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Abstract

We study the problemof domaintransferfor a superised classi cationtaskin
mRNA splicing. We considera numberof recentdomaintransfermethodsfrom
machinelearning,including sone thatare nowel, and evaluatethemon genonic
sequencelatafrom modelorganismsof varying evolutionarydistance.We nd
thatin casesvherethe organismsarenot closelyrelated the useof domainada-
tationmethodscanhelpimprove classi cationperformance.

1 Intr oduction

Tenyearsago,an eight-yearasting collaboratve effort resultedin the rst completelysequenced
genomeof a multi-cellular organism, the free-living nematodeCaenorhabditiselegans Today a
decadaftertheaccomplishmendf thislandmark 23 eukaryoticgenomehave beencompletedand
morethan400areundervay. Thegenomicsequencéuildsthebasisfor alargebodyof researcton
understandinghe biochemicalbrocesesin theseorganisms.Typically, themorecloselyrelatedthe
organismsare,the moresimilar the biochemicaproceses.It is thehopeof biologicalresearchhat
by analyzinga wide spectrum of modelorganisms,onecanapproachan understandingf the full
biologicalcompleity. For someorganismsgertainbiochemicakxperimentsanbeperformednore
readilythanfor others facilitatingthe analysisof paticular processesThis understandinganthen
betransferre to otherorganismsfor instanceby verifying or re ning modelsof the processes—at
a fraction of the original cost. Thisis but one exampleof a situationwheretransferof knowledge
acrosgdomainss fruitful.

In machinelearning,the abore informationtransferis calleddomainadaptation whereoneaims
to usedataor a model of a well-analyzedsource domainto obtain or re ne a modelfor a less
analyzedarget domain For supervisedlassi cation, this correspondso the casewherethereare

(Xi;yi);i = m+ 1;:::;m + n for thetargetdomain(n m). The examplesareassumedo be
dravn independerty from thejoint probability distributionsPs (X ; Y) andPt (X; Y), respedtely.
ThedistributionsPs(X;Y) = Ps(YjX) Ps(X)andPr(X;Y) = Pr(YjX) P1(X) candiffer
in severalways:

(1) Intheclassicatovariateshitt caseijt is assumedthatonly thedistributionsof theinputfeatures
P (X) variesbetweenthe two domains: Ps(X) 6 Pt (X). The conditional,however, remains
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invariant,Ps(YjX) = P71 (Y]jX). For agivenfeaturevectorx thelabely is thusindependenof
the domainfrom which the examplestems. An examplethereofwould be if a function of some
biological matrial is consered betweentwo organisms,but its composiion haschangede.g.a
partof achromosoméasbea duplicated).

(2) Inamoredif cult scenariahe conditionalsdiffer betwea damains,Ps(YjX) 6 P (Y]jX),
while P (X)) mayor maynotvary. Thisis themorecommoncasein biology. Here,two organisms
may have evolved from a commonancestorand a certainbiological function may have changed
due to evolutionary pressures.The evolutionary distancemay be a good indicator for how well
the functionis consered. If this distarce is small, we have reasornto believe that theconditionals
may not be completelydifferent, andknowledgeof oneof themshouldthenprovide us withsome
informationalsoaboutthe otherone.

While suchknowledgetransferis crucialfor biology, andperformedby biologistson a daily basis,
surprisinglylittle work hasbeendoneto exploit it usingmachinelearningmethodson biological
databases.The presentpaperattemptsto Il this gap by studyinga realistic biological domain
transferproblem,takinginto accountseveral of the relevantdimensionsn a commonexperimental
framework:

methods— over thelastyearsthe eld of machinelearninghasseena strongincreasen
interestin thedomainadaptatioproblem re e ctedfor instanceby arecentNIPSworkshop

domaindistance— rangingfrom closeorganisms,wheresimply combiningtraining sets
doesthejob, to distantorganismswheremoresophisticateanethodscanpotentally shav
their strengths

datasetsizes— whetheror notit is worth transferringknowledgefrom a distantorganism
is expectedto depencbn theamount of dataavailablefor thetargetsystem

With theabove in mind, we selectedhe problemof mRNA splicing (seeFigureAl in the Appendix
for moredetails)to assy the above dimensionof domainadaptatioron ataskwhich is relevantto

modernbiology. The paperis organizedasfollows: In Section2, we will describethe experimen-
tal designincluding the datasetsthe underlyingclassi cation model,andthe modelselecton and
evaluationprocedureln Section3 we will brie y review anumberof known algorithmsfor domain
adaptationand proposecertan variations.In Section4 we show theresultsof our comparisorwith

abrief discussion.

2 Experimental Design

2.1 A Family of Classi cation Problems

We considerthe task of identifying so-calledacceptorsplice siteswithin a large setof potential
splice sitesbasedon a sequencewindow arounda site. The ideais to consicr the recognition
of splicesitesin differentorganisms:In all caseswe usedthe very well studiedmodelorganism
C. elggansasthe sourcedomain. As target organismswe chosetwo additionalnematodesnamely
the close relative C. remané which divergedfrom C. elegans 100 million yearsago[10], andthe
more distantly relatedP. paci cus, a lineagewhich hasdiverged from C. elegansmore than 200
million yearsago[7]. As a third target organismwe usedD. melan@aser, which is separated
from C. elegansby 990 million years[11]. Finally, we considerthe plant A. thaliana, which has
diverged from the otherorganismsmorethan 1,600million yearsago. It is assumedhata larger
evolutionarydistancewill likely alsohave led to an accumudtion of functional differencesn the
molecularsplicing machinery We thereforeexpectthatthe differencesof classi cationfunctions
for recognizingsplicesitesin theseorganismswill increasewith increasingevolutionarydistance.

2.2 The Classi cation Model

It hasbeendemonstratethat SupportVectorMachines(SVMs) [1] arewell suited for the task of
splicesite predictionsacrossa wide rangeof organisms[9]. In this work, the so-calledWeighted
Degreekernelhasbeenusedto measureghe similarity betweertwo examplesequences andx® of



x edlengthL by countingco-occurringsubstmgsin bothsequenceatthe sameposition:

. 1 XX .
kY (x;x9) = L dl Xpiaed) = X4 q) (1)
=1 d=1
wherex( .+ q) is thesubstringof length d of x atpositionl and ¢ = 2—%*1 is theweightingof the

substringengths.

In our previous studywe have usedsequencesf lengthL = 140andsubstingsof length™ = 22
for sgice sitedetection[9]. With thefour-letterDNA sequencealphabef A; C; G; T g thisleadsto
avery high dimensionafeaturespace(> 10 dimensions)Moreover, to archive the bestclassi -
cationperformancea large numberof training examplesis very helpful ([9] usedup to 10 million
examples).

For the designedexperimental comparisorwe hadto run all algorithmsmary timesfor different
training setsizes,organismsand modelparametersWe chosethe sourceandtargettraining setas
largeaspossible—irourcaseatmost100,000examplesgperdomain.Moreover, notfor all algorithms
we hadef cient implementationsvailablethatcanmake useof kernek. Hence,in orderto perform
this study andto obtain comparableresuts, we hadto restrictoursehesto a casewere we can
explicitly work in the featurespacejf necessaryi.e. not muchlargerthantwo). We chese™ =
1. Note, thatthis choicedoesnot limit the generalityof this study asthereis no strongreason,
why efcient implementationghat emgoy kernelscould not be derelopedfor all methods. The
developmenibof large scalemethodshowever, wasnot the mainfocusof this study

Notethattheabore choicesequiredanequivalentof aboutl500daysof computingtime on state-of-
the-artCPU cores.We therebrerefrainedfrom includingmoremethodsexamplesor dimensions.

2.3 Splits and Model Selection

In the rst setof experimentswe randomlyselecteda sourcedatasetof 100,000examplesfrom

C. elggans while datasetsof sizes2,500,6,50Q 16,000,40,000and 100,000were selectedfor

eachtargetorganism.Subsequentlyve performeda secondsetof experimentsvherewe combined
several sourcesFor our comparisorwe used25,000labeledexamplesfrom eachof four remaining
organismsto predicton a tamget organism. We ensurecthat the positivesto negatives ratio is at
1/100for all datasetsTwo thirds of eachtamgetsetwereusedfor training,while onethird wasused
for evaluationin the courseof hyperparametetuning® Additionally, testsetsof 60,000examples
were setasidefor eachtarget organism. All experimentswererepeatedhreetimeswith different
training splits (sourceandtamget), exceptthe lastonewhich alwaysusedthe full dataset. Reported
will betheaverageareaunderthe precision-recall-curg (auFRC) andits stanérd deviation, which

is considerech sensiblemeasurefor imbalancedclassi cation problems. The dataandadditional
informationwill bemadeavailable for downloadon a supplementaryvebsite?

3 Methodsfor Domain Adaptation

Regardingthe distributional view thatwas presentedn Sectionl, the problemof splice site pre-
diction canbe affectedby both evils simultaneouly, nanely Ps(X) 6 Pt (X) andPs(YjX) 6

P+ (YjX), which is alsothe mostrealistic scenarioin the caseof modelingmostbiological pro-
cessesln this paperwe will thereforedropthe classicalcovariae shift assumptionandallow for
differentpredictive functiors Ps (Y jX) 6 P (YjX).

3.1 BaselineMethods (SVMs and SVMy)

As baselinemethodsfor the comparisorwe considertwo methods:(a) training on the sourcedata
only (SVMs) and(b) training on the tagetdataonly (SVMt). For SVMs we usethe sourcedata
for training however we tunethe hyperparameteion the availabletametdata. For SVMt we use
theavailabletargetdatafor training (67%) andmodelselection(33%). Theresultingfunctionsare

fs()= h(x)wsi+bs and  fr(x) = h( x);wri+ br:

!Detailson the hyperparametesettingsard tuningareshowvn in TableA2 in theappendix.
2http://www.fml.mpg. de/raetsch/projects/genomedomainadaptation




3.2 Convex Combination (SVMs+SVMr)

The moststraightforvardideafor domainadaptatioris to reusethe two optimal functionsf+ and
f s asgeneratedby thebasdine methodsSVMs andSVMt andcombinethemin acorvex manner:

Fx)= fr(x)+ (@ )fs(x):

Here, 2 [0;1]is the corvex combinationparametethatis tunedon the evaluationset(33%) of
thetametdomain.A greatbene t of thisapproachs its ef ciency.

3.3 Weighted Combination (SVMs. 1)

Another simple ideais to train the methodon the union of sourceandtarget data. The relative
importanceof eachdomainis integratedinto the lossterm of the SVM and can be adjustedby
settingdomain-dependemostparameter€s andC+ for them andn training examplesfrom the
sourceandtargetdomain,repectiely:

1 xn X+ n
min “kwk? + Cg i+ Cr i (2)
W 2 ) .
i=1 i=m+1
s.t. yilhw; (xj)i+b 1  8i2[L;m+n]

i 0 8 2[L,m+n]

This methodhastwo modelparameterandrequiredrainingon theunionof thetrainingsets.Since
the computationtime of most classi cation methodsincreasessuperlinearly and full model se-
lection may requireto train mary parametecombhnations,this approachs computationallyquite
demanding.

3.4 Dual-task Learning (SVMs.1)

Oneway of extendingthe weightedcombinationapproachis a variantof multitask learning[2].
Theideais to solve the soucceandtargetclassi cationproblemssimultaneoushandcouplethetwo
solutionsvia aregularizationterm. Thisideacanberealizedby thefollowing optimizationproblem:

ry(+n

min }kWS W k? + C i (3)
WsiWr; 2 i
s.t. yilhws; ( xj)i+b 1 8i21:::;m
vilwt; (xp)i+h 1 8i2m+ 1,:::;;m+n
i 0 8i21::::m+n

Pleasenotethatnow ws andwt areoptimized.Theabove optimizationproblemcanbe solvedus-
ing astandardQP-soler. In apreliminaryexperimentwe usedthe optimizationpackageCPLEX to
solve this problem,which took toolong asthenumberof variabless relatively large. Hence,we de-
cidedto approximatehesoft-magin lossusingthelogisticlossl (f (x);y) = log(1+ exp( yf (x)))

andto usea conjugategradienimethod to minimizetheresultingobjective functionin termsof wg

andwr .

3.5 Kernel Mean Matching (SVMs; T)

Kernelmethodsmapthe datainto a reproducingkernelHilbert space RKHS) by meansof a map-
ping : X ! H relatedto a positive de nite kernelvia k(x;x%9 = h( x); ( x9i. Depending
onthechoiceof kernel,the spaceof H maybe spannedy alarge numbe of higherorderfeatures
of thedata.In suchcaseshigherorderstatisticsfor a setof input pointscanbe computedn H by

simply takingthe mean(i.e., the rst orderstatistics).In fact,it turnsout thatfor a certainclassof

kernelsthe mapping

3We usedCarl Rasmusses'minimize  function.



is injective [5] — in otherwords, given knowledge of (only) the mean(the right handside), we
canconpletely reconstructhe setof points. For a characterizatiomf this classof kernels,seefor
instance[4]. It is often not necessaryo retan all information(indeed,it may be usefulto specify
which information we want to retain and which one we want to disregard, see[8]). Generally
speakingthe higherdimensonalH, the moreinformationis coniinedin themean.

In [6] it waspropo®d thatonecould usethis for covariateshift adaptationmaoving the meanof a
sourcedistribution (over theinputsonly) towardsthe meanof a targetdistribution by re-weighting
the sourcetraining points. We have appliedthis to our problem,but found that a variant of this
approachperfamed better In this variant, we do not re-weightthe sourcepoints, but rathe we
translateeachpoint towardsthe meanof thetargetinputs:
1 X 1 XN
m ( xi) n

i=1 i=m+1
This aso leadsto a modi ed sourceinput distribution which is statistically more similar to the
targetdistribution andwhich canthusbe usedto improve performancevhentraining thetargettask.
Unlike [6], we do have acertainamountof labelsalsofor the targetdistribution. We make useof
themby performingthe shift separatelyor eachclassy 2 f 1g:

X0 ek N ’
)= () 0 =) Bi=vi(x)

My iy Yi=m+1

Tx)= (%)

( xi) 8 =m+ 1;:::;;m+n:

exampleswith labely, respectiely. The shifted examplescannow be usedin differentwaysto
obtaina nal classi er. We deddedto usetheweightedcombinationwith Cs = C+ for comparison.

3.6 Feature Augmentation (SVMs 1)

In [3] amethodwasproposedhataugmentshefeatureof sourceandtargetexamplesn adomain-

speci c way:

Tx) = ( (x);(x);07 fori

1 %) ( (x);0; (x))> fori=m+1;:::;m+n:
The intuition behindthis ideais that thereexist one setof parametershat modelsthe properties
commonto both setsand two additional setsof paranetersthat model the speci cs of the two
domains.lt caneasilybe sea thatthe kernelfor theaugmentedeaturespacecanbe computedas:

ey = 2h(Oxi) Cxp)i i ml=[  m]

Kau e (Xi3X) = n iy (xp)i otherwise

This meanghatthe “similarity” betweenwo examplesis two timesashigh, if the exampleswere

dravn from the samedomain,asif they weredravn from differentdomains.Insteadof thefactor2,
useda hyperparameteB in thefollowing.

1l
Ly
3

3.7 Combination of Several Sources

Most of the above algorithmscanbe extendedin oneway or anothetrto integrateseverd sourcedo-
mains.In this work we considernly threepossiblealgorithms:(a) corvex combinationsof several
domains,(b) KMM on severaldomainsand(c) an extersion of the dual-tasklearningapproacho
multi-tasklearning.We brie y describe thesemethodselow:

Multiple Convex Combinations (M-SVMs+SVMt) The mostgeneralversionwould beto op-
timize all corvex combinationcoefcients independently If donein a grid-search-like manney it
becomesprohibitive for morethansaythreesourcedomains.In principle, onecanoptimizethese
coefcients alsoby solvinga linearprogram.In preliminaryexperimentswe tried bothapproaches
andthey typically did notlead to betterresultsthanthefollowing combination:

1 X
F(x)= fr()+ @ )z fs(x)
JSJ S28
whereS is the setof all consideredsourcedomains. We thereforeonly consideredhis way of
combiningthe predictions.



Multiple KMM (M-SVMs, 1) Here,weshiftthesourceexamplesof eachdomainindependently
towardsthe targetexamples but by the samerelative distance( ). Thenwe train oneclassi er on
theshiftedsourceexamplesaswell asthetargetexamples.

Multi-task Learning (M-SVMs.t) We considetthefollowing versionof multi-tasklearning:

) 1 X X )
min . = Dl;DszDl WDzk + i (4)
fwo gozo ; D;2D D,2D i
s.t. yi(wp,; ( x))i+ b 1 ©)
i 0
|

for all examples(x;;y;) in domainD; 2 D, whereD is thesetof all consideredlomairs. is aset
of regularizationparametersyhich we parametrizedy two parameter€s andCy in thefollowing
way: p,p, = Cs if D; andD, aresourcedomainsandCr otherwise.

4 Experimental Results

We consideed two differentsettingsfor the comparison.For the rst experimentwe assumehat
thereis one sourcedoman with enoughdatathat shouldbe usedto improve the performancen

the taget domain. In the secondsettingwe analyzewhetherone canbene t from several source
domains.

4.1 Single Source Domain

Due to spacecorstraints,we restrictourselesto presentinga summaryof our resultswith a fo-
cus on bestand worg performing methods. The detailedresultsare given in Figure A2 in the
appendixwherewe shov themedianauPRCof themethodsSVM+t , SVMs, SVMs, 1, SVMs. T,
SVMs+SVMr, SVMs 1 and SVMs.t for the consideredasks. The summaryis givenin Fig-
urel, Wherev¥5a illustratewhich methodperformedoest(green) similarly well (within acon dence
interval of = n) asthebest(light green),considerablyworsethanthe best(yellow), not signi -

cantlybetterthantheworst(light red) or worst(red). Fromtheseresultswe canmake thefollowing
obsenations:

1. Independentf thetask, if thereis very little target dataavailable,the training on source
dataperformsmuchbetterthantraining on the target data. Corversely if thereis much
targetdataavailablethentraining onit easilyoutperformgrainingthe sourcedata.

2. For alargerevolutionarydistanceof thetargetorganismsto sour@ organismcC. elegans a
relatively small numberof targettrainingexamplesfor the SVM+t approachs sufcient to
achieve similar performanceo the SYM s approachwhich is alwaystrainedon 100,000
examples.We call thenumberof tamgetexampleswith equalsourceandtargetpeformance
the break-@en point. For instancefor the closelyrelatedorganismC. remaneioneneeds
nearlyasmary tagetdataassourcedatato achieve the sameperformance For the most
distantlyrelatedorganismA. thaliana, lessthan10%targetdatais sufcient to outperform
thesourcemodel.

3. In almostall casesthe performancef domainadaptionalgorithmsis considerablyhigher
thansourcg SVMs) andtargetonly (SVM+ ). Thisis mostpronounced nearthebreak-&en
point, e.g.3% improvementfor C. remaneiand14%for D. melan@astet

4. Amongthedomainadaptabn algorithms the dual-taskearningapproachSVMs.1) per
formedmostoftenbest(12/20cases) Secondmostoftenbest(5/20) performedhe convex
combinationapproacSVMs+SVMr ).

Fromourobsenationswe canconcludethatthesimpleconvex combinatiorapproactworkssurpris-
ingly well. It is only outperformedy the duattasklearningalgorithmwhich performsconsistently
well for all organismsandtargettrainingsetsizes.
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Figure 1: Summary of determined performances of each presented method. Each column contains 5 sub-
columns, which correspond to ascending target data set sizes (2,500, 6,500, 16,000, 40,000, 100,000). The
method with the highest auPRC score for a given organism and target data set size is assigned a dark green
background. Methods that do not perform significantly worse (within a confidence interval of o//n) are
shown in light green. Accordingly, the worst performer is shown in red. The remaining methods, that do not
fall in any of the mentioned categories are shown in yellow. This figure above summarizes the methods based
on the single-source domain approach.

4.2 Multiple Sources

In a second set of experiments we considered the three algorithms combining several sources. The
results are given in Figure A2 in the appendix and a summary in Figure 2. We can make the following
observations:

1. Relative to the single source algorithms, these algorithms perform worse, if the additional
source organisms are further away from the target organism than the source used by the
single source algorithm. For instance, for C. remanei this is expected as fewer training
examples of the closely related C. elegans organism are available.

2. For distantly related target organisms, such as D. melanogaster and A. thaliana the usage of
multiple sources can lead to drastic improvements relative to the single source algorithms,
in particular for small target training set sizes. This is in particular noteworthy in the case
of A. thaliana, where all four source organisms have similar distance to the target organism.
We can therefore conclude that a more general model can be learnt from different source
organisms of similar distance as compared to a single source organism.

3. Among the multiple source algorithms, convex combinations and multi-task learning are
the most successful ones. The first leads to the best results in 4/20 case and the latter in
11/20 cases.

From these observations we can conclude that it pays off to use diverse multiple sources, if there is
no very close relative available. The multi-task learning algorithm outperforms the other methods
for distantly related organisms.

5 Conclusions

Using the example of splice site prediction, we can show that domain adaptation algorithms are
well suited to considerably boost predictive performance on sequence-based classification prob-
lems. Based on the observations from our experiments, we can conclude that all domain adaptation
algorithms lead to considerable improvements over the source and target models. The improvement
over baseline methods is most pronounced if the source organism is only distantly related to the tar-
get organism. Even though many of the presented domain adaptation methods performed similarly
well, we could determine the dual-task algorithm and multi-task learning as the best performing
methods in our comparison.
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Figure 2: Summary of performance of multi-source domain methods following the scheme defined in Figure
1. Briefly, ascending target data set sizes are contained sub-columns, best performing method is shown in
green, worst performing method is shown in red, while the remaining colors denote methods in between. For
comparison we also included the target only method SV My and the dual task method SV Mg r as the best
single source method.

To our knowledge, this work constitutes the first thorough experimental comparison of available
domain adaptation algorithms in a well controlled experimental framework. Furthermore, this is
one of the first applications of such methods to problems in computational biology, a field that
provides a wealth of problems that could greatly benefit from these techniques.
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