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Abstract

A recent method for causal discovery is in many cases able to infer whether X causes
Y or Y causes X for just two observed variables X and Y . It is based on the observation
that there exist (non-Gaussian) joint distributions P (X, Y ) for which Y may be written as
a function of X up to an additive noise term that is independent of X and no such model
exists from Y to X . Whenever this is the case, one prefers the causal model X → Y .

Here we justify this method by showing that the causal hypothesis Y → X is unlikely
because it requires a specific tuning between P (Y ) and P (X |Y ) to generate a distri-
bution that admits an additive noise model from X to Y . To quantify the amount of
tuning needed we derive lower bounds on the algorithmic information shared by P (Y )
and P (X |Y ). This way, our justification is consistent with recent approaches for using
algorithmic information theory for causal reasoning. We extend this principle to the case
where P (X, Y ) almost admits an additive noise model.

Our results suggest that the above conclusion is more reliable if the complexity of
P (Y ) is high.

1 Additive noise models in causal discovery

Causal inference from statistical data is a field of research that obtained increasing interest
in recent years. To infer causal relations among several random variables by purely ob-
serving their joint distribution is unsolvable from the point of view of traditional statistics.
During the 90s, however, it was more and more believed that also puerly observational
data contain at least hints on the causal directions. The most important postulate that
links the observed statistical dependencies on the one hand to the causal structure (which
is here assumed to be a DAG, i.e., a directed acyclic graph) on the other hand is the
causal Markov condition [16]. It states that every variable is conditionally independent
of its non-effects, given its causes. If the joint distribution P (X1, . . . , Xn) has a density
p(x1, . . . , xn) with respect to some product measure, then the density factorizes [9] into

p(x1, . . . , xn) =
n

∏

j=1

p(xj |paj) ,
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where p(xj |paj) denotes the conditional probability density of Xj , given the values paj of
its parents PAj .

The Markov condition already rules out some DAGs as being incompatible with the
observed conditional dependencies. However, often a large set of DAGs still is compatible.
In particular, for n variables, there are n! DAGs that are consistent with every joint
distribution because they do not impose any conditional independence. They are given
by defining an order X1, . . . , Xn and drawing an error from Xi → Xj for every i < j. For
this reason, additional inference rules are required to choose the most plausible ones among
the compatible DAGs. Spirtes at al. [20] and Pearl [16] use the causal faithfulness principle
that prefers those DAGs for which the causal Markov condition imposes all the observed
independencies. In other words, it is considered unlikely that independencies are due to
particular (non-generic) choices of the conditionals p(xj |paj). The underlying idea is, so
to speak, that “nature chooses” the conditionals independently from each other, while
the generation of additional independencies (that are not imposed by the structure of the
DAG) would require to mutually adjust these conditionals. A more general perspective on
such an independence assumption has been provided by Lemeire and Dirkx [10]. Following
their idea we postulate:

Postulate 1 (Algorithmic independence of conditionals).
If the true causal structure is given by the directed acyclic graph G with random variables
X1, . . . , Xn as nodes, the shortest description of the joint density p(x1, . . . , xn) is given
by separate descriptions of the conditionals1 p(xj |paj).

In [10] the description length has been defined in terms of algorithmic information, also
called “Kolmogorov complexity” (the details will be explained in Section 2). In [10] the
postulate is mainly used to justify the causal faithfulness assumption [20], since it rules out
mutual adjustments among conditionals like those required for unfaithful distributions.
However, in [7] it has been argued that the complete determination of the joint distribution
is never feasible which makes it hard to give empirical content to it. Moreover, [7] shows
that Lemeire and Dirkx’s principle can be seen as an implication of a general framework
for causal inference via algorithmic information. There, the postulate is rephrased in
a way that avoids the complexity of conditionals and uses only empirical observations.
Furthermore, the general framework may impose many causal inference rules yet to be
discovered. Here we focus on a method [6, 14, 13] that yielded quite encouraging results
on real data sets and show that it also can be justified via algorithmic information theory.
We briefly rephrase the idea of [6] for the special case of two real-valued variables X and
Y . To this end we introduce the following terminology:

Definition 1 (Additive noise model).
The joint density p(x, y) of two real-valued random variables X and Y is said to admit an
additive noise model from X to Y if there is a measurable function f : R→ R such that

Y = f(X) + E , (1)

where E is some unobserved noise variable that is statistically independent of X. The
joint density thus is of the form

p(x, y) = pX(x)pE(y − f(x)) ,

where pX(x) is the density of X and pE(e) the density of E.

Whenever this causes no confusion, we will drop the indices and write p(x) instead of
pX(x) and, similarly, write p(y − f(x)). We will write pX if we want to emphasize that
we refer to the entire density and not one specific value p(x).

1For sake of simple terminology, we also consider the density p(xj) of parentless nodes as a “conditional”,
given an empty set of variables.
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It can be shown [6] that for generic choices of f , distribution of the noise, and distri-
bution of X , there is no additive noise model from Y to X . In other words, if causality in
nature would always be of the form of additive noise models (which is certainly not the
case2), we could almost always identify causal directions because a joint distribution that
admits an additive noise model in the true direction usually does not admit one in the
wrong direction. This paper addresses the question whether a causal structure Y → X
that is not of the form of an additive noise model could induce a joint distribution that
admits an additive noise model in the wrong direction (i.e., from X to Y ). The basic
observation of this paper is that this would be a rare coincidence because it requires that
pY (which would be the distribution of the cause) and the transition probabilities pX|Y

(which would describe the mechanism generating the relation between cause and effect)
satisfy an untypical relation that makes this scenario unlikely. However, instead of deriv-
ing probability values for such a coincidence (which required to assign priors to probability
distributions) we will take a non-Bayesian view and follow the algorithmic information
theory approach developed in [7] and [10]. The following lemma makes explicit what kind
of coincidence is meant:

Lemma 1 (Relation between pY and pX|Y ).
Let p(x, y) be positive definite and let f as well as all logarithms of marginal and condi-
tional densities be two times differentiable. If p(x, y) admits an additive noise model from
X to Y , then the marginal p(y) and the conditional p(x|y) are related via the differential
equation

∂2

∂y2
log p(y) = − ∂2

∂y2
log p(x|y)− 1

f ′(x)

∂2

∂x∂y
log p(x|y) . (2)

Proof: Applying ∂2/∂y2 and ∂2/(∂x∂y) to the identity

log p(y) = − log p(x|y) + log p(y|x) + log p(x)

yields

∂2

∂y2
log p(y) = − ∂2

∂y2
log p(x|y) +

∂2

∂y2
log p(y|x) (3)

0 = − ∂2

∂x∂y
log p(x|y) +

∂2

∂x∂y
log p(y|x) , (4)

respectively. Using

∂2

∂y2
log p(y|x) =

∂2

∂y2
log pE(y − f(x))

= − 1

f ′(x)

∂2

∂x∂y
log pE(y − f(x))

= − 1

f ′(x)

∂2

∂x∂y
log p(y|x)

and eq. (4) we can replace the second term in eq. (3) and convert it into the desired
eq. (2). �

Eq. (2) implies

log p(y) = −
∫ y

0

∫ y′′

0

∂2

∂y2
log p(x|y′)− 1

f ′(x)

∂2

∂x∂y
log p(x|y′)dy′dy′′ + ay + b ,

2For instance, [21] discusses an interesting generalization.
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where b is determined by
∫

p(y)dy = 1. Since the equation has to be valid for all x, we can
choose an arbitrary x0 with f ′(x0) 6= 0. Then pY can already be determined from f ′(x0),
the function y 7→ p(x0|y) and a. Given the conditional pX|Y , the tupel (x0, f

′(x0)) and
a are sufficient to describe the marginal pY . In general, these are much fewer parameters
than those required for describing pY without knowing pX|Y . This already suggests that
pY and pX|Y have algorithmic information in common because knowing pX|Y shortens
the description of pY .

The paper is structured as follows. In Section 2 we briefly rephrase algorithmic in-
formation theory based causal inference as developed in [7]. In Section 3 we show that
additive noise models from X to Y induce densities pY and pX|Y that have algorithmic in-
formation in common. In Section 4 we consider additive noise models over finite fields and
show that pY and pX|Y also share algorithmic information if the distribution is only close
to an additive noise model from X to Y . Since our bounds on the information shared by
these objects depend on the Kolmogorov complexity of pY (which cannot be determined)
we discuss a method to estimate the latter in Section 5. Section 6 and Section 7 discuss
how to apply the insights gained from the discrete case to empirical and to continuous
distributions respectively.

2 Algorithmic information theory and the causal prin-

ciple

Reichenbach’s Principle of Common Cause [17] is meanwhile the cornerstone of causal rea-
soning from statistical data: Every statistical dependence between two random variables
X and Y indicates at least one of the three causal relations (1) “X causes Y ”, (2) “Y
causes X”, or (3) there is a common cause Z influencing both X and Y . As an extension
of this principle, we have argued [7] that causal inference is not always based on statistical
dependencies. Instead, similarities between single objects also indicate causal links: if,
for instance, two T-shirts produced by different companies have the same sophisticated
pattern we would not believe that the designer came up with the patterns independently.
Since this conclusion only requires one copy of each T-shirt, the statistical sample size is
one.

We have therefore postulated the “causal principle” stating that there is a causal
link between two objects (without referring to any statistical sampling) whenever the
joint description of them is shorter than the concatenation of their separate descriptions
To formalize this, we first introduce some concepts of algorithmic information theory
[8, 19, 2, 3, 12]. Let s, t be two binary strings that describe the observed objects and let
K(s) denote the algorithmic information (or “Kolmogorov complexity”), i.e., the length of
the shortest program that generates s on a prefix free universal Turing machine [8, 18, 3, 2].
Let K(s|t) denote the length of the shortest program that generates s from the input t.
Then we define [5]:

Definition 2 (algorithmic mutual information).
Let s, t be two binary strings. Then the algorithmic mutual information between s and t
reads

I(s : t) := K(t)−K(t|s∗) +
= K(s) + K(t)−K(s, t) , (5)

where s∗ denotes the shortest program that computes s and K(s, t) is the length of the
shortest program generating the concatenation of s and t.

As usual in algorithmic information theory, all (in)equalities are only understood up
to an additive constant that depends on the Turing machine [12]. For this reason, we

write
+
= instead of =. Since s can be computed from s∗, but usually not vice versa, we
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have

K(t|s∗)
+
≤ K(t|s) . (6)

We will later also need the conditional version of (5), see [5]:

Definition 3 (conditional algorithmic mutual information).
Let s, t, v be binary strings. Then the conditional algorithmic mutual information reads

I(s : t|v) := K(t|v)−K(t|s, K(s|v), v)
+
= K(s|v) + K(t|v)−K(s, t|v) . (7)

Eq. (5) is formally similar to the statistical mutual information [4]

I(X ; Y ) := H(Y )−H(Y |X) = H(X) + H(Y )−H(X, Y ) ,

phrased in terms of the Shannon entropy H(·). Reichenbach’s principle can then be
rephrased as:

“I(X ; Y ) > 0 indicates that there is at least one of the three possible causal
links between X and Y .”

In analogy to this principle, we have postulated in [7]:

Postulate 2 (Causal Principle).
Let s and t be binary strings that formalize the descriptions of two objects in nature.

Whenever
I(s : t)≫ 0 ,

there is a causal link between the two objects s and t in the sense that s→ t or t → s or
there is a third object u with s← u→ t.

Here, it is up to the researcher’s decision how to set the threshold above which a
dependence is considered significant. This is similar to setting the significance value in a
statistical test.

Note that the condition K(t)−K(t|s)≫ 0 implies I(s : t) ≫ 0 due to ineq. (6). We
will use the former condition since it is easier to work with. To interpret Postulate 1 as
a special case of Postulate 2, we consider the following model [7] of a causal structure
X → Y for two random variables X and Y . Let the two objects be (1) a source S that
generates x-values according to p(x) and (2) a machine M that takes x-values as input
and generates y-values according to p(y|x) (see Figure 1).

If S and M have been designed independently, their optimal joint description should
be given by separate descriptions of S and M . However, the only feature of S that is
relevant for our observations is given by the distribution of x-values, i.e., pX . Similarly,
pY |X is the only relevant feature of M . These features are directly given by observing the x
and y-values infinitely often. We therefore consider the algorithmic dependencies between
pX and pY |X . Since the objects of our descriptions will be probability distributions, we
introduce the following concept:

Definition 4 (computable functions and distributions).
Let S denote some subset of R

k. A function f : S → R is computable if there is a pro-
gram that computes f(x) up to a precision ǫ > 0 for every input (x, ǫ) having a finite
description. Then K(f) denotes the length of the shortest program of this kind. A prob-
ability distribution on a finite probability space S is called computable if its density is a
computable function.

In the following section we apply the concepts introduced above to the case of strictly
positive continuous densities p(x, y).
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Figure 1: Causal structure obtained by resolving the causal structure X → Y between the random

variables X and Y into causal relations among single events

3 Algorithmic dependencies induced by additive noise

models

We have already argued that an additive noise model from X to Y makes the causal
structure Y → X unlikely because pY and pX|Y then satisfy the non-generic relation of
eq. (2). We now express this fact in terms of algorithmic information theory:

Theorem 1 (algorithmic dependence induced by an additive noise model).
Let p(x, y) be a two-times differentiable computable strictly positive probability density

over R
2. If p(x, y) admits an additive noise model from X to Y with a computable differ-

entiable non-constant function f , then

I(pY : pX|Y )
+
≥ K(pY )−K(y0, (log p)′(y0))−K(x0, f

′(x0)) (8)

where x0 and y0 are computable x- and y-values, respectively, where y0 is arbitrary and
x0 satisfies f ′(x0) 6= 0.

Proof: Eq. (2) expresses the second derivative (log pY )′′ in terms of pX|Y and f ′(x0).
Hence,

K((log pY )′′|pX|Y )
+
≤ K(x0, f

′(x0)) . (9)

We have by definition and due to ineq. (6)

I(pY : pX|Y )
+
= K(pY )−K(pY |p∗X|Y )

+
≥ K(pY )−K(pY |pX|Y ) . (10)

The density pY is already determined by (log pY )′′ and ((log p)′(y0), y0) for some y0 be-
cause log pY (y0) then follows from normalization. Therefore,

K(pY |z)
+
≤ K((log pY )′′|z) + K(y0, (log p)′(y0)|z) ,

where z is some arbitrary prior information. Using z = pX|Y , the right hand term of
ineq. (10) yields

I(pY : pX|Y )
+
≥ K(pY )−K((log pY )′′|pX|Y )−K(y0, (log p)′(y0)|pX|Y )

+
≥ K(pY )−K(x0, f

′(x0)|pX|Y )−K(y0, (log p)′(y0)|pX|Y )

+
≥ K(pY )−K(x0, f

′(x0))−K(y0, (log p)′(y0)) ,
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where the second inequality is due to ineq. (9). �

Roughly speaking, Theorem 1 states that pX|Y helps in describing pY unless the addi-
tional information given by the second and third term on the rhs. of ineq. (8) exceeds the
complexity of pY . We now want to discuss one of the rare examples where the complexity
of pY indeed is low enough to make ineq. (8) void. Assume we are given the information
that pXY belongs to the family of bivariate Gaussians. Then its description reduces to
the following five parameters: µX and µY denoting the expectations of X and Y , re-
spectivley; σX , σY and cXY denoting standard deviation of X and Y and the correlation
between them, respectively. One can also choose an asymmetric parametrization of the
form µX , σX , c, µE , σE , where the first two parameters correspond to pX and the last
three describe pY |X via the linear addtive noise model

Y = cX + E ,

where µE and σE denote the expectation and width of the independent additive noise E.
Similarly, one can parameterize pXY via describing pY and pX|Y , because pXY admits
an additive noise model in both directions and both causal directions are possible. This
is consistent with the fact that our argument above fails for the bivariate Gaussian case
because a and f ′(x0) then coincides with the information that also would be required to
describe pY without knowing pX|Y . To see this, set

log p(x)
+
=

(x− µX)2

2σ2
X

,

where
+
= denotes here equality up to a term that neither depends on x nor on y (by slightly

overloading notation). Furthermore, let

log p(y|x)
+
=

(y − cx− µE)2

2σ2
E

,

where c = f ′(x0). We then get

log p(y)
+
=

(y − µX − µE)2

2(c2σ2
X + σ2

E)
.

Hence,

log p(x|y)
+
=

(x − µ)2

2σ2
X

+
(y − cx)2

2σ2
E

− (y − µX − µE)2

2(c2σ2
X + σ2

E)
,

which implies
∂2

∂x∂y
log p(x|y)

+
= − c

σ2
E

=: α ,

and
∂2

∂y2
log p(x|y)

+
= − 1

σ2
E

=: β .

The constants α and β can be derived from observing pX|Y , but to determine the second
derivative of log pY one needs to know c since eq. (2) imposes

∂2

∂y2
log p(y) = β − 1

c
α . (11)

To determine pY completely, we also need to know the first derivative

a :=
∂

∂y
log p(y = 0) = −µY

σ2
Y

.
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Moreover, we observe that c specifies the standard deviation σY of Y because the left
hand side of eq. (11) is given by −1/σ2

Y . This shows, that given pX|Y , we still need
to describe the two parameters µY and σY . These are exactly the two parameters that
describe the Gaussian pY also without knowing pX|Y . Hence, knowing pX|Y is worthless
for the description of pY .

The arguments above show that knowing pX|Y makes the description of pY shorter
except for some rare cases where pY already has a short description. The interpretation of
Theorem 1 raises two problems: First, we cannot determine the exact “true” probabilities3

from the observations, and second, we do not expect these probabilities to be computable,
and hence it may require an infinite amount of information to describe pY and pX|Y if
we could. As already pointed out in [7], algorithmic dependencies among the empirical
distributions qY and qX|Y after finite sampling do not show algorithmic dependencies
between S and M . For continuous variables, this is already obvious from the fact that
the conditional distribution of X , given Y , is only defined for the support of qY . If the
true distribution is a density, the empirical distribution contains every y-value only once
and knowing the support of qY thus already implies knowing qY .

To circumvent this problem, we will in the following section consider additive noise
models over a finite probability space. Within this setting, we derive statements on dis-
tributions that are close to additive noise models. Since the finite case has the advantage
that empirical frequencies converge pointwise to the true probabilities, this result also
implies statements for the corresponding empirical distribution.

4 Stronger statements in finite probability spaces

The following theorem is a modification of Theorem 1 for additive noise models over the
finite field Zm for some prime number m.

Theorem 2 (Algorithmic information between pY and pX|Y for the discrete model).
Let pX,Y be a computable strictly positive distribution on Z

2
m for some prime number

m that admits an additive noise model, i.e., there is a function f : Zm → Zm such that
E := Y − f(X) and X are statistically independent. Here, subtraction is understood with
respect to Zm. Then, if f is non-constant, we have

I(pY : pX|Y )
+
≥ K(pY )− 2 logm . (12)

Proof: The idea is, again, to derive an equation that shows that pY is essentially deter-
mined by pX|Y up to some small amount of additional information. We have

log p(x, y) = log pX(x) + log pE(y − f(x)) . (13)

Defining δ := f(x0)− f(x0 − 1), for some x0 for which δ 6= 0, we calculate

p(y + δ)

p(y)

(a)
=

p(x0|y)

p(x0|y + δ)

p(x0, y + δ)

p(x0, y)

(b)
=

p(x0|y)

p(x0|y + δ)

p(x0 − 1, y)

p(x0 − 1, y − δ)

(c)
=

p(x0|y)

p(x0|y + δ)

p(x0 − 1|y)

p(x0 − 1|y − δ)

p(y)

p(y − δ)
,

where (a) and (c) are just applications of Bayes’ rule and (b) follows from relation (13).
Taking logarithms and introducing

k(x|y) := log p(x|y)− log p(x|y + δ) + log p(x− 1|y)− log p(x− 1|y − δ) , (14)

3It is, anyway, a philosophical problem to what extent they are well-defined.
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yields the equation

log p(y + δ)− log p(y) = k(x0|y) + log p(y)− log p(y − δ). (15)

We interpret eq. (15) as a discrete version of eq. (2) because it relates differences between
the values log p(y) at different points y to the quantity k(x|y), which is a property of the
conditional pX|Y alone. Eq. (15) implies for arbitrary y0

log p(y0 + (j + 1)δ)− log p(y0 + jδ) = log p(y0 + jδ)− log p(y0 + (j − 1)δ) + k(x0|y+jδ) ,

for all j = 1, . . . , m. Writing log pY for the vector with coefficients log p(y0 +(j +1)δ) and
k for the vector with coefficients k(x0|y+jδ) for j = 0, . . . , m− 1, we rewrite eq. (15) as

(S − I)2 log pY = k ,

where S denotes the cyclic shift in dimension m. Using the fact that (S − I) is invertible
on the space of vectors with zero sum of coefficients, we thus obtain

log pY = (S − I)−2k + α e , (16)

where α is given by normalization and e is the vector with only ones as entries. This
shows that x0, δ, and pX|Y determine pY . Denoting i := (x0, δ) we can summarize the

above into K(pY |pX|Y , i)
+
= 0. This implies

K(pY |pX|Y )
+
≤ K(i) ,

because

K(pY |pX|Y )−K(pY |pX|Y , i)
+
= K(pY |pX|Y )−K(pY |pX|Y , K(i|pX|Y ), i)

+
= I(pY : i|pX|Y )

+
≤ K(i) ,

where the second equality is due to the definition of conditional algorithmic mutual in-
formation (7). Then the statement follows because the algorithmic information of i is
bounded from above by two times the number of bits of m. �

We want to derive a similar lower bound for the case where pXY almost admits an additive
noise model. To this end, we first define a precision dependent Kolmogorov complexity of
a probability distribution:

Definition 5 (Precision dependent algorithmic information).
Let p be a density on finite probability space. Let r be a computable probability density and
K(r) be the length of the shortest program on a universal Turing machine that computes
r(x) from x. Then

Kǫ(p) := min
r with D(p||r)<ǫ

K(r|ǫ) ,

where D(·||·) denotes the relative entropy distance. Similarly, we define the conditional
complexity Kǫ(p|i) given some prior information i.

If q is an arbitrary approximation of a distribution p in the sense that | log p(x) −
log q(x)| ≤ ǫ holds for all x, then D(p||q) ≤ ǫ and thus the precision dependent algorithmic
information can be bounded from above by the complexity of the approximation: Kǫ(p) ≤
K(q). For computable p, we obviously have

lim
ǫ→0

Kǫ(p) = K(p) ,

but for uncomputable p, the complexity tends to infinity. The following lemma shows the
empirical content of precision-dependent complexity:
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Lemma 2 (precision-dependent complexity of empirical distributions).
Let p be a positive definite distribution on a finite probability space and q(n) be the

empirical distribution after n-fold sampling from p. Then

lim
n→∞

Kǫ(q
(n)) = Kǫ(p) ,

with probability one.

Proof: Let r be a distribution for which Kǫ(p) = K(r) and D(p||r) < ǫ. Due to
D(q(n)||r) → D(p||r) with probability one and because of the continuity of relative en-
tropy for positive definite distributions we also have D(q(n)||r) < ǫ for all sufficiently large
n. Hence Kǫ(q

(n)) ≤ Kǫ(p).
To prove that Kǫ(q

(n)) ≥ Kǫ(p), let r(n) be a sequence of distributions such that
Kǫ(q

(n)) = K(r(n)) and D(q(n)||r(n)) < ǫ. Hence, D(p||r(n)) < ǫ for sufficiently large n
which completes the proof.�

The following lemma will later be used to derive a lower bound on I(pY : pX|Y ) in terms
of Kǫ(pY ):

Lemma 3 (mutual information and approximative descriptions).
Let p be a computable distribution on a finite probability space, z an arbitrary string and

ǫ > 0 computable. Let q be a distribution that is ǫ-close to p, i.e.,

D(p||q) < ǫ . (17)

If q can be derived from z and from p in the sense that

K(q|p, ip)
+
= K(q|z, iz)

+
= 0 , (18)

for additional strings ip and iz, then

I(p : z)
+
≥ Kǫ(p)−K(ip)−K(iz).

Proof: Using the definition of conditional mutual information (7) we get

I(q : ip|p∗) +
= K(q|p∗)−K(q|ip, K(ip|p∗), p∗) +

= K(q|p∗),

because Eq. (18) implies K(q|ip, K(ip|p∗), p∗) +
= 0. On the other hand I(q : ip|p∗)

+
≤ K(ip)

and therefore

K(q|p∗)
+
≤ K(ip).

In the same way, eq. (18) implies K(q|z∗)
+
≤ K(iz). A data processing inequality (Theorem

II.7 in [5]) then implies

I(p : z)
+
≥ I(q : q)−K(ip)−K(iz) .

We conclude with I(q : q) = K(q)
+
≥ Kǫ(p) due to ineq. (17). �

We will moreover need the following Lemma:

Lemma 4 (bound on the differences of logarithms).
Given a vector v ∈ R

m, we define a probability distribution by

pj :=
1

zv
e−vj ,

where zv is the partition function. Let p̃ be defined by ṽ in the same way. Then

| log pj − log p̃j | ≤ 2‖v − ṽ‖∞ .

10



Proof: Due to
log pj − log p̃j = vj − ṽj − log zv + log zṽ

we only have to show
| log zv − log zṽ| ≤ ‖v − ṽ‖∞ .

To this end, we define
log z(ǫ) := log zv+ǫ(ṽ−v) .

Using the mean value theorem we have for an appropriate value η ∈ (0, 1)

log zṽ − log zv = log z(1)− log z(0)

= (log z)′(η)

=
∑

j

(vj − ṽj)
1

z(η)
e−vj+η(vj−ṽj) .

The last expression is the expected value of vj − ṽj with respect to the probability distri-
bution corresponding to v + η(ṽ − v), which cannot be greater than ‖v − ṽ‖∞. �

We now have introduced the technical requirements to formulate a theorem for approxi-
mate additive noise models:

Theorem 3 (approximate additive noise model).
Let pX,Y be as in Theorem 2, but only admitting an approximative additive noise model in
the sense that the statistical mutual information between X and the residual E := Y −f(X)
satisfies

I(X ; E) ≤ β

2

(

ǫβ

4m3

)2

, (19)

where β is a lower bound on p(x, y). Here, subtraction is understood with respect to Zm.
Then, if f is non-constant, we have

I(pY : pX|Y )
+
≥ Kǫ(pY )− 2 log m−m− 2K(ǫ) . (20)

Proof: The idea is to define a distribution p̃X,Y that is close to pX,Y and admits an exact
additive noise model: Define a joint distribution on X and E by the product

p̃X,E := pX ⊗ pE .

By variable transformation, p̃X,E defines a distribution p̃X,Y that admits an additive noise

model from X to Y . Eq. (15) now holds for p̃X|Y and p̃Y with k̃(x0|y) instead of k(x0|y),

which is defined similar to eq. (14). Denote the corresponding vector by k̃ = (k̃(x0|y))y .
In analogy to eq. (16) and the proof of Theorem 2, we now have

log p̃Y = (S − I)−2k̃ + α̃ e ,

where α̃ is the appropriate normalization constant and e the all-one vector. To show that
pX|Y allows an approximative description of pY we have to replace k̃ and p̃Y with k and
pY , respectively. We define

log rY := (S − I)−2k + α e ,

and using Lemma 4 we obtain

‖ log pY − log rY ‖∞ ≤ ‖ log pY − log p̃Y ‖∞ + ‖ log p̃Y − log rY ‖∞
≤ ‖ log pY − log p̃Y ‖∞ + 2‖(S − I)−2(k − k̃)‖∞. (21)
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The modulus of the eigenvalues of (S − I)−1 on this subspace are all smaller than m/4
(for m ≥ 2) since they read

1

e2π i/m − 1
,

1

e2πi 2/m − 1
, . . . ,

1

e2πi (m−1)/m − 1
.

We thus have

‖(S − I)−2(k̃ − k)‖2 ≤
m2

16
‖k̃ − k‖2 ≤

m3

16
‖k̃ − k‖∞ ,

where the last inequality used ‖ · ‖2 ≤
√

m‖ · ‖∞. Together with ‖ · ‖∞ ≤ ‖ · ‖2, ineq. (21)
then yields

‖ log pY − log rY ‖∞ ≤ ‖ log pY − log p̃Y ‖∞ +
m3

8
‖k̃ − k‖∞. (22)

Now we derive an upper bound on the two summands of the rhs. using our assumption
on the limited statistical mutual information between X and E. To this end, we observe
that

D(pX,Y ||p̃X,Y ) = D(pX,E ||p̃X,E) = I(X : E) , (23)

where the first equality is due to the invariance of relative entropy under variable trans-
formation and the second uses a well-known reformulation of mutual information [4].
Moreover, we have

D(pX|Y ||p̃X|Y ) =
∑

y

D(pX|y||p̃X|y)p(y) ≤ β

2

(

ǫβ

4m3

)2

,

where pX|y denotes the conditional distribution for one specific value y of Y . Using the
lower bound on p(y) we obtain

D(pX|y||p̃X|y) ≤
1

2

(

ǫβ

4m3

)2

∀y .

Due to the well-known relation D(p||q) ≥ (2 ln 2)−1‖p− q‖21 between relative entropy and
ℓ1-distance for two distributions [4], we obtain

|p(x|y)− p̃(x|y)| ≤ ǫβ

4m3
.

This implies

| log p(x|y)− log p̃(x|y)| ≤ ǫ

4m3
, (24)

by applying the mean value theorem to the function a 7→ log a. From the definition of
k̃(x|y) and k(x|y) in eq. (14) we conclude

‖k̃ − k‖∞ ≤
ǫ

m3
. (25)

On the other hand, (23) implies

D(pY ||p̃Y ) ≤ β

2

(

ǫβ

4m3

)2

≤ 1

2

(

ǫβ

4m3

)2

,

and hence

‖ log p(y)− log p̃(y)‖∞ ≤
ǫβ

4m3
<

ǫ

8
. (26)
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Using ineqs. (25) and (26), ineq. (22) yields for all y

| log p(y)− log r(y)| < ǫ

4
. (27)

Let log qp(y) be given by discretizing all values log p(y) up to an accuracy of ǫ/4. Then

K(qp|pY , ǫ)
+
= 0.

On the other hand, let log qr(y) be given by discretizing all values log r(y) up to an

accuracy of ǫ/4. Then K(qr|r, ǫ) +
= 0 and thus

K(qr|pX|Y , δ, x0, ǫ)
+
= 0 .

Due to (27), both discretizations coincide up to one bit for each value y, say bm(y). To
illustrate this, consider the binary strings 0.111 . . . and 1.000 . . . which can be arbitrarily
close despite their truncation being different. We conclude that

K(qp|pX|Y , δ, x0, ǫ, bm)
+
= 0.

Let q be the distribution generated by log qp through normalization

log q(y) := log qp − log
∑

y

qp(y).

Due to the upper bound (27), Lemma 4 gives

D(p||q) ≤ 2‖ log p(y)− log qp(y)‖∞ < ǫ.

The theorem now follows from Lemma 3 applied to z = pX|Y , iz = (δ, x0, ǫ, bm) , p =
pY and ip = ǫ . �

The complexity of pY in the bound (20) will typically exceed the terms with m because
we will need several bits for every bin to describe the corresponding probability (this will
be discussed in Section 5 in more detail). Moreover, K(ǫ) can be quite low, in particular
if we choose ǫ = 2−k for some k. Therefore, the mutual information between pY and pX|Y

is almost as large as the complexity of pY . This shows that the amount of adjustments
required to mimic an additive noise model in the wrong direction depends essentially on
the complexity of pY . In the following section we consider the complexity in the case in
which pY is typical with respect to some known parametric family of distributions.

5 Kolmogorov complexity of distributions from a para-

metric family

The problem with applying Theorems 2 and 3 to real data is that the term Kǫ(pY ) cannot
be known due to the uncomputability of Kolmogorov complexity in general. Fortunately,
we can estimate how the complexity of typical elements in a family of distributions in-
creases with decreasing ǫ. This is shown by the following lemma:

Lemma 5 (typical distributions in parametric families).
Let (pθ)θ∈Λ be a parametric family of probability densities over some finite probability

space, where θ runs over a d-dimensional compact manifold Λ ⊂ R
d. Let (pθ) satisfy the

following technical requirements: pθ is strictly positive, the third derivative of the function
θ 7→ log pθ is continuous, and the Fisher matrices Fθ have full rank for all θ. Moreover, let
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the family pθ be computable in the following sense: there exists a program that computes
pθ(y) for any computable input θ.

If Pr denotes the uniform probability distribution on Λ, then there is an ǫ0 such that
for every δ > 0 there exists an ℓ ∈ N with

Pr

(

Kǫ(pθ) ∈
[

−d

2
log ǫ− ℓ,−d

2
log ǫ + ℓ

]

∀ǫ < ǫ0

)

≥ 1− δ .

In other words: for most of the distributions pθ, the complexity Kǫ(pθ) grows logarithmi-
cally with decreasing ǫ.

Proof: Let Sǫ(ℓ) be the set of distributions pθ with

Kǫ(pθ) ≤ −
d

2
log ǫ− ℓ . (28)

Every such pθ is ǫ-close to some computable distribution pθ′ with

K(pθ′) ≤ −d

2
log ǫ− ℓ . (29)

Note that the number Nǫ(ℓ) of such distributions pθ′ is bounded from above by usual
counting arguments:

Nǫ(ℓ) ≤ 2−
d
2 log ǫ−ℓ =

2−ℓ

ǫd/2
.

To estimate the total volume of Sǫ(ℓ) we first estimate the volume of the set of pθ that
are ǫ-close to one specific pθ′ satisfying (29). The second order Taylor expansion of the
relative entropy yields [1],

D(pθ||pθ′) =
1

2
(θ − θ′)T Fθ′(θ − θ′) + E(θ − θ′) , (30)

where Fθ′ is the Fisher matrix and the error E(θ− θ′) is in O(‖θ − θ′‖3). Since the third
derivative of log pθ is conituous (and thus bounded on a compact manifold), Taylor’s
theorem provides an error bound of the form constant times ‖θ − θ′‖3 that holds for all
θ uniformly. For sufficiently small ǫ, the set of all θ with D(pθ||pθ′) ≤ ǫ is thus contained
in the ellipsoid

(θ − θ′)T Fθ′(θ − θ′) ≤ 4ǫ .

Hence, we can choose ǫ0 such that this statement holds all ǫ < ǫ0 and all θ′. The volume
V (ǫ) of such an ellipsoid with respect to the Lebesgue measure is given by

V (ǫ) = (detFθ′)−1/2 πd/2

Γ(d/2 + 1)
(4ǫ)d/2 .

This can be seen by transforming the ellipsoid into a sphere of radius
√

4ǫ via the linear
map (Fθ′)−1/2.

If c denotes an upper bound on (detFθ)
−1/2 over all parameter vectors θ (the eigen-

values of Fθ are bounded away from zero since Λ is compact), the total volume of Sǫ(ℓ)
is bounded from above by

Nǫ(ℓ)
c πd/2

Γ(d/2 + 1)
(4ǫ)d/2 ≤ 2−ℓc

ǫd/2

πd/2

Γ(d/2 + 1)
(4ǫ)d/2 = 2−ℓ c̃ ,

where c̃ is an appropriate constant. Choosing ℓ such that 2−ℓc̃ is smaller than δ times the
volume of Λ shows that

Kǫ(pθ) ≥ −
d

2
log ǫ− ℓ ,
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holds at least with probability 1− δ.
Now we show that we can find an ℓ′ ∈ N such that

Kǫ(pθ) ≤ −
d

2
log ǫ + ℓ′ , (31)

for all θ and all ǫ < ǫ0. To this end, we assume without loss of generality that Λ is
contained in the cube [0, 1]d. We divide the cube into N equally sized cubes of side length
∆ with middle points θ1, . . . , θN such that

(θ − θj)
T Fθ(θ − θj) ≤ ǫ

for any point θ in the same cube. By (30), this ensures for all θ, θj ∈ Λ and sufficiently
small ǫ that D(pθ||pθj

) ≤ ǫ. If µ is an upper bound for all eigenvalues of all Fθ (uniformly
in θ) it is sufficient to guarantee

‖θ − θj‖2 ≤
ǫ

µ
.

This can be achieved by choosing

∆ ≤
√

ǫ

µd
.

Hence it is sufficient to choose the smallest N that satisfies

N ≥
(

ǫ

µd

)d/2

,

and whose dth root is integer. The grid and thus every vector θj can be computed from j
and pθj

can be computed from θj by assumption. The total complexity of describing pθj

is at most given by log N plus some overhead for the program that computes pθj
from j.

Absorbing log(µd) and the overhead into ℓ′ proves eq. (31). �

We will now consider the family of all distributions pY on the finite probability space
{0, . . . , m−1} for which p(y) is bounded from below by some β > 0. We use the straight-
forward parameterization

pθ(j) := θj for j = 0, . . . , m− 2 ,

and

pθ(m− 1) = 1−
m−2
∑

j=1

θj .

Then we define Λ as the set of θ ∈ R
m−1 for which θj ≥ β and

∑

j θj ≤ 1 − β. One
can check that the Fisher information matrix has full rank and that the eigenvalues are
bounded away from zero, i.e., Lemma 5 applies. Hence, we can find an ℓ such that the
majority of distributions pY satisfy

Kǫ(pY )
+
= −d

2
log ǫ . (32)

For such a “typical” distribution we obtain:

Corollary 1 (algorithmic mutual information for typical distributions).
Let pX,Y be as in Theorem 3. Let pY satisfy eq. (32). If I(X ; E) satisfies the bound (19)
with ǫ = 2−N for sufficiently large N , then

I(pY : pX|Y )
+
≥ m− 1

2
N − 2 log m−m− 2 log N .
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The proof is given by plugging eq. (32) into the lower bound of Theorem 3 together with
ǫ = 2−N . Hence, for typical pY , the lower bound is positive if m and n are large enough.
This asymptotic statement still holds true if pY looks on a coarse-grained scale like some
simple distribution qY , i.e., a Gaussian, but shows irregular deviations from qY if the
probabilities are described more accurately.

To give an impression on the amount of information between pY |X and pY that can
be inferred after n-fold sampling, we recall that the mutual information between E and
X can be estimated up to an accuracy of O(1/n) [15]. The lowest upper bound on ǫ
in ineq. (19) that can be guaranteed by the observations thus is proportional to 1/

√
n.

Hence, for constant m, the best lower bound on the amount of algorithmic information
shared by pY and pX|Y increases logarithmically in n as long as the sample is not sufficient
to reject independence between Y − f(X) and X .

6 Applying the results to empirical distributions

In applying Theorems 2 and 3 to realistic situations, we still have the problem that we
have no reason to believe that the true distribution is computable. On the other hand,
applying the argument to the empirical distribution (which is, for large sampling close to
an additive noise model) is still problematic because algorithmic dependencies between
the empirical distribution qY and the empirical conditional qX|Y do not prove algorithmic
dependencies between the true distributions pY and pX|Y . One reason is that, for sample
size n, every conditional probability qY |X(y|x) can always be written as a fraction with
denominator qX(x)n, which already is an algorithmic dependence.

We now describe how to use Postulate 1 if only a finite list of (x, y)-pairs is observed
and the underlying distribution is not known. Given samples Sn =

[

(x1, y1), . . . , (xn, yn)
]

,

we can generate a non-empty subsample Sℓ(n) =
[

(x1, y1), . . . , (xℓ(n), yℓ(n))
]

with high
probability such that every x-value occurs exactly ℓ(n)/m-times. The samples Sℓ(n) can
then be used for the estimation of pY |X . Hereby, ℓ(n) is chosen independently of the
samples in a way that for n → ∞ we have ℓ(n) → ∞ and the probability of obtaining
Sℓ(n) from Sn converges to one.

Now by construction, if M contains no information about S, the empirical distribution

q
(ℓ(n))
Y |X

of the subsample must not contain any information about the empirical distribution

q
(n)
X

of x-values in the entire sample, i.e.,

MX→Y := I(q
(n)
X : q

(ℓ(n))
Y |X ) ≈ 0 . (33)

In the spirit of [10], we postulate that the violation of eq. (33) indicates that the causal
hypothesis X → Y is wrong or the mechanisms generating x-values and the mechanisms
generating y-values from x-values have not been generated independently. For a discussion
of this case see [11]. Using this terminology, our goal is to derive a lower bound on MY →X

for the case where pX,Y admits an additive noise model from X to Y . We can apply
Theorem 3 to a distribution that is defined by the empirical results via

p′(x, y) := q(n)(y)q(ℓ(n))(x|y) ,

which is necessarily computable because it only contains rationale values.
We have already argued that the causal hypothesis Y → X would only be acceptable

if
I(q(n)(y) : q(ℓ(n))(x|y)) ≈ 0 .
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If the true distribution p almost admits an additive noise model from X to Y in the sense
of ineq. (19), the same inequality will also be satisfied by p′ if n is sufficiently high and
thus

I(q
(n)
Y : q

(ℓ(n))
X|Y )≫ 0

provided that Kǫ(q
(n)
Y ), which coincides with Kǫ(pY ) due to Lemma 2 for large n, is high.

7 Approximating continuous variables with discrete

ones

Causal inference via additive noise models has been described and tested for continuous
variables [6]. We have discussed the discrete case mainly for technical reasons because we
were able to prove statements for distributions that are only close to additive noise models.
Our results can easily be applied to the continuous case by discretization with increasing
number of bins. As already mentioned, the discretized version of the empirical distribution
becomes computable, which circumvents the problem that the true distribution may be
uncomputable.

Before we discuss the discretization in detail, we emphasize that there is a problem
with applying Postulate 1 to the conditionals obtained after discretizing the variables:
if we define a discrete variables X(m) and Y (m) by putting X and Y into m bins each,
the discretized conditional pY (m)|X(m) does not only depend on pY |X . Instead, it also
contains information about the distribution of X . For this reason, algorithmic depen-
dencies between pY (m)|X(m) and pX(m) only disprove the causal hypothesis X → Y if the

binning is fine enough to guarantee that the discrete value x(m) is sufficient to determine
the conditional probability for y(m), i.e., the relevance of the exact value x is negligible if
the discrete value is given. It is therefore essential that the argument below refers to the
asymptotic case of infinitely small binning.

To approximate a continuous density p(x, y) on R
2 by Z

2
m with increasing m := 2k+1

we consider the square

Qm :=

[

−1

2

√
m,

1

2

√
m

]2

for all odd m and replace p(x, y) with p(x, y|Qm). We discretize Qm into m×m bins of
equal size ∆ := 1/

√
m, which defines a probability distribution over Zm-valued variables

Xm and Ym, respectively. We define the function fm : Zm → Zm by putting the values
f(j∆) with j = −k, . . . , k to the bin whose middle point has the least distance.

Moreover, appropriate smoothness asumptions on p(x, y) can guarantee that the mu-
tual information between Ym − fm(Xm) and Xm converges to I(X : (Y − f(X))) for
m→∞. It is known [15] that there are estimators for mutual information that converge
if the binning m is increased proportionally to

√
n for sample size n →∞. If p(x, y) ad-

mits an additive noise model, i.e., I(X : (Y −f(X)) = 0, then I(Xm : (Ym−f(Xm))→ 0.
Hence, the discrete distributions on Xm and Ym get arbitrarily close to discrete additive
noise models. Applying Theorem 2 to these discrete distributions then yields algorithmic
dependence between the discretized marginal and the discretized conditional.

8 Conclusions

We have discussed a causal inference method that prefers the causal hypothesis X → Y
to Y → X whenever the joint distribution pX,Y admits an additive noise model from X to
Y and not vice versa. It seems that this way of reasoning assumes that all causal mecha-
nisms in nature can be described by additive noise models, which is certainly not the case.
Here we argue that the method is nevertheless justified because it is unlikely that a causal
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mechanism that is not of the form of an additive noise model generates a distribution
that looks like an additive noise model in the wrong direction. This is because such a
coincidence would require mutual adjustments between P (cause) and P (effect|cause). To
measure the amount of tuning needed for this situation we have derived a lower bound
on the algorithmic information shared by P (cause) and P (effect|cause). If we assume
that “nature chooses” P (cause) and P (effect|cause) independently, a significant amount
of algorithmic information is not acceptable. Our justification of additive-noise-model
based causal discovery thus is an application of two recent proposals for using algorithmic
information theory in causal inference: [10] postulated that the shortest description of
P (cause, effect) is given by separate descriptions of P (cause) and P (effect|cause), which
would be violated then. [7] argued that algorithmic dependencies between any two ob-
jects require a causal explanation. They consider the two mechanisms that determine
P (cause) and P (effect|cause), respectively, as two objects and conclude that the absence
of causal links on the level of the two mechanisms imply their algorithmic independence,
in agreement with [10].
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