
Bayesian Active Learning for

Sensitivity Analysis

Tobias Pfingsten1,2

1 Robert Bosch GmbH, Stuttgart, Germany
2 Max Planck Institute for Biological Cybernetics

Tobias.Pfingsten@de.bosch.com

This paper appeared in the proceedings of the ECML 2006,
LNAI 4212, pp. 354–365, Springer.

Abstract. Designs of micro electro-mechanical devices need to be ro-
bust against fluctuations in mass production. Computer experiments
with tens of parameters are used to explore the behavior of the system,
and to compute sensitivity measures as expectations over the input dis-
tribution. Monte Carlo methods are a simple approach to estimate these
integrals, but they are infeasible when the models are computationally
expensive. Using a Gaussian processes prior, expensive simulation runs
can be saved. This Bayesian quadrature allows for an active selection
of inputs where the simulation promises to be most valuable, and the
number of simulation runs can be reduced further.
We present an active learning scheme for sensitivity analysis which is rig-
orously derived from the corresponding Bayesian expected loss. On three
fully featured, high dimensional physical models of electro-mechanical
sensors, we show that the learning rate in the active learning scheme is
significantly better than for passive learning.

1 Introduction

Before computational power was widely available, general purpose simulation
software hardly existed and computer models were largely tailored to answer
specific questions. Today, computer models are often one-to-one emulations of
physical systems and describe all their relevant features. They are usually built
using powerful simulation tools—which use e.g. finite element methods to model
electro-mechanical properties—and do therefore not necessarily lead to a better
understanding of the system. They are used in computer experiments to replace
experimental specimens.

In industrial engineering these computer experiments are often used to esti-
mate the robustness of a design with respect to unavoidable fluctuations in mass
production. Especially in the production of micro electro-mechanical systems
(MEMS) such variations can significantly affect the devices’ functionality. Sensi-
tivity analysis (SA) is a standard procedure in the designing process of MEMS,
and computer experiments are used to determine the influence of input param-
eters on the resulting fluctuation in the output. A comprehensive discussion of
SA is given by [1, 2].

When fluctuations are small, SA can be done using a local approximation
such as linearization. However, when this assumption does not hold, the response
of the software needs to be explored over the whole range of parameter settings,
and the sensitivity measures are given as expectations over the input distribu-
tion. Realistic models have tens of input parameters and the function cannot be
evaluated on a regular grid. Hence, Monte Carlo (MC) methods are the most
common approach for computing the expectations, where random samples from
the input distribution replace the grid.

The convergence rate for MC methods is independent of the function’s smooth-
ness and the input dimension. This is certainly a useful property, but if we can
use prior information—e.g. when we know that the output is a smooth function
of the input parameters—we can make more efficient use of the data and save
valuable simulation runs. O’Hagan [3] proposes what he calls Bayesian quadra-

ture, using a Gaussian process to model the output of the simulation software,
e.g. for SA [4]. Previous works have shown that, compared to MC, Bayesian
quadrature can significantly improve the accuracy using the same number of
randomly sampled simulation runs [2, 5].

In Bayesian quadrature we are not restricted to using samples from the in-
put distribution and we can thus evaluate the model where the output promises
to be most informative. Random sampling corresponds to what is called passive

learning in machine learning. Actively choosing promising inputs is known as ac-

tive learning, which has been discussed as early as 1956 by Lindley [6]. However,
Bayesian active learning—also called Bayesian experimental design—is compu-
tationally demanding, and naturally depends strongly on what is defined to be
“optimal”. Therefore it cannot be considered a solved problem.

In this work we present an active learning scheme for nonparametric Gaussian
process regression used in Bayesian quadrature. The learning scheme is derived as
a greedy approximation to the optimal Bayesian design, where model parameters
are updated after each query. We minimize the average predictive variance in
the region of interest, which is derived in closed form for uniform and Gaussian
input distributions. We show on three fully featured simulations of micro electro-
mechanical sensors that the active learning scheme significantly outperforms
passive learning in terms of learning rate.

We outline the Bayesian approach to active learning in section 2, discussing
its relation to experimental design. Based on the generic concepts we derive a
sampling scheme for sensitivity analysis in section 3. We compare the perfor-
mance of passive and active learning in several experiments in section 4 and
discuss the results in section 5.

2 Bayesian active learning

In the following section we discuss Bayesian active learning. Section 2.1 in-
troduces the Bayesian concept of expected utility, which provides the formal
framework for experimental design. We show in 2.2 how experimental design
corresponds to active learning and define the algorithm which we use for our

experiments. For sensitivity analysis, just as for other regression setups, the ob-
jective is to minimize the expected generalization error in a region of interest.
We define the corresponding utility function in 2.3.

2.1 The expected utility

Active learning is a typical example for problems which can be solved using
Bayesian decision theory, where the purpose of the experiments is expressed in a
utility function. The utility function will usually depend on uncertain quantities,
such as model parameters and the outcomes of the experiments which are to be
performed. We can therefore not directly optimize the utility function and need
to average over these quantities according to our prior belief. After averaging out
the unknowns, the utility function is called the Bayesian expected utility. Berger
[7, Chap. 4] gives a comprehensive discussion of Bayesian decision theory, [8] and
[9] review its application to optimal experimental design.

Assume our aim is to collect N samples, where we can choose inputs x ∈
R

D at which we query targets y ∈ R. We collect the targets in a vector y =
(y1, y2 . . . yN)T and the inputs in the design matrix X = (x1,x2 . . .xN)T . We
collect both in the dataset D = {X,y}. To refer to the available data at time t

of decision making we use the same symbol with a time index, Dt.
Before any optimal sampling scheme can be computed, we need to specify

what is to be meant by “optimal”, i.e. we need to define some utility function

U(X,y,θ|Do) . (1)

The utility function usually depends on the design matrix X which is chosen
to maximize U , the unknown outcomes of the experiments y, and the unknown
model parameters θ. The objective may also depend on the model assumption
and prior information Do. In contrast to the remaining quantities, Do is fixed.

As mentioned above, we can usually quantify the utility of a design matrix
only after observing the outcomes of the experiments and for given model param-
eters. Bayesian decision theory provides the formalism to handle these uncertain
quantities: they need to be integrated out, using the prior distribution which
corresponds to Do,

U(X|Do) =

∫

dy

∫

dθ U(X,y,θ|Do) p(y|X,θ,Do)
︸ ︷︷ ︸

model

p(θ|X,Do)
︸ ︷︷ ︸

prior

. (2)

As for the utility function we use the symbol U for the expected utility, simply
omitting those arguments over which we have averaged.

Note, that in the expected utility (2) we assume that our prior assump-
tions are correct: As we average over the predictive distribution of the model
p(y|X,θ,Do) and the prior p(θ|X,Do), the loss does not account for unexpected
parameter settings or measurements which cannot be explained by the model.
MacKay [10] argues that this is the “Achilles’ heel” of active learning. As we as-
sume that we are completely certain about the model, an active learning scheme

might tend to choose extreme designs which automatically confirm the model.
O’Hagan discusses this problem in [11], where he introduces Gaussian processes
as localized linear models. GPs relax the hard assumptions of parametric models,
which can lead to designs with samples only at the limits of the input domain.

2.2 Greedy scheme for active learning

Experimental design has traditionally been used to determine a complete optimal
design of N samples before any experiments are performed. The main issue is to
find approximately optimal designs for large N , as the exact problem is NP-hard
[12]. In the machine learning community the term “active learning” has replaced
“experimental design”. The focus has moved from planning a whole batch of
experiments to actively planning the experiments one after the other, while up-
dating the learning algorithm after each query. Although these approaches are
quite different in their goal, both are optimally solved by maximizing the ex-
pected utility in (2).

In classical experimental design the queries X are planned as a batch, maxi-
mizing the expected utility U(X|Do). If we assume that we obtain the outcomes
of all experiments at once the solution is optimal. However, if the results come
one-by-one, we should refine the remaining experimental schedule in each step
ℓ, by considering the measured y1, y2 . . . yℓ in the prior belief Dℓ at that time. In
the Bayesian formalism it is clear that this information is correctly considered
by maximizing U(xℓ+1 . . .xN |Dℓ) in each query.

Most active learning schemes avoid the computational burden of planning all
remaining experiments by greedily planning only one step ahead, optimizing the
expected utilities U(xℓ+1|Dℓ). We use this query scheme for our experiments:

Algorithm 1 Greedy active learning

Require: No initial samples DNo
.

1: for ℓ = No + 1 to N do

2: find xℓ ← argmax
x
U(x|Dℓ−1).

3: query target yℓ to obtain new dataset Dℓ ← Dℓ−1 ∪ {(xℓ, yℓ)}.
4: end for

2.3 Predictive performance in a region of interest

The utility function (1) formalizes the goal of the experimenter and may thus
vary from problem to problem. Our aim in sensitivity analysis is to explore the
output of the computer code in a region of interest, which is given by an input
distribution p(x). To measure the generalization error of the model we use its
predictive variance, averaged over p(x). Integrating out the unseen targets y, we
obtain

U(X,θ|Do) =

∫

dy p(y|X,θ,Do)

︸ ︷︷ ︸
average over unseen

training targets

∫

dx p(x)

︸ ︷︷ ︸
average over

region of interest

[

− var[y|x,θ,D,Do]
]

︸ ︷︷ ︸

objective: (negative)
pred. uncertainty

. (3)

MacKay [10] discusses several utility functions to measure the generalization
error in a region of interest. For the linear model information-based measures
lead to so-called alphabetical designs [6, 13, 8]. While (3) is usually approximated
e.g. using a sum over a pool of test cases, our setup allows for an exact solution.
We derive the expected utility in the following section.

3 Active learning for nonlinear sensitivity analysis

In the preceding section we have outlined the generic concept of Bayesian active
learning. We adapt the concepts to the application of Bayesian quadrature for
sensitivity analysis (SA), deriving the resulting optimal sampling scheme in this
section: We briefly outline SA and Bayesian quadrature in 3.1 and introduce
Gaussian process regression in 3.2. We show in 3.3 how the Bayesian expected
utility for SA can be derived in closed form.

3.1 Bayesian quadrature for sensitivity analysis

Global SA. The simulation software itself can be seen as a deterministic mapping
from the input parameters x to an output f(x). In combination with a known
input distribution—which resembles fluctuations in mass production—the model
can be used to determine the corresponding output distribution and the influence
of single parameters.

Whenever the fluctuations are not small enough to use a local approximation
of f around the nominal value, we need to use a global analysis which explores
the model over the complete range of p(x). Global sensitivity measures are thus
based on expectations of the type

I [f] =

∫

dx p(x) F [f(x)] , (4)

where F is some functional of f [1]. A first step is to compute the mean and
variance of the output distribution, which are the basis for most sensitivity
measures:

Ex[f] =

∫

dx p(x) f(x) and varx[f] =

∫

dx p(x) f2(x) − Ex[f]
2

. (5)

Classical quadrature and Monte Carlo. The integrals (4) can be evaluated us-
ing classical quadrature if the input space is low dimensional. The error of the
trapezoidal rule, for example, scales as O(N−2/D) for F [f] ∈ C2. For higher
dimensions Monte Carlo (MC) estimates are to be preferred. The MC approxi-
mation to the integrals (4) is the empirical mean,

I [f] ≈ 1
N

N∑

ℓ=1

F [f(xℓ)] , over samples xℓ from p(x). (6)

MC methods are characterized by probabilistic error bounds which scale as
O(N−1/2). The MC bounds are independent of the dimension D and only re-
quire F [f] to be integrable [14]. Hence, MC outperforms classical quadrature for
D ≥ 5.

Bayesian quadrature. As MC hardly makes any assumption about F [f], it guar-
antees convergence in almost all cases. However, it is clear that the convergence
rate could be better if we were able to incorporate prior knowledge into the esti-
mates. Especially in machine learning such a trade off between bias and variance
is well known to lead to a drastic improvement of the learning rate. O’Hagan
[15] discusses this potential improvement of MC estimates, claiming that “Monte
Carlo is fundamentally unsound”.

O’Hagan [3] describes what he calls “Bayesian quadrature” to improve classi-
cal quadrature using a Gaussian process (GP) prior. Rasmussen and Williams [5]
propose the “Bayesian Monte Carlo” method and show that it can outperform
classical MC in high dimensions. The Bayesian quadrature scheme is:

Algorithm 2 Baysian quadrature

Require: simulation runs D, possibly from an optimal design
1: train a Gaussian process to estimate f .
2: use the posterior p(f |D) to estimate the integral I[f] (4):

p(I|D) =

Z

df p(f |D)

»
Z

dx p(x) F [f(x)]

–

.

The posterior distribution for the integral p(I|D) includes the remaining uncer-
tainty. For SA the integrals for mean and variance (5) can be solved analytically.

Recall the error bounds of the trapezoidal rule and the MC method: MC
hardly assumes any structure in f and its error scales as O(N−1/2) according
to the strong law of large numbers. In contrast, the trapezoidal rule assumes
that the function is twice differentiable and uses linear interpolation. The error
O(N−2/D), guaranteed by the Taylor expansion, is better than for MC in up to
four dimensions, as more structure of the function is used.

The GP regression used in Bayesian quadrature can uncover the structure
of functions in high dimensional spaces, and we can therefore expect to extend
the favorable convergence rate to quadrature in higher dimensions. However, the
improvement comes with the cost of restricting the method to functions covered
by the GP prior.

3.2 Gaussian processes applied to Bayesian quadrature

GP regression. A comprehensive introduction to GPs can be found in [16]. In the
following we briefly outline the basic concepts. GPs are now widely used in ma-
chine learning, however, the model is long known for interpolation in computer
experiments [17, 18].

Assume we model a mapping f from the input parameters x ∈ R
D to an

output f(x) ∈ R. Gaussian processes are defined by a (parameterized) mean
and covariance function

E[f(x)] = µ(x) and cov [f(x), f(x′)] = k(x,x′) , (7)

which model a known main contribution (mean) and deviations, whose structure
is defined by the covariance function. We set the mean function to zero for
notational simplicity, as this does not make any conceptual difference.

The GPs’ behavior is governed by the choice of the covariance function
k(x,x′). A common choice is to assume that correlations between the function
values decay exponentially, i.e.

k(x,x′) = w2
o exp

{

− 1
2

[
(x − x′)T A−1(x − x′)

] }

(8)

with A = diag(w2
1, . . . , w

2
d). The parameters wo and w1 . . . wD control the strength

of the correlations and the typical length scales of the individual input dimen-
sions. We collect the parameters in a vector θ = (wo . . . wD).

Bayes’ rule is used to combine observed data with the GP prior p(f |θ). Let the
observed data D consist of a set of N possibly noisy observations yℓ of function
values f(xℓ). We assume normal noise, i.e. yℓ = f(xℓ) + ǫℓ with ǫ ∼ N (ǫ|0, σy

2),
and add the unknown variance σy

2 to the parameter vector θ. The predictive
distribution at unseen inputs x∗ is

p(f∗|x∗,D,θ) = N (f∗|m(x∗), v(x∗)) (9a)

with mean m(x∗) = k(x∗)T Q−1y (9b)

and variance v(x∗) = k(x∗,x∗) − k(x∗)T Q−1k(x∗) ,

where we have defined Q = K + diag[σy
2, . . . , σy

2], and used the abbreviations
k(x∗) ∈ R

N and K ∈ R
N×N with [k(x∗)]ℓ = k(xℓ,x

∗) and Kiℓ = k(xi,xℓ) . As
described in [7, Chap. 3] we handle the hyper parameters θ using the maximum
likelihood II (ML-II) approach, which replaces the posterior distribution for the
parameters by

p(θ|D) ≈ δ(θ − θ̂) with θ̂ = argmax
θ

[p(D|θ)] . (10)

Bayesian quadrature. Having computed the posterior process p(f |D, θ̂), we can
estimate mean or variance of the output under p(x) (5) using the predictive
mean and variance (9b) of the GP. The integral can be reduced to integrating
products of the input distribution p(x) and the covariance function. All neces-
sary integrals can be computed in closed form if the covariance function (8) is
used and the input distribution is Gaussian, p(x) = N (x|xo, B), or uniform. A
Gaussian input distribution can almost always be assumed for sensitivity anal-
ysis, as it describes natural fluctuations in mass production (strong law of large
numbers). The uniform distribution is appropriate for plain regression setups.
The derivation of the analytic expressions is given in [2, 4].

3.3 Active learning for Bayesian quadrature

In 3.1 we have argued why Bayesian quadrature uses the available data more ef-
ficiently than MC. In the following we discuss the optimal design which improves
the convergence of Bayesian quadrature.

There is a large amount of work on the design of computer experiments
[19, 18, 17]. Most work reports on methods of constructing space filling designs

such as the Latin Hypercube design [20] for space filling in low dimensional
projections, or the MaxiMin and MiniMax criteria [21]. These designs partly
correspond to special cases of Bayesian optimal designs, but they are mostly
based on intuitive considerations. The problem of computing uniform designs in
high dimensional spaces is well studied. However, how to learn an appropriate
distance measure and how to treat the input distribution is often not clear.
Space filling designs are used in quasi Monte Carlo methods to improve the MC
bounds by minimizing the discrepancy [14]. However, they are still limited to
(dependent) samples from p(x).

For Bayesian sensitivity analysis we can do more than space filling, as we
explicitly know the input distribution which is naturally given by the fluctuations
in mass-production. Based on the expected predictive variance over p(x) (3) we
derive a Bayesian optimal design which is exact other than using the greedy
scheme (algorithm 1):

U(xℓ|Dℓ−1) is given as an integral over the unknown quantities yℓ and θ (2)
and the input distribution p(x) (3). The average over the parameters θ is trivial
in the ML-II framework (10) where we integrate over a δ-distribution around

θ̂. The integral over p(yℓ|xℓ, θ̂,Dℓ−1) collapses as the predictive variance (9b) is
independent of yℓ. We are left with the integral

U(xℓ|Dℓ−1) =

∫

dx p(x)
[

− var
[

y|x,Dℓ, θ̂
]]

, (11)

which can be solved analytically. For notational simplicity we compute the utility
for adding a sample x̃ to the dataset D and use the definitions in (9).
The change in the predictive variance is3

var[y|x,D, (x̃, ỹ)] − var[y|x,D] = −

[
k(x, x̃) − k(x)T Q−1k(x̃)

]2

var[ỹ|x̃,D]
, (12)

which, through integrating over p(x), leads to

U(x̃|D) = const +

∫

dx p(x)

[
k(x, x̃) − k(x)T Q−1k(x̃)

]2

var[ỹ|x̃,D]
(13)

= const +

[

l(x̃, x̃) +
(
Q−1y

)T
L

(
Q−1y

)
− 2

(
Q−1y

)T
l
]

var[ỹ|x̃,D]
.

As an integral over a product of Gaussians4 l(x′,x′′) =
∫
dx p(x) k(x,x′)k(x,x′′)

is easily solved analytically.
In our learning scheme we optimize (13) by using the maximum U(x̃|D) from

a pool of 10 000 samples x̃ from p(x) and 10 000 from a Gaussian with variance
2B, which is resampled for each draw5.

3The predictive variance is given by (9b). The change for an additional sample can
be derived using a rank-one update of Q−1. The utility is also valid for both, noisy
(σy 6= 0) and exact (σy = 0) observations y.

4As for k we use: l(x̃) ∈ R
N , L ∈ R

N×N with [l(x̃)]ℓ = l(xℓ, x̃) and Liℓ = l(xi,xℓ) .
5The number of samples in the pool is somewhat arbitrary. We have made the pool

large enough to obtain stable performance. To improve this brute-force optimization of

-4 -2 0 2 4

-4

-2

0

2

4

(a) random samples

-4 -2 0 2 4

-4

-2

0

2

4

(b) Latin Hypercube

-4 -2 0 2 4

-4

-2

0

2

4

(c) w1 = w2 = 0.08

-4 -2 0 2 4

-4

-2

0

2

4

(d) w1 = w2 = 0.22

-4 -2 0 2 4

-4

-2

0

2

4

(e) w1 = w2 = 0.6

-4 -2 0 2 4

-4

-2

0

2

4

(f) w1 = w2 = 1.7

Fig. 1. Random samples compared to optimal designs. Plot (a) shows 200 independent
samples from the input distribution p(x) = N (0,1). Plot (b) shows a Latin Hypercube
design with 200 samples. In (c–f) we have plotted optimal designs of 200 points (•),
computed using 10 initial samples (×). The noise was set to a small level (σy

2 = 10−5,
wo = 1). In contrast to random samples, optimal designs tend to spread the samples
well apart from each other, where the length scales control the distances between the
points. Latin Hypercube stratifies the design only on one dimensional projections, and
uncovered areas can still be found.

Illustrative example. To visualize the difference between random samples and
optimal designs, we have plotted two dimensional examples with 200 points
each in figure 1. We have chosen a Gaussian input distribution with xo = 0 and
B = diag(1, 1). Observe, in plot (a), that random samples tend to leave large
areas under the input distribution uncovered, while we find some dense clusters.
Naturally, most samples are found around xo.

Latin Hypercube sampling [20], plot (b), stratifies the design on one dimen-
sional projections, but may show poor filling in the full space. Latin Hypercube
designs sample from p(x). Therefore they hardly provide points from low-density
areas.

By considering prior measurements, the Bayesian scheme can adjust the
length scales wℓ to reflect the variability of the function in each dimension. Plots
(c–f) show the optimal designs for very short and long length scales. When the

(13) one can use a gradient based method to find the maximum, starting from several
points to avoid local extrema.

number of samples

r
e
l.

a
c
c
u
r
a
c
y

v
a
r
ia

n
c
e

e
s
t
. Monte Carlo

passive learning
active learning

100 200 300

10−5

10−4

10−3

10−2

10−1

100

101

number of samples

m
e
a
n

s
q
u
a
r
e
d

e
r
r
o
r

passive learning
active learning

100 200 300

10−3

10−2

10−1

Fig. 2. Learning rates for the pressure sensor model: The estimates for the output
variance using the MC method, passive and active Bayesian quadrature are plotted in
the left panel. The test error for active and passive learning is shown in the right panel.
The error bars indicate the median, minimum and maximum value out of 35 runs.

length scale parameter is very small (w1 = w2 = 0.08 in plot c), the correlations
between function values decay rapidly and measurements need to be placed very
close to each other. As the weighting factor p(x) decreases with |x|, the first
200 inputs are chosen close to 0. For w1 = w2 = 1.7 (f), which corresponds to
a smoother function, the inputs are chosen much further apart and the input
distribution is explored even where we would hardly draw a random sample from
p(x). Note that the length scales are adjusted in the ML-II scheme each time a
new measurement has been observed. Hence, the sampling scheme adapts to the
characteristics of the output function.

4 Experiments

When the underlying model is correct we can be certain to improve the learning
rate in the Bayesian active learning scheme. It is not clear, however, how much
improvement the scheme gives in real applications. The Bayesian sensitivity
analysis, as presented above, is used for the design analysis of novel micro electro-
mechanical sensors at Robert Bosch GmbH. We have tested the active learning
scheme on three fully featured models of different devices, which are based on
FEM simulations.

We have analyzed the model of a pressure sensor with 28 fluctuating pa-
rameters, of an accelerometer with 29 parameters, and a yaw rate sensor with
15 parameters. In all cases we have initialized the active scheme with No = 20
random samples from p(x). To test the generalization error we have used an
independent test set of 22 950, 30 000 and 50 000 samples from p(x).

The learning curves for the pressure sensor model are shown in figure 2.
The plot on the left hand side compares the accuracy of the variance estimate
using the simple MC method and the Bayesian quadrature with random and
actively chosen samples. On 300 samples the Bayesian quadrature is by an order
of magnitude more accurate than the MC method, and by using active learning
we gain another factor of five. The plot to the right shows the mean squared
error on the test set, which reflects this improvement.

number of samples

m
e
a
n

s
q
u
a
r
e
d

e
r
r
o
r

passive learning
active learning

50 100 150 200 250

10−4

10−3

10−2

number of samples

m
e
a
n

s
q
u
a
r
e
d

e
r
r
o
r

passive learning
active learning

50 100 150 200 250

10−5

10−4

10−3

10−2

Fig. 3. Learning curves for the model of the accelerometer (left) and the yaw rate
sensor (right). The markers indicate the median of 6 (left) and 3 (right) runs, the error
bars cover the interval from the minimal to the maximal value.

For the accelerometer and the yaw rate sensor we show the learning curves in
figure 3. As in the other example, the active scheme clearly outperforms passive
learning. At 270 samples we gain roughly a factor five in accuracy. Note, that
the performance for random sampling scatters much stronger than that of the
active scheme, as the latter is only partly randomized.

5 Discussion

Monte Carlo estimates are commonly used to explore the global behavior of
computer models for sensitivity analysis. They have the advantage that they are
simple to implement and that they do not make strong assumptions about the
structure of the output. However, MC may not be feasible when the function is
computationally too complex to be evaluated at a great number of parameter
settings.

In industrial engineering computer experiments often model the behavior
of complete physical systems, and they are used to analyze the robustness of
a design with respect to fluctuations in mass production. For many models a
sensitivity analysis is not feasible using the MC approach. Bayesian quadrature
can resolve the problem by using the available data more efficiently.

In SA we are given—in contrast to most benchmark problems in machine
learning—the region of interest and simulation software which can be called
at any input. We can therefore use an active learning scheme which calls the
software where the evaluation promises most informative. In contrast to previous
work, which mainly uses space filling designs, our approach directly optimizes
the Bayesian expected utility and updates the model parameters in each step.
As the input distribution in SA is Gaussian, we can compute the expected utility
analytically.

To quantify the benefit of the active learning scheme we have used three high
dimensional, fully featured models from industrial engineering, which resemble
micro electro-mechanical sensors. The models have up to 29 uncertain inputs,
where the input distributions reflect fluctuations from mass production.

Bayesian quadrature proves much more efficient than the simple MC method.
Compared to passive Bayesian quadrature with random samples from p(x), the
active learning scheme leads to a significant improvement of the generalization
error. By using a uniform input distribution, the learning scheme can be applied
to standard regression setups.

References

1. Saltelli, A., Chan, K., Scott, E.M.: Sensitivity Analysis. Wiley (2000)
2. Pfingsten, T., Herrmann, D.J., Rasmussen, C.E.: Model-based design analysis and

optimization. IEEE Trans. on Semiconductor Manufacturing (accepted) (2006)
3. O’Hagan, A.: Bayes-Hermite Quadrature. Journal of Statistical Planning and

Inference 29(3) (1991) 245–260
4. Oakley, J.E., O’Hagan, A.: Probabilistic sensitivity analysis of complex models: a

Bayesian approach. Journal of the Royal Statistical Society, Series B 66(3) (2004)
751–769

5. Rasmussen, C.E., Ghahramani, Z.: Bayesian Monte Carlo. In: NIPS 15. (2003)
6. Lindley, D.V.: On the measure of information provided by an experiment. Ann.

math. Statist. 27 (1956) 986–1005
7. Berger, J.O.: Statistical Decision Theory and Bayesian Analysis. Springer New

York (1985)
8. Chaloner, K., Verdinelli, I.: Bayesian experimental design: A review. Statistical

Science 10(3) (1995) 273–304
9. Lindley, D.: Bayesian Statistics — A Review. SIAM (1972)

10. Mackay, D.: Information-based objective functions for active data selection. Neural
Computation 4(4) (1992) 589–603

11. O’Hagan, A.: Curve Fitting and Optimal Design for Prediction. J.R. Statist. Soc.
B 40(1) (1978) 1–42

12. Ko, C.W., Lee, J., Queyranne, M.: An exact algorithm for maximum entropy
sampling. Operations Research 43(4) (1995) 684–691

13. Lindley, D.: The choice of variables in multiple regression. Journal of the Royal
Statistical Society B 30(1) (1968) 31–66

14. Niederreiter, H.: Random number generation and quasi-Monte Carlo methods.
SIAM (1992)

15. O’Hagan, A.: Monte Carlo is Fundamentally Unsound. The Statistician 36(2/3)
(1987) 247–249

16. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT
Press (2006)

17. Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis of computer
experiments. Statistical Science 4(4) (1989) 409–423

18. Welch, W.J., Buck, R.J., Sacks, J.S., Wynn, H.P., Mitchell, T.J., Morris, M.D.:
Screening, prediction, and computer experiments. Technometrics 34(1) (1992) 15–
25

19. Santner, T.J., Williams, B.J., Notz, W.I.: The Design and Analysis of Computer
Experiments. Springer New York (2003)

20. Mackay, M.D., Beckmann, R.J., Conover, W.J.: A comparison of three methods
for selecting values of input variables in the analysis of output from a computer
code. Technometrics 21(2) (1979) 239–245

21. Johnson, M.E., Ylvisaker, D., Moore, L.: Minimax and maximin distance designs.
J. of Statistical Planning and Inference 26 (1990) 131–148

