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Abstract

In this paper, we consider Tipping’s relevance vector machine (RVM)
[1] and formalize an incremental training strategy as a variant of the
expectation-maximization (EM) algorithm that we call Subspace EM
(SSEM). Working with a subset of active basis functions, the sparsity
of the RVM solution will ensure that the number of basis functions and
thereby the computational complexity is kept low. We also introduce
a mean field approach to the intractable classification model that is ex-
pected to give a very good approximation to exact Bayesian inference
and contains the Laplace approximation as a special case. We test the
algorithms on two large data sets with O(103 − 104) examples. The re-
sults indicate that Bayesian learning of large data sets, e.g. the MNIST
database is realistic.

1 Introduction

Tipping’s relevance vector machine (RVM) both achieves a sparse solution like the support
vector machine (SVM) [2, 3] and the probabilistic predictions of Bayesian kernel machines
based upon a Gaussian process (GP) priors over functions [4, 5, 6, 7, 8]. Sparsity is in-
teresting both with respect to fast training and predictions and ease of interpretation of the
solution. Probabilistic predictions are desirable because inference is most naturally for-
mulated in terms of probability theory, i.e. we can manipulate probabilities through Bayes
theorem, reject uncertain predictions, etc.

It seems that Tipping’s relevance vector machine takes the best of both worlds. It is a GP
with a covariance matrix spanned by a small number of basis functions making the compu-
tational expensive matrix inversion operation go from O(N 3), where N is the number of
training examples to O(M 2N) (M being the number of basis functions). Simulation stud-
ies have shown very sparse solutions M � N and good test performance [1]. However,
starting the RVM learning with as many basis functions as examples, i.e. one basis function
in each training input point, leads to the same complexity as for Gaussian processes (GP)
since in the initial step no basis functions are removed. That lead Tipping to suggest in
an appendix in Ref. [1] an incremental learning strategy that starts with only a single basis
function and adds basis functions along the iterations, and to formalize it very recently [9].
The total number of basis functions is kept low because basis functions are also removed.
In this paper we formalize this strategy using straightforward expectation-maximization
(EM) [10] arguments to prove that the scheme is the guaranteed convergence to a local



maximum of the likelihood of the model parameters.

Reducing the computational burden of Bayesian kernel learning is a subject of current
interest. This can be achieved by numerical approximations to matrix inversion [11] and
suboptimal projections onto finite subspaces of basis functions without having an explicit
parametric form of such basis functions [12, 13]. Using mixtures of GPs [14, 15] to make
the kernel function input dependent is also a promising technique. None of the Bayesian
methods can currently compete in terms of speed with the efficient SVM optimization
schemes that have been developed, see e.g. [3].

The rest of the paper is organized as follows: In section 2 we present the extended linear
models in a Bayesian perspective, the regression model and the standard EM approach.
In section 3, a variation of the EM algorithm, that we call the Subspace EM (SSEM) is
introduced that works well with sparse solution models. In section 4, we present the second
main contribution of the paper: a mean field approach to RVM classification. Section
5 gives results for the Mackey-Glass time-series and preliminary results on the MNIST
hand-written digits database. We conclude in section 6.

2 Regression

An extended linear model is built by transforming the input space by an arbitrary set of ba-
sis functions φj : RD → R that performs a non-linear transformation of the D-dimensional
input space. A linear model is applied to the transformed space whose dimension is equal
to the number of basis functions M :

y(xi) =
M
∑

j=1

ωj φj(xi) = Φ(xi) ·ωωω (1)

where Φ(xi) ≡ [φ1(xi), . . . , φM (xi)] denotes the ith row of the design matrix Φ and ωωω =
(ω1, . . . , ωN)T is the weights vector. The output of the model is thus a linear superposition
of completely general basis functions. While it is possible to optimize the parameters of
the basis functions for the problem at hand [1, 16], we will in this paper assume that they
are given.

The simplest possible regression learning scenario can be described as follows: a set of
N input-target training pairs {xi, ti}N

i=1 are assumed to be independent and contaminated
with Gaussian noise of variance σ2. The likelihood of the parameters ωωω is given by

p(t|ωωω, σ2) =
(

2πσ2
)−N/2

exp

(

− 1

2σ2
‖t−Φωωω‖2

)

(2)

where t = (t1, . . . , tN )T is the target vector. Regularization is introduced in Bayesian
learning by means of a prior distribution over the weights. In general, the implied prior
over functions is a very complicated distribution. However, choosing a Gaussian prior on
the weights the prior over functions also becomes Gaussian, i.e. a Gaussian process. For
the specific choice of a factorized distribution with variance α−1

j :

p(ωj |αj) =

√

αj

2π
exp

(

−1

2
αj ω2

j

)

(3)

the prior over functions p(y|ααα) is N (0,ΦA−1ΦT ), i.e. a Gaussian process with covariance
function given by

Cov(xi,xj) =
M
∑

k=1

1

αk
φk(xi)φk(xj) (4)



where ααα = (α0, . . . , αN )T and A = diag(α0, . . . , αN ). We can now see how
sparseness in terms of the basis vectors may arise: if α−1

k = 0 the kth basis vector
Φk ≡ [φk(x1), . . . , φk(xN )]T , i.e. the kth column in the design matrix, will not contribute
to the model. Associating a basis function with each input point may thus lead to a model
with a sparse representations in the inputs, i.e. the solution is only spanned by a subset of
all input points. This is exactly the idea behind the relevance vector machine, introduced
by Tipping [17]. We will see in the following how this also leads to a lower computational
complexity than using a regular Gaussian process kernel.

The posterior distribution over the weights–obtained through Bayes rule–is a Gaussian dis-
tribution

p(ωωω|t,ααα, σ2) =
p(t|ωωω, σ2)p(ωωω|ααα)

p(t|ααα, σ2)
= N (ωωω|µµµ,Σ) (5)

where N (t|µµµ,Σ) is a Gaussian distribution with mean µµµ and covariance Σ evaluated at t.
The mean and covariance are given by

µµµ = σ−2ΣΦT t (6)

Σ = (σ−2ΦT Φ + A)−1 (7)

The uncertainty about the optimal value of the weights captured by the posterior distribu-
tion (5) can be used to build probabilistic predictions. Given a new input x∗, the model
gives a Gaussian predictive distribution of the corresponding target t∗

p(t∗|x∗,ααα, σ2) =

∫

p(t∗|x∗,ωωω, σ2) p(ωωω|t,ααα, σ2) dωωω = N (t∗|y∗, σ2
∗) (8)

where

y∗ = Φ(x∗) · µµµ (9)

σ2
∗ = σ2 + Φ(x∗) ·Σ · Φ(x∗)

T (10)

For regression it is natural to use y∗ and σ∗ as the prediction and the error bar on the
prediction respectively. The computational complexity of making predictions is thus
O(M2P + M3 + M2N), where M is the number of selected basis functions (RVs) and P
is the number of predictions. The two last terms come from the computation of Σ in eq.
(7).

The likelihood distribution over the training targets (2) can be “marginalized” with respect
to the weights to obtain the marginal likelihood, which is also a Gaussian distribution

p(t|ααα, σ2) =

∫

p(t|ωωω, σ2) p(ωωω|ααα) dωωω = N (t|0, σ2I + ΦA−1ΦT ) . (11)

Estimating the hyperparameters {αj} and the noise σ2 can be achieved by maximizing
(11). This is naturally carried out in the framework of the expectation-maximization (EM)
algorithm since the sufficient statistics of the weights (that act as hidden variables) are
available for this type of model. In other cases e.g. for adapting the length scale of the
kernel [4], gradient methods have to be used. For regression, the E-step is exact (the lower
bound on the marginal likelihood is made equal to the marginal likelihood) and consists in
estimating the mean and variance (6) and (7) of the posterior distribution of the weights
(5). For classification, the E-step will be approximate. In this paper we present a mean
field approach for obtaining the sufficient statistics.

The M-step corresponds to maximizing the expectation of the log marginal likelihood with
respect to the posterior, with respect to σ2 and ααα, which gives the following update rules:
αnew

j = 1
〈ω2

j
〉
p(ωωω|t,ααα,σ2)

= 1
µ2

j
+Σjj

, and (σ2)new = 1
N (||t −Φµ||2 + (σ2)old

∑

j γj),



where the quantity γj ≡ 1−αjΣjj is a measure of how “well-determined” each weight ωj

is by the data [18, 1]. One can obtain a different update rule that gives faster convergence.
Although it is suboptimal in the EM sense, we have never observed it decrease the lower
bound on the marginal log-likelihood. The rule, derived in [1], is obtained by differentiation
of (11) and by an arbitrary choice of independent terms as is done by [18]. It makes use of
the terms {γj}:

αnew
j =

γj

µ2
j

(σ2)new =
||t −Φµ||2
N −∑j γj

. (12)

In the optimization process many αj grow to infinity, which effectively deletes the cor-
responding weight and basis function. Note that the EM update and the Mackay update
for αj only implicitly depend upon the likelihood. This means that it is also valid for the
classification model we shall consider below.

A serious limitation of the EM algorithm and variants for problems of this type is that the
complexity of computing the covariance of the weights (7) in the E-step is O(M 3+M2N).
At least in the first iteration where no basis functions have been deleted M = N and we
are facing the same kind of complexity explosion that limits the applicability of Gaussian
processes to large training set. This has lead Tipping [1] to consider a constructive or
incremental training paradigm where one basis function is added before each E-step and
since basis functions are removed in the M-step, it turns out in practice that the total number
of basis functions and the complexity remain low [9]. In the following section we introduce
a new algorithm that formalizes this procedure that can be proven to increase the marginal
likelihood in each step.

3 Subspace EM

We introduce an incremental approach to the EM algorithm, the Subspace EM (SSEM), that
can be directly applied to training models like the RVM that rely on a linear superposition
of completely general basis functions, both for classification and for regression. Instead of
starting with a full model, i.e. where all the basis functions are present with finite α values,
we start with a fully pruned model with all αj set to infinity. Effectively, we start with no
model. The model is grown by iteratively including some αj previously set to infinity to
the active set of α’s. The active set at iteration n, Rn, contains the indices of the basis
vectors with α less than infinity:

R1 = 1

Rn = {i | i ∈ Rn−1 ∧ αi ≤ L} ∪ {n} (13)

where L is a finite very large number arbitrarily defined. Observe that Rn contains at most
one more element (index) than Rn−1. If some of the α’s indexed by Rn−1 happen to reach
L at the n-th step, Rn can contain less elements than Rn−1. In figure 1 we give a schematic
description of the SSEM algorithm.

At iteration n the E-step is taken only in the subspace spanned by the weights whose
indexes are in Rn. This helps reducing the computational complexity of the M-step to
O(M3), where M is the number of relevance vectors.

Since the initial value of αj is infinity for all j, for regression the E-step yields always
an equality between the log marginal likelihood and its lower bound. At any step n, the
posterior can be exactly projected on to the space spanned by the weights ωj such that
j ∈ Rn, because the αk = ∞ for all k not in Rn. Hence in the regression case, the SSEM
never decreases the log marginal likelihood. Figure 2 illustrates the convergence process
of the SSEM algorithm compared to that of the EM algorithm for regression.



1. Set αj = L for all j. (L is a very large number) Set n = 1
2. Update the set of active indexes Rn

3. Perform an E-step in subspace ωj such that j ∈ Rn

4. Perform the M-step for all αj such that j ∈ Rn

5. If visited all basis functions, end, else go to 2.

Figure 1: Schematics of the SSEM algorithm.
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Figure 2: Training on 400 samples of the Mackey-Glass time series, testing on 2000 cases.
Log marginal likelihood as a function of the elapsed CPU time (left) and corresponding
number of relevance vectors (right) for both SSEM and EM.

We perform one EM step for each time a new basis function is added to the active set. Once
all the examples have been visited, we switch to the batch EM algorithm on the active set
until some convergence criteria has been satisfied, for example until the relative increase in
the likelihood is smaller than a certain threshold. In practice some 50 of these batch EM
iterations are enough.

4 Classification

Unlike the model discussed above, analytical inference is not possible for classification
models. Here, we will discuss the adaptive TAP mean field approach–initially proposed for
Gaussian processes [8]–that are readily translated to RVMs. The mean field approach has
the appealing features that it retains the computational efficiency of RVMs, is exact for the
regression and reduces to the Laplace approximation in the limit where all the variability
comes from the prior distribution.

We consider binary t = ±1 classification using the probit likelihood with ’input’ noise σ2

p(t|y(x)) = erf

(

t
y(x)

σ

)

, (14)

where Dz ≡ e−z2/2dz/
√

2π and erf(x) ≡
∫ x

−∞
Dz is an error function (or cumulative

Gaussian distribution). The advantage of using this sigmoid rather than the commonly
used 0/1-logistic is that we under the mean field approximation can derive an analytical
expression for the predictive distribution p(t∗|x∗, t) =

∫

p(t∗|y)p(y|x∗, t)dy needed for
making Bayesian predictions. Both a variational and the advanced mean field approach–
used here–make a Gaussian approximation for p(y|x∗, t) [8] with mean and variance given
by regression results y∗ and σ2

∗ − σ̂2, and y∗ and σ2
∗ given by eqs. (9) and (10). This leads



to the following approximation for the predictive distribution

p(t∗|x∗, t) =

∫

erf
(

t∗
y

σ

)

p(y|x∗, t) dy = erf

(

t∗
y∗
σ∗

)

. (15)

However, the mean and covariance of the weights are no longer found by analytical expres-
sions, but has to be obtained from a set of non-linear mean field equations that also follow
from equivalent assumptions of Gaussianity for the training set outputs y(xi) in averages
over reduced (or cavity) posterior averages.

In the following, we will only state the results which follows from combining the RVM
Gaussian process kernel (4) with the results of [8]. The sufficient statistics of the weights
are written in terms of a set of O(N) mean field parameters

µµµ = A−1ΦTτττ (16)

Σ =
(

A + ΦT ΩΦ
)−1

(17)

where τi ≡ ∂
∂yc

i

ln Z(yc
i , V

c
i + σ2) and

Z(yc
i , V

c
i + σ2) ≡

∫

p(ti|yc
i + z

√

V c
i + σ2) Dz = erf

(

ti
yc

i
√

V c
i + σ2

)

. (18)

The last equality holds for the likelihood eq. (14) and yc
i and V c

i are the mean and variance
of the so called cavity field. The mean value is yc

i = Φ(xi) · µ − V c
i τi. The distinction

between the different approximation schemes is solely in the variance V c
i : V c

i = 0 is the
Laplace approximation, V c

i =
[

ΦA−1ΦT
]

ii
is the so called naive mean field theory and

an improved estimate is available from the adaptive TAP mean field theory [8]. Lastly, the
diagonal matrix Ω is the equivalent of the noise variance in the regression model (compare
eqs. (17) and (7) and is given by Ωi = − ∂τi

∂yc
i

/(1+V c
i

∂τi

∂yc
i

) . This set of non-linear equations
are readily solved (i.e. fast and stable) by making Newton-Raphson updates in µµµ treating
the remaining quantities as help variables:

∆µµµ = (I + A−1ΦT ΩΦ)−1(A−1ΦTτττ − µµµ) = Σ(ΦTτττ −Aµµµ) (19)

The computational complexity of the E-step for classification is augmented with respect to
the regression case by the fact that it is necessary to construct and invert a M × M matrix
usually many times (typically 20), once for each step of the iterative Newton method.

5 Simulations

We illustrate the performance of the SSEM for regression on the Mackey-Glass chaotic
time series, which is well-known for its strong non-linearity. In [16] we showed that the
RVM has an order of magnitude superior performance than carefully tuned neural networks
for time series prediction on the Mackey-Glass series. The inputs are formed by L = 16
samples spaced 6 periods from each other xk = [z(k − 6), z(k − 12), . . . , z(k − 6L)] and
the targets are chosen to be tk = z(k) to perform six steps ahead prediction (see [19] for
details). We use Gaussian basis functions of fixed variance ν2 = 10. The test set comprises
5804 examples.

We perform prediction experiments for different sizes of the training set. We perform in
each case 10 repetitions with different partitions of the data sets into training and test. We
compare the test error, the number of RVs selected and the computer time needed for the
batch and the SSEM method. We present the results obtained with the growth method
relative to the results obtained with the batch method in figure 3. As expected, the relative
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Figure 3: Left: Regression, mean values over 10 repetitions of relative test error, number
of RVs and computer time for the Mackey-Glass data, up to 2400 training examples and
5804 test examples. Right: Classification, Log marginal likelihood, test and training errors
while training on one class against all the others, 60000 training and 10000 test examples.

computer time of the growth method compared with the batch method decreases with size
of the training set. For a few thousand examples the SSEM method is an order of magnitude
faster than the batch method. The batch method proved only to be faster for 100 training
examples, and could not be used with data sets of thousands of examples on the machine on
which we run the experiments because of its high memory requirements. This is the reason
why we only ran the comparison for up to 2400 training example for the Mackey-Glass
data set.

Our experiments for classification are at the time of sending this paper to press very pre-
mature: we choose a very large data set, the MNIST database of handwritten digits [20],
with 60000 training and 10000 test images. The images are of size 28 × 28 pixels. We
use PCA to project them down to 16 dimensional vectors. We only perform a preliminary
experiment consisting of a one against all binary classification problem to illustrate that
Bayesian approaches to classification can be used on very large data sets with the SSEM
algorithm. We train on 13484 examples (the 6742 one’s and another 6742 random non-one
digits selected at random from the rest) and we use 800 basis functions for both the batch
and Subspace EM. In figure 3 we show the convergence of the SSEM in terms of the log
marginal likelihood and the training and test probabilities of error. The test probability of
error we obtain is 0.74 percent with the SSEM algorithm and 0.66 percent with the batch
EM. Under the same conditions the SSEM needed 55 minutes to do the job, while the batch
EM needed 186 minutes. The SSEM gives a machine with 28 basis functions and the batch
EM one with 31 basis functions.

6 Conclusion

We have presented a new approach to Bayesian training of linear models, based on a sub-
space extension of the EM algorithm that we call Subspace EM (SSEM). The new method
iteratively builds models from a potentially big library of basis functions. It is especially
well-suited for models that are constructed such that they yield a sparse solution, i.e. the so-
lution is spanned by small number M of basis functions, which is much smaller than N , the
number of examples. A prime example of this is Tipping’s relevance vector machine that
typically produces solutions that are sparser than those of support vector machines. With



the SSEM algorithm the computational complexity and memory requirement decrease from
O(N3) and O(N2) to O(M2N) (somewhat higher for classification) and O(NM). For
classification, we have presented a mean field approach that is expected to be a very good
approximation to the exact inference and contains the widely used Laplace approximation
as an extreme case. We have applied the SSEM algorithm to both a large regression and a
large classification data sets. Although preliminary for the latter, we believe that the results
demonstrate that Bayesian learning is possible for very large data sets. Similar methods
should also be applicable beyond supervised learning.
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