kernel trick.
Kernel methods [14] work by mapping the data into a high-dimensional feature space F equipped
with an inner product through a nonlinear mapping φ : IRm → F . The nonlinear mapping can
be implicitly specified by a symmetric kernel function K, which computes the inner product of the
images of each data pair in the feature space. For a given training data set {xi}n

i=1, the kernel Gram
matrix GK is defined as follows: GK(i, j) = (φ(xi), φ(xj)). For a given GK , the weighted cluster
matrix L = [L1, · · · , Lk] in kernel DisKmeans is given by minimizing the following objective
function:

trace

(
LT

(
In +

1
λ

GK

)−1

L

)
=

k∑

j=1

LT
j

(
In +

1
λ

GK

)−1

Lj . (22)

The performance of kernel DisKmeans is dependent on the choice of the kernel Gram matrix.
Following [11], we assume that GK is restricted to be a convex combination of a given set
of kernel Gram matrices {Gi}`

i=1 as GK =
∑`

i=1 θiGi, where the coefficients {θi}`
i=1 satisfy∑`

i=1 θitrace(Gi) = 1 and θi ≥ 0 ∀i. If L is given, the optimal coefficients {θi}`
i=1 may be

computed by solving a Semidefinite programming (SDP) problem as follows:
Theorem 5.1. Let GK be constrained to be a convex combination of a given set of kernel matrices
{Gi}`

i=1 as GK =
∑`

i=1 θiGi satisfying the constraints defined above. Then the optimal GK

minimizing the objective function in Eq. (22) is given by solving the following SDP problem:

min
t1,··· ,tk,θ

k∑

j=1

tj

s.t.
(

In + 1
λ

∑`
i=1 θiG̃i Lj

LT
j tj

)
º 0, for j = 1, · · · , k,

θi ≥ 0 ∀i,
∑̀

i=1

θi trace(Gi) = 1. (23)

Proof. It follows as LT
j

(
In + 1

λGK

)−1
Lj ≤ ti is equivalent to

(
I + 1

λ

∑`
i=1 θiG̃i Lj

LT
j tj

)
º 0.
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This leads to an iterative algorithm alternating between the computation of the kernel Gram matrix
GK and the computation of the cluster indicator matrix L. The parameter λ can also be incorporated
into the SDP formulation by treating the identity matrix In as one of the kernel Gram matrix as in
[11]. The algorithm is named Kernel DisKmeansλ. Note that unlike the kernel learning in [11], the
class label information is not available in our formulation.

6 Empirical Study
In this section, we empirically study the properties of DisKmeans and its variants, and evaluate the
performance of the proposed algorithms in comparison with several other representative algorithms,
including Locally Linear Embedding (LLE) [13] and Laplacian Eigenmap (Leigs) [1].

Table 1: Summary of benchmark data sets

Data Set # DIM # INST # CL
(m) (n) (k)

banding 29 238 2
soybean 35 562 15
segment 19 2309 7
pendigits 16 10992 10
satimage 36 6435 6
leukemia 7129 72 2
ORL 10304 100 10
USPS 256 9298 10

Experiment Setup: All algorithms were implemented us-
ing Matlab and experiments were conducted on a PEN-
TIUM IV 2.4G PC with 1.5GB RAM. We test these al-
gorithms on eight benchmark data sets. They are five
UCI data sets [2]: banding, soybean, segment, satimage,
pendigits; one biological data set: leukemia (http://www.
upo.es/eps/aguilar/datasets.html) and two image
data sets: ORL (http://www.uk.research.att.com/
facedatabase.html, sub-sampled to a size of 100*100
= 10000 from 10 persons) and USPS (ftp://ftp.kyb.tuebingen.mpg.de/pub/bs/
data/). See Table 1 for more details. To make the results of different algorithms comparable,
we first run K-means and the clustering result of K-means is used to construct the set of k initial
centroids, for all experiments. This process is repeated for 50 times with different sub-samples from
the original data sets. We use two standard measurements: the accuracy (ACC) and the normalized
mutual information (NMI) to measure the performance.
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Figure 1: The effect of the regularization parameter λ on DisKmeans and Discluster.

Effect of the regularization parameter λ: Figure 1 shows the accuracy (y-axis) of DisKmeans
and DisCluster for different λ values (x-axis). We can observe that λ has a significant impact on
the performance of DisKmeans. This justifies the development of an automatic parameter tuning
process in Section 4. We can also observe from the figure that when λ → ∞, the performance of
DisKmeans approaches to that of K-means on all eight benchmark data sets. This is consistent with
our theoretical analysis in Section 3.3. It is clear that in many cases, λ = 0 is not the best choice.

Effect of parameter tuning in DisKmeansλ: Figure 2 shows the accuracy of DisKmeansλ using
4 data sets. In the figure, the x-axis denotes the different λ values used as the starting point for
DisKmeansλ. The result of DisKmeans (without parameter tuning) is also presented for comparison.
We can observe from the figure that in many cases the tuning process is able to significantly improve
the performance. We observe similar trends on other four data sets and the results are omitted.
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Figure 2: The effect of the parameter tuning in DisKmeansλ using 4 data sets. The x-axis denotes the different
λ values used as the starting point for DisKmeansλ.

Figure 2 also shows that the tuning process is dependent on the initial value of λ due to its non-
convex optimization, and when λ → ∞, the effect of the tuning process become less pronounced.
Our results show that a value of λ, which is neither too large nor too small works well.
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Figure 3: Comparison of the trace value achieved by DisKmean and DisCluster. The x-axis denotes the
number of iterations in Discluster. The trace value of DisCluster is bounded from above by that of DisKmean.

DisKmean versus DisCluster: Figure 3 compares the trace value achieved by DisKmean and
the trace value achieved in each iteration of DisCluster on 4 data sets for a fixed λ. It is clear
that the trace value of DisCluster increases in each iteration but is bounded from above by that of
DisKmean. We observe a similar trend on the other four data sets and the results are omitted. This is
consistent with our analysis in Section 3 that both algorithms optimize the same objective function,
and DisKmean is a direct approach for the trace maximization without the iterative process.

Clustering evaluation: Table 2 presents the accuracy (ACC) and normalized mutual information
(NMI) results of various algorithms on all eight data sets. In the table, DisKmeans (or DisCluster)
with “max” and “ave” stands for the maximal and average performance achieved by DisKmeans and
DisCluster using λ from a wide range between 10−6 and 106. We can observe that DisKmeansλ is
competitive with other algorithms. It is clear that the average performance of DisKmeansλ is robust
against different initial values of λ. We can also observe that the average performance of DisKmeans
and DisCluster is quite similar, while DisCluster is less sensitive to the value of λ.

7 Conclusion
In this paper, we analyze the discriminative clustering (DisCluster) framework, which integrates
subspace selection and clustering. We show that the iterative subspace selection and clustering in
DisCluster is equivalent to kernel K-means with a specific kernel Gram matrix. We then propose the
DisKmeans algorithm for simultaneous LDA subspace selection and clustering, as well as an auto-
matic parameter tuning procedure. The connection between DisKmeans and several other clustering
algorithms is also studied. The presented analysis and algorithms are verified through experiments
on a collection of benchmark data sets.

We present the nonlinear extension of DisKmeans in Section 5. Our preliminary studies have shown
the effectiveness of Kernel DisKmeansλ in learning the kernel Gram matrix. However, the SDP
formulation is limited to small-sized problems. We plan to explore efficient optimization techniques
for this problem. Partial label information may be incorporated into the proposed formulations. This
leads to semi-supervised clustering [3]. We plan to examine various semi-learning techniques within
the proposed framework and their effectiveness for clustering from both labeled and unlabeled data.
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Table 2: Accuracy (ACC) and Normalized Mutual Information (NMI) results on 8 data sets. “max” and “ave”
stand for the maximal and average performance achieved by DisKmeans and DisCluster using λ from a wide
range of values between 10−6 and 106. We present the result of DisKmeansλ with different initial λ values.
LLE stands for Local Linear Embedding and LEI for Laplacian Eigenmap. “AVE” stands for the mean of ACC
or NMI on 8 data sets for each algorithm.

Data Sets DisKmeans DisCluster DisKmeansλ LLE LEI
max ave max ave 10−2 10−1 100 101

ACC
banding 0.771 0.768 0.771 0.767 0.771 0.771 0.771 0.771 0.648 0.764
soybean 0.641 0.634 0.633 0.632 0.639 0.639 0.638 0.637 0.630 0.649
segment 0.687 0.664 0.676 0.672 0.664 0.659 0.671 0.680 0.594 0.663
pendigits 0.699 0.690 0.696 0.690 0.700 0.696 0.696 0.697 0.599 0.697
satimage 0.701 0.651 0.654 0.642 0.696 0.712 0.696 0.683 0.627 0.663
leukemia 0.775 0.763 0.738 0.738 0.738 0.753 0.738 0.738 0.714 0.686
ORL 0.744 0.738 0.739 0.738 0.749 0.743 0.748 0.748 0.733 0.317
USPS 0.712 0.628 0.692 0.683 0.684 0.702 0.680 0.684 0.631 0.700
AVE 0.716 0.692 0.700 0.695 0.705 0.709 0.705 0.705 0.647 0.642

NMI
banding 0.225 0.221 0.225 0.219 0.225 0.225 0.225 0.225 0.093 0.213
soybean 0.707 0.701 0.698 0.696 0.706 0.707 0.704 0.704 0.691 0.709
segment 0.632 0.612 0.615 0.608 0.629 0.625 0.628 0.632 0.539 0.618
pendigits 0.669 0.656 0.660 0.654 0.661 0.658 0.658 0.660 0.577 0.645
satimage 0.593 0.537 0.551 0.541 0.597 0.608 0.596 0.586 0.493 0.548
leukemia 0.218 0.199 0.163 0.163 0.163 0.185 0.163 0.163 0.140 0.043
ORL 0.794 0.789 0.789 0.788 0.800 0.795 0.801 0.800 0.784 0.327
USPS 0.647 0.544 0.629 0.613 0.612 0.637 0.609 0.612 0.569 0.640
AVE 0.561 0.532 0.541 0.535 0.549 0.555 0.548 0.548 0.486 0.468
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