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Introduction Gaussian Processes (GPs) can be used to specify a prior over latent func-
tions in non-parametric Bayesian models, e.g. for regression and classification. For this
abstract we assume familiarity with the basic concepts of Gaussian Process models, see
for example the introduction by Mackay [1]. A GP is defined by a mean and a covariance
function, the latter describing dependencies k̂(x,x′) = cov(f(x), f(x′)) between function
values as a function of the corresponding inputs x and x′. A common assumption when
specifying a GP prior is stationarity, i.e. that the covariance between function values only
depends on the distances |x − x′|, not on their location. It is far more difficult to specify
a GP prior allowing the function to have different properties in different parts of the input
space. In this work we describe new techniques for non-parametric Bayesian regression
for, e.g. discontinuous, functions where the stationarity assumption does not hold.

Several approaches to the problem of how to specify nonstationary GP models can be
found in the literature. Sampson and Guttorp [2] propose to use multidimensional scaling
for spatio-temporal Processes to map a nonstationary spatial Process into a latent space in
which the problem becomes approximately stationary. Schmidt and O’Hagan [3] pick up
the idea and use GPs to implement the mapping. In comparison to a direct definition of a
nonstationary covariance function, as proposed by [4], the detour via a latent space is ad-
vantageous because it assures positive definiteness of the covariance between observations
in the original space and eases an intuitive interpretation of the problem.

In this work we propose to augment the input space RD by a latent extra input which
we infer from the data. When thinking of regression for discontinuous functions, the extra
input could tear apart regions of the input space that are separated by abrupt changes of the
function values. The idea to add an extra dimension to the input space is strongly related
to the use of a so-called Mixtures of Local Experts (MoE) as described in [5, 6, 7, 8] where
several independent GPs, so called experts, are used to explain the data in different regions
of the input space. In this framework a gating network assigns responsibilities to certain
experts, defining a mapping from the known inputs x to the class associations. We close the
gap between a mixture of independent experts and a single GP using the fact that the latent
associations to the experts can be seen as a discretized latent input. In the following we
present two approaches for approximate Bayesian inference in GP models, that implement
nonstationarity by an augmented input space. The first method is inspired by the MoE view
with a discrete latent input and is implemented in an MCMC sampling scheme, whereas
the second method estimates a continuous latent mapping by evidence maximization.

Nonstationarity by Augmentation Let D = {(x1, y1), . . . , (xN , yN )} denote N train-
ing samples, where yi ∈ R stand for a target and xi ∈ RD is the corresponding D-
dimensional input vector. The standard GP regression model assumes a relation yi =
f(xi) + ε via a latent function f , where the observational noise is normally distributed.
The key idea is to use a Gaussian Process prior on f and to make inference about the latent
function directly. Below, all parameters of the covariance function and the likelihood are
collected in a vector θ.

Assume for example we use the common quadratic exponential covariance function
k̂(x,x′) = v2 exp{− 1

2
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The covariance function of a GP in this augmented input space x̄ = (xT, `)T reads
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To this point we have not specified any assumptions about `. Considering data which is
generated by more than one stationary Process, it is adequate to restrict ` to discrete values,
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say {0, 1}. While we retain the standard GP for wo → ∞, small wo drive the correlation
between function values to zero if ` 6= `′. In this case we obtain the above above mentioned
mixture of independent GPs where the joint covariance matrix of the training examples
comes in the form of a block-diagonal matrix [9]. As we infer wo from the data, also
intermediate values are possible which correspond to a mixture of correlated GPs when `
is discrete. In the following, we compare two approaches for handling the latent variables.
The first approach uses a discrete latent extra input and can be interpreted as a MoE where
we use a tailored GP classifier to model the gating network. The second approach directly
models ` as a continuous function of the inputs x using a sparse parametric GP regression
model [10].

MoE approach with discrete latent input Using Bayes’ rule one obtains the poste-
rior distribution for the hyper-parameters θ and latent inputs ` of the training instances
p(θ, `|D) ∝ p(D|θ, `)p(θ)p(`), where p(θ) and p(`) are prior distributions. The like-
lihood of the hyper-parameters θ and latent inputs `, called assignments in the MoE in-
terpretation, is simply the marginal likelihood p(D|θ, `). As inference in this model is
analytically intractable we resort to an MCMC technique, alternating a Gibbs scheme to
draw samples `n of the discrete extra input and hybrid MC to draw samples θn from the
posterior distribution p(θ, `|D). We use a uniform prior on ` which is updated using the
dataD, which means for prediction at x∗ that we have to add up predictions for all possible
`∗ with equal weight. In order to improve predictions we need to define a gating network
p(`∗|D,x∗) which models a dependency of the position x∗. The predictive distribution at
points x∗ is given by an average over the unknown `∗,

p(f∗|D,x∗) =
∫

dθ
∑
`

p(θ, `|D)
( ∑

`∗

p(f∗|D,x∗,θ, `, `∗)p(`∗|D,x∗,θ, `)
)

, (2)

where we identify p(`∗|D,x∗,θ, `) as the gating network. While a standard classifier only
models p(`∗|X, `,x∗), instead we construct a model for p(`|D) at test inputs.

We tailor the gating network to our needs based on a GP classifier [11] with latent
function ξ, which assumes some likelihood p` (`|ξ,x). In our setup we aim at using πk =
p(`k = 1|D,θ) as extra information from the regression setup and construct a likelihood
p(πk|ξ,xk,D,θ) to take this information into account:

p ( πk |ξ,xk,D,θ) ∝ πk p` (` = 1 |ξ,xk) + (1− πk) p` (` = 0 |ξ,xk) . (3)

This model shows sensible behavior in both limiting cases: If the MoE clearly assigns
a training case (xk, yk) to one of the experts, i.e. πk ≈ 0 or 1, the sum in (3) col-
lapses and coincides with the likelihood p`. If, on the other hand, πk ≈ 1

2 we obtain
p (πk|ξ,xk,D,θ) = 1

2 and the classifier effectively ignores the data point as the regression
model does not determine the association `k.

Direct approach with continuous latent inputs The MoE approach restricts the latent
input to discrete values and uses a gating network to model a mapping p(`|x,D) from the
input space to the latent labels. If, on the other hand, we assume ` to be a continuous
parametric function of the inputs x we can see its parameters θl as additional parameters of
the covariance function (1) itself and treat them just as the other parameters θ in a hybrid
MC or the computationally cheaper evidence maximization scheme. To obtain a flexible
parametric function we use sparse parametric GPs, which have recently been introduced by
Snelson and Ghahramani [10]. The sparse GPs comprise the flexibility of a full GP while
reducing computational complexity through a reduction of the number of support points
which are treated as free parameters. The predictive mean µP(x) is a parametric function
of these ”pseudo” inputs and targets, along with the parameters of the used covariance
function. We model the latent extra input l(x|θl) using the predictive mean of such a
sparse GP which we map to [0, 1] defining l(x|θl) = [1 + exp{µP(x)}]−1. In comparison
to the discrete, MoE type latent input, the parametric representation has the virtue that we
can spare a gating network and treat the mapping as a part of the covariance function. In
principle any parametric function could be used to model `, however, using the flexible
sparse GPs we ensure that the model can capture the underlying structure of the data.

Experiments We evaluate the performance of our algorithms using two 2-, and two 4-
dimensional data sets which stem from simulations of an inverted pendulum system as it is
frequently studied in control theory and reinforcement learning. The problem is to swing
up a pendulum attached to a cart which can only be accelerated horizontally. The objective
is to swing up the pendulum and balance it while the cart itself is centered. As loss function
we use the squared distance between the actual and the target position of the pendulum. The
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MSE ν-SVR stat. GP MoE param. latent
FORCE 2D 2.619 2.433 2.233 2.120
LOSS 2D 0.174 0.107 0.094 0.036
FORCE 4D 7.701 5.534 5.147 4.246
LOSS 4D 9.109 8.360 8.370 3.485

Table 1: Predictive performances, Mean Square Error (MSE)

controller behaves very differently depending on whether the state of the system allows the
controller to balance the pendulum. In this balancing region the loss is relatively small,
outside the controller applies larger forces and the variability of the losses increases. The
controller has a stochastic element that can lead to irregularities in the forces and the loss
function has a discontinuity marking the border of the balancing region. We learn the
control signal (force) and the corresponding loss accumulated over one second (loss) as
functions of the pendulum angle, the cart’s position and the corresponding velocities. The
two-dimensional data sets were created by setting the velocities to zero.

For all data sets we did a 10 fold cross validation and show the average mean square
error in Table 1. For brevity we omit the predictive probabilities. We compare the perfor-
mance of both proposed methods, the MCMC implementation of the discrete ”MoE” latent
input, and the approach of a continuous ”parametric latent” input (evidence maximization),
to a stationary GP (MCMC) and the widely used ν-SVR [12] regression as a benchmark.

The experiments show that the extra flexibility introduced by the latent space greatly
improves predictions in both implementations, where the parametric approach—while be-
ing computationally much more efficient—clearly outperforms the MoE scheme. The im-
plementations differ substantially, both showing benefits and disadvantages. The discrete
latent space ”MoE” approach proves to be very efficient in approximating the posterior
distribution p(`,θ|D), while crux is a good gating network to correctly classify the test in-
stances. The parametric approach avoids this problem by directly maximizing the evidence
of the regression problem to find a mapping to the latent input. The optimization problem,
however, is non-convex and it can be hard to find a global maximum.
Synopsis In this work we describe the construction of nonstationary GP models for re-
gression. An attractive way to model nonstationarity is to use a mapping to a latent space
where the problem appears approximately stationary. We propose two alternative models
which implement the mapping via an augmentation of the input space by a latent extra input
and illustrate how approximate Bayesian inference can be implemented for those models.
The first approach assumes the latent inputs to be discrete variables and we show that this
is effectively an extension to the known MoE approach. The second approach assumes
continuous latent variables which we implement using the flexible sparse parametric Gaus-
sian Processes. In various experiments we find the proposed models to give significantly
improved performance.
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