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Intuitive definitions of categorization tend to invoke 
similarity, in that objects that are similar are grouped to-
gether in categories. Within a category, similarity is very 
high, whereas between categories, similarity is low. Simi-
larity is at the heart of many categorization models. Pro-
totype theories postulate that categorization depends on 
the similarity of stimuli to an abstracted idea (Posner & 
Keele, 1968; Reed, 1972), and exemplar theories calcu-
late similarity to memory representations of previously 
encountered stimuli (Kruschke, 1992; Medin & Schaf-
fer, 1978; Nosofsky, 1986). A potential problem for these 
models is that they put the burden of explanation onto the 
intuitive concept of similarity. Despite serious problems in 
defining similarity (Medin, Goldstone, & Gentner, 1993), 
models of categorization continue to rely on similarity.

The appeal of invoking similarity in categorization mod-
els stems from the need to generalize. Given a stimulus that 
has never been encountered before, how can it be catego-
rized correctly on the basis of limited experience with pre-
vious stimuli? An easy answer seems to be that a new stimu-
lus is simply categorized in the same way as similar stimuli 
have been before. Correct generalization to new stimuli thus 

depends crucially on choosing the right similarity measure. 
Shepard (1987) famously turned this reasoning around and 
used generalization to measure similarity. He also tried to 
deduce a similarity measure such that generalization per-
formance likely would be good (Chater & Vitányi, 2003; 
Shepard, 1987; Tenenbaum & Griffiths, 2001).

In Shepard’s work, the idea of a perceptual space has 
played a major role. The similarity measure he suggested, 
often called Shepard’s universal law of generalization (or 
simply Shepard’s law), operates on a mental representa-
tion assumed to be a metric space. Shepard’s work on 
generalization and similarity (e.g., Shepard, 1957, 1987) 
cannot be separated from his work on categorization (e.g., 
Shepard & Chang, 1963; Shepard, Hovland, & Jenkins, 
1961) and multidimensional scaling (MDS; e.g., Shepard, 
1962). Since this work, it has become common for percep-
tual categorization models to assume a perceptual space 
and to use Shepard’s law as a similarity measure in this 
space (Kruschke, 1992; Love, Medin, & Gureckis, 2004; 
Nosofsky, 1986). Exemplar models in particular strongly 
rely on Shepard’s work. These models are very similar to 
a class of popular tools in machine learning and statis-
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kernel methods, and point to differences in their response 
rules that affect how Shepard’s law enters the models. The 
kernel view makes the differences between the models 
more transparent and also allows an easy comparison with 
methods from machine learning and statistics.

As in psychology, there is a tight relationship between 
similarity and generalization in machine learning. However, 
insights from machine learning have shown that, although 
it is very important to choose the right similarity measure, 
this is not always enough to guarantee good generaliza-
tion performance. More specifically, if used naively, ker-
nel methods are prone to overfitting. In the Generalization 
section, we will discuss the consequences of these insights 
for exemplar theories of categorization. Exemplar theories 
have thus far exclusively relied on similarity in order to ex-
plain generalization. In fact, a major criticism of exemplar 
theories has always been that they do not show any form of 
abstraction, and therefore they are often thought not to be 
capable of generalization at all. We will show that related 
kernel methods in machine learning assure good general-
ization performance with a mechanism called regulariza-
tion, and we will argue that similar mechanisms need to be 
implemented in psychological models if they are to exhibit 
good generalization performance. To demonstrate in prin-
ciple how this could be done, we will analyze ALCOVE’s 
learning algorithm from a regularization perspective. AL-
COVE’s behavior can be justified on theoretical grounds, 
thus providing an analysis of the generalization abilities of 
exemplar theories.

Similarity

Since many categorization models build on similarity, 
it seems important to understand the processes underlying 
similarity first. However, quantitative modeling of simi-
larity is a real challenge. Several approaches exist that are 
based on very different assumptions about how similarity 
should be represented (Navarro, 2002). Here, we restrict 
ourselves to a class of similarity models based on geomet-
ric representations.

Perceptual Space
The idea that stimuli can be represented as points in a 

perceptual space underlies MDS and has had a major im-
pact on categorization models. Consider, as an example, 
the following popular stimuli: circles with a single spoke 
(Shepard, 1964). Two examples are shown as insets in Fig-
ure 1. These stimuli can vary on two obvious dimensions. 
By varying the radius of each circle, stimuli of different 
perceived sizes are produced. By varying the angle of the 
spoke, stimuli of different perceived angles are generated. 
Figure 1 shows the perceptual space that is defined in this 
way. Each point in the plane represents the perception of 
one of the stimuli. The x-axis depicts the perceived angle 
of a stimulus, and the y-axis depicts the perceived size. 
The perceived size and angle are of course different from 
the physically specified size and angle.

To illustrate categorization in perceptual space, we have 
plotted two clusters of three stimuli each. The first clus-
ter consists of large stimuli with spokes pointing to the 

tics: kernel methods. This observation was first made by 
Ashby and Alfonso-Reese (1995). Here, we draw parallels 
between recent progress in kernel methods and exemplar 
theories of categorization.

Kernel Methods in Machine Learning
In the past, psychological theories of learning and cat-

egorization were a major influence for engineers working 
to build machines capable of intelligent behavior. This in-
fluence is signified by the vast engineering literature that 
has been published on artificial neural networks and rein-
forcement learning. More recently, an increased interest 
in kernel methods has arisen in machine learning. Even 
though these methods can be implemented in simple neu-
ral networks, they are usually not psychologically or bio-
logically motivated, but instead are seen to be grounded in 
statistics and functional analysis. However, as we will show 
here, researchers in kernel methods are often guided by 
the same intuitions about similarity and generalization that 
also guide psychologists in their theories on categorization. 
Hence, we will argue that theoretical progress in machine 
learning can also lead to new insights in psychology.

Methods based on kernel ideas are often found to have 
cutting-edge performance in real-world applications. For 
example, benchmark data sets for digit recognition are 
often used to compare the performance of different learn-
ing algorithms. The task for a learning algorithm in this 
setting is to correctly classify handwritten digits it has 
never been exposed to before, on the basis of experience 
with a limited number of examples. For a long time, a 
hand-tuned neural network held the world record on digit 
recognition benchmarks, until a much simpler kernel 
method, called a support vector machine, was shown to 
achieve better performance with much less effort on the 
part of the engineer. Today, support vector machines are 
found in applications ranging from bioinformatics to ma-
chine vision (Cristianini & Schölkopf, 2002).

The successful application of kernel methods to real-
world classification problems has led to an explosion of 
theoretical work in the field of machine learning. Although 
a considerable amount of theory on artificial neural net-
works had already been published, progress had been hin-
dered by the complexity of the neural networks used in 
practice. Kernel methods are built on linear methods and 
are therefore a lot easier to analyze than nonlinear neural 
networks (Schölkopf & Smola, 2002).

Preview
In this article, we will demonstrate that the generalized 

context model (GCM; Nosofsky, 1986) and ALCOVE 
(Kruschke, 1992), two well-known exemplar models, are 
very closely related to a machine learning method called 
kernel logistic regression (Hastie, Tibshirani, & Friedman, 
2001). The link between the psychological models and the 
machine learning method is their use of a radial basis func-
tion (RBF) neural network (Poggio, 1990; Poggio & Gi-
rosi, 1989). In the Similarity section, we will first explain 
the ideas behind kernel methods and RBF networks. The 
Categorization section follows, where we will discuss the 
history of exemplar models, explain their connection to 
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found. Following the lead of Shepard (1957, 1987), the 
categorization literature has often relied on indirect mea-
sures of similarity. Shepard (1987) argued that generaliza-
tion gradients should be used to measure similarity, and 
this is the stance that is taken in almost all exemplar mod-
els. In classical conditioning, generalization gradients are 
obtained by conditioning on a certain stimulus and mea-
suring the response to related, but different, stimuli (Ghir-
landa & Enquist, 2003; Mostofsky, 1965). For example, 
a dog could be conditioned to salivate in response to a 
1000-Hz tone. The generalization gradient is obtained by 
measuring the salivation of the dog in response to neigh-
boring frequencies. Not surprisingly, the generalization to 
new stimuli is higher the more similar the new stimuli are 
to the conditioned stimulus. Intuitively, one would like to 
explain generalization in terms of psychological similar-
ity, and indeed researchers have tried to obtain measures 
of similarity that are independent of any generalization be-
havior (e.g., by integrating just-noticeable differences). In 
animal studies, however, this proved to be hard, which led 
Bush and Mosteller (1951, p. 413) to conclude, “Although 
there are several intuitive notions as to what is meant by 
‘similarity,’ one usually means the properties which give 
rise to generalization. We see no alternative to using the 
amount of generalization as an operational definition of 
degree of ‘similarity.’”

If generalization gradients are the best measure to assess 
similarity, Shepard (1987) reasoned, generalization gradi-
ents should be used in the construction of a perceptual 
space. Applying ordinal MDS to many data sets, Shepard 
(1987) found a pattern that is now called Shepard’s univer-
sal law of generalization: The amount of generalization 
decreases (approximately) exponentially with the distance 
in perceptual space. Shepard (1957, 1958) had earlier used 
the exponential relationship to explain confusion data in 
humans. Shepard seems to have thought that confusions 
that arise in a paired-associate paradigm can, under cer-
tain circumstances, be considered as generalization gradi-
ents in humans. This is the reason why Shepard’s law is not 
referred to as the “universal law of confusability” (Chater 
& Vitányi, 2003, p. 352), even though this might be what 
it is. Experimentally, it is often hard to tell whether gen-
eralization gradients really reflect generalization, in the 
literal meaning of the word, or some degree of confusion 
in memory or perceptual indiscriminability. Some animal 
learning theorists have argued that the concept of gener-
alization is superfluous and that discrimination is the only 
concept that is needed (Brown, 1965), since generaliza-
tion might only be a failure to discriminate. As a theoreti-
cal construct, generalization refers to a covert process that 
leads a subject to respond to a new stimulus in the same 
way as to a previously learned stimulus, despite the ability 
of the subject to tell the stimuli apart. This is the mean-
ing that is intended by Shepard (1987), and it is also how 
generalization gradients are meant to be used in categori-
zation research.

Kernels
In order to model the similarity—that is, the general-

ization gradient—between two stimuli x and y, we first 

right (crosses), whereas stimuli in the second cluster are 
smaller with spokes pointing upward (circles). It is very 
tempting to draw a line (not necessarily straight) separat-
ing the two clusters in order to explain a subject’s categori-
zation behavior (Ashby & Gott, 1988). The perceptron, for 
example, implements a linear decision rule (Rosenblatt, 
1958). By comparing the similarity to the mean of the 
stimuli in each cluster, a prototype classifier also leads to 
a linear decision boundary (Posner & Keele, 1968; Reed, 
1972). Exemplar theories postulate a perceptual space, 
too, but they can explain more complicated decision rules 
on the basis of the similarity to all of the stimuli shown to 
the subject (Kruschke, 1992; Nosofsky, 1986).

With the assumptions of a perceptual space and a met-
ric of this space, MDS can be used to recover underlying 
dimensions and the configuration of stimuli. To this end, 
data on the similarity of different stimuli are collected. 
MDS then tries to embed the stimuli in the metric space 
so that the similarity relationship in the data is preserved 
as well as possible: Stimuli that are measured to be highly 
similar should be very close together in space, and those 
that are measured to be very dissimilar should have a large 
distance between them. In practice, MDS with either the 
Euclidean or the city-block metric in a low-dimensional 
space works surprisingly well, often leading to interpretable 
results (Garner, 1974; Shepard, 1964)—despite the fact that 
geometric approaches to similarity have been heavily criti-
cized (Beals, Krantz, & Tversky, 1968; Jäkel, Schölkopf, & 
Wichmann, 2008; Tversky, 1977; Tversky & Gati, 1982).

Shepard’s Universal Law of Generalization
Before an MDS analysis can be undertaken, an ap-

propriate experimental measure of similarity needs to be 
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Figure 1. An illustration of a perceptual space. The stimuli 
are circles with a spoke and can vary on two dimensions. Two 
artificial categories are depicted, separated by a linear decision 
boundary.
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in the plane to stimulus y. The generalization gradient is 
rotation invariant—that is, it falls off in the same way in 
all directions of space. With p chosen to be 1, the similar-
ity kernel is sometimes called a Laplacian kernel (in anal-
ogy to the Laplacian distribution). This case is depicted 
in the right panel of Figure 2. The Laplacian kernel is not 
rotation invariant, so the generalization gradients fall off 
differently in different directions of space. In particular, 
similarity fades away more slowly along the stimulus axes. 
The similarity kernel as defined in Equation 3 has several 
psychologically and mathematically interesting properties 
that we explore in detail in two other manuscripts (Jäkel, 
Schölkopf, & Wichmann, 2007, 2008).1

Neural Networks
The similarity kernel forms the basis of many categoriza-

tion models (Kruschke, 1992; Love et al., 2004; Nosofsky, 
1986). Exemplar theories, in particular, make heavy use 
of the similarity kernel. The ideas that underlie all exem-
plar models are that stimuli are stored in memory and that 
new stimuli are categorized on the basis of similarity to the 
stored exemplars. This idea can be formalized in a neural 
network. In fact, the ALCOVE model for categorization, 
which will be discussed in more detail in the Categoriza-
tion section below, is such a neural network model.

Imagine a cell that after learning is tuned to an exemplar 
xi. It will also respond to other stimuli x if they are suffi-
ciently similar to xi. To model the similarity, we of course 
use the similarity kernel given in Equation 2. In exemplar 
models, the similarity to several exemplars x1, . . . , xN is 
usually a weighted sum of the similarity of each exemplar:

	
f x w k x xi i

i

N

( ) , .= ( )
=
∑

1 	
(4)

The function that this equation computes can be repre-
sented graphically as a one-layer neural network. Figure 3 
shows such a network with three exemplars. In the neural 

interpret x and y as coordinates in an n-dimensional per-
ceptual space. The perceptual distance in this space is usu-
ally modeled as
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Most often, the distance dp takes the specific form of either 
the city-block or the Euclidean distance, with p chosen to 
be 1 or 2, respectively. The αis are positive weights that are 
needed to model the relative importance of the stimulus 
dimensions, which possibly change with the experimental 
context. Using Shepard’s law, the generalization gradient 
between x and y is modeled as

	
k x y d x yp

q( , ) exp ( , ) .= −( ) 	
(2)

We refer to the function k that models the generalization 
gradient as the similarity kernel. It is an exponential func-
tion of the distance dp between the two stimuli in percep-
tual space. Deviating from Shepard’s original formulation, 
the distance is nowadays often modified by taking it to the 
power of q, in order to give the model more flexibility. In 
models of categorization, one often finds that q is chosen 
to be equal to p (Nosofsky, 1990). The similarity kernel is 
then given as

	
k x y d x y x yp
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With p chosen to be 2, the similarity kernel is called 
a Gaussian kernel. The Gaussian kernel is extremely 
popular in machine learning. The left panel of Figure 2 
shows a Gaussian kernel in two dimensions. Imagine a 
two-dimensional perceptual space—for example, the per-
ceived size of a circle and the angle of a spoke within it. 
Stimulus y is fixed at the center of the Gaussian, and the 
height of the plot depicts the similarity of all other stimuli 

A B

Figure 2. The similarity kernels for different values of p. For p 5 2, a Gaussian is obtained (A), and for p 5 1, a Laplacian is 
obtained (B).
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For the other two stimuli in this category, the generaliza-
tion gradients overlap quite a bit and form a bigger hump. 
Regions with a high density of exemplars therefore lead 
to a high output of the exemplar network (Equation 4), 
if all of the weights are set to 1. Hence, the output of the 
network can be interpreted as a measure of category mem-
bership or, if appropriately normalized, as an estimate of 
the probability that a stimulus from the category lies in a 
certain region of space. In statistics, the same idea is used 
in so-called kernel density estimators (Ashby & Alfonso-
Reese, 1995).

Conclusions on Similarity
We have briefly reviewed the idea of a perceptual space 

and similarity measures based on Shepard’s universal law 
of generalization. We noted that Shepard’s law is akin to 
what is called a kernel in machine learning and statistics. 
Ashby and Alfonso-Reese (1995) have already compared 
exemplar theories of categorization to kernel density esti-
mators. However, recently, methods based on kernels have 
attracted a lot of attention in machine learning. In what 
follows, we will first systematically compare two psy-
chological exemplar theories (GCM and ALCOVE) to a 
method from machine learning: kernel logistic regression. 
We will then go on to address the issue of generalization 
from a machine learning point of view.

Categorization

Historically, the first use of the similarity kernel was in 
an identification task (Shepard, 1957). This identification 
task is also the theoretical backbone of one of the most 
prominent exemplar models, the GCM (Nosofsky, 1986). 
ALCOVE (Kruschke, 1992), a connectionist variant of the 
GCM, also makes heavy use of the similarity kernel. In the 
following section, we trace the development of the GCM 
from the identification task and then present a detailed 
comparison of the GCM and ALCOVE, highlighting the 
differences in their uses of the similarity kernel.

Taking a kernel view of exemplar models also reveals 
their relationship to RBF networks and machine learn-
ing methods, especially to the kernel logistic regression 
method. We believe that the connections between catego-
rization models and their heritage become clearer if they 
are discussed in the context of the mapping hypothesis, 
and this is what we will do first.

The Mapping Hypothesis
In two seminal studies, Shepard et al. (1961) and Shepard 

and Chang (1963) examined the relationship between iden-
tification and categorization. In identification tasks, sub-
jects learn to call each stimulus in a set by a unique name. 
This may be achieved in a paired-associates paradigm in 
which the experimenter shows the stimuli repeatedly to the 
subject and asks for the corresponding name. If the subject 
calls the wrong name, he or she is corrected. During this 
process of learning, stimuli that are more similar to each 
other are confused more often. This is not necessarily a re-
sult of their perceptual indiscriminability. The original idea 
in these studies relates back to generalization gradients: 

network literature, nets with “tuning functions” similar 
to the similarity kernel are called radial basis function 
nets. These nets have repeatedly been advocated by Pog-
gio and coworkers (Poggio, 1990; Poggio & Bizzi, 2004) 
as a plausible model for brain function.

For now, it is enough to imagine that all weights are set 
to 1. Figure 4 shows again the two categories of circles 
with spokes that were already depicted in Figure 1. The 
summed similarities to all exemplars of one of the cat-
egories (circles) are shown by gray levels. The blacker a 
region of perceptual space is, the more similar the stimuli 
in this region are to the exemplars of the category. We have 
used a Gaussian kernel for illustration. The generalization 
gradient of the Gaussian can be seen very clearly for the 
single stimulus close to the dashed category boundary. 

x

k(x,  x1)

k(x,  x2)

k(x,  x3)

w1

w2

w3

Σ

Figure 3. An RBF network calculates a weighted sum over 
similarity to the various exemplars. A small network with three 
exemplars is depicted.
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Figure 4. The summed similarity to the exemplars of one cat-
egory is depicted with gray levels in the perceptual space from 
Figure 1. The summed similarity is akin to kernel density estima-
tion in statistics.
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ity between the stimuli xi and xj (with πij being positive). 
This basic model is usually supplemented with response 
bias terms that we will ignore for simplicity.

If no additional structure is assumed for the terms πij, 
nothing is gained from this formulation. Shepard (1957) 
assumed that πij is a monotonically decreasing function of 
the distance between the stimuli xi and xj in a psychologi-
cal space. To make the model feasible, he also assumed 
that the psychological space is Euclidean and that the re-
lationship between similarity and distance is exponential. 
Shepard’s suggestion was essentially to use Equation 2, 
πij 5 k(xi, xj).2 This model has come to be known as the 
MDS choice model (Nosofsky, 1986).

For example, imagine the psychological space to be 
two-dimensional. Instead of having to estimate the N 2 
probabilities of confusion, only the 2N coordinates of the 
stimuli have to be estimated. Since Shepard (1957) as-
sumed the distances in the similarity kernel in Equation 2 
to be Euclidean, he could use classical MDS to recover 
the coordinates. Later, he used his ordinal scaling method 
to get independent support for the shape of the similarity 
kernel (Shepard, 1965, 1987). Today, the similarity kernel 
is often assumed to be known, and the coordinates in the 
multidimensional space are routinely estimated by using 
maximum likelihood (Nosofsky, 1986).

By a simple reparameterization, π'ij 5 log πij, it is easy 
to see that Luce’s choice rule (Equation 5) is identical to 
the multinomial logit model (Train, 2003):
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We can therefore interpret the MDS choice model in two 
ways. It can be interpreted as plugging the similarity of 
the stimuli i and j—as given by πij—into Luce’s choice 
rule. We can also interpret it as calculating the logarithm 
of the similarity π'ij and plugging this expression into a 
logit model. If we take the similarity kernel from above 
(Equation 3) as our measure for stimulus similarity, πij 5 
k(xi, xj), the full MDS choice model reads
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Since the similarity kernel in Equation 3 is an exponen-
tial of the pth power of dp, the distance in psychological 
space, the two interpretations of the MDS choice model 
are (1) Luce’s choice rule as applied to the similarity of xi 
and xj in perceptual space, or (2) a logit model on the pth 
power of the distance dp between xi and xj in perceptual 
space. Hence, when interpreted as a logit model, the MDS 
choice model does not make use of the similarity kernel, 
but rather is a logit model on the pth power of dp.3

The Generalized Context Model
Using the mapping hypothesis, it is straightforward to 

work out the probabilities for the category responses once 

Stimuli are confused because their generalization gradients 
overlap, not because they cannot be discriminated. But of 
course, stimuli might also be confused because they have 
insufficient representations in memory. Over time, a sub-
ject will build a better representation of the stimuli and will 
be able to associate each stimulus with its unique label—at 
least as far as this is possible, given memory constraints 
and the discriminability of the stimuli.

A very simple hypothesis about categorization sug-
gests that categorization might work in the same way as 
this rote-learning mechanism for identification. For each 
stimulus in the set, the subject has to learn a label, the only 
difference being that in the categorization task, labels are 
not uniquely identified with a stimulus. For instance, with 
two categories there are only two labels, but many more 
stimuli. In the studies cited, Shepard and colleagues hy-
pothesized that the subjects had the same pattern of con-
fusions as in the identification task: More similar stimuli 
were confused more often. Therefore, it should have been 
possible to predict the errors in categorization from the 
errors in identification. Confusions within a class do not 
lead to mistakes, but when stimuli from different classes 
are confused, that is when an error occurs. This was later 
called the mapping hypothesis (Nosofsky, 1986).

It turned out that the mapping hypothesis is not very 
good at predicting categorization performance, at least not 
for separable dimensions (Shepard et al., 1961). It does 
provide a better account for integral dimensions, though 
(Shepard & Chang, 1963). One explanation could be that 
categorization is more than just rote learning; some sort 
of abstraction, such as formation of a prototype (Posner 
& Keele, 1968), is happening. Another explanation was 
suggested by Shepard et al.: Even if the underlying rep-
resentation is the same in both tasks, a subject’s attention 
might be directed to different dimensions of the stimuli in 
the two tasks. This idea is formalized in Nosofsky’s GCM 
(Nosofsky, 1986). In Nosofsky’s experiments, this model 
proved to provide a better account of categorization per-
formance than did the simple mapping hypothesis.

The MDS Choice Model
Since an identification model is the starting point for 

the GCM, it is natural to describe the model for the iden-
tification task first. In each trial, a subject has to choose a 
response from a set of possible responses. A very simple 
and widely used model for choice behavior in general was 
investigated by Luce (1959, 1963, 1977). The model has 
close connections to the method of paired comparisons 
and to logistic regression (Bradley, 1976; David, 1988). 
For an identification task, a model in the same spirit was 
first discussed by Shepard (1957). The probability of an-
swering with response ri when the stimulus was xj is given 
by Luce’s (1959) well-known choice rule

	

P r xi j
ij

kj
k

N
| ,( ) =

=
∑

π

π
1 	

(5)

where the number of stimuli and responses is N. In Shep-
ard’s identification model, πij is interpreted as the similar-
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categories can be seen as a logit model on the logarithm 
of the summed similarities.

ALCOVE
Inspired by the success of the GCM, and probably also 

by the general excitement about neural network models 
at the time, Kruschke (1992) developed a connectionist 
variant of the GCM. As crucial ingredients for his model, 
he identified both a similarity measure that can be given a 
tuning-curve interpretation and the attention weights that 
Nosofsky used. He formulated the model as a network and 
added a back-propagation learning algorithm to account 
for the adjustment of the attention weights—hence, the 
name ALCOVE (“attention learning covering map”).

There are important differences between ALCOVE and 
the GCM. In the GCM as given in Equation 7, the similari-
ties to all exemplars are simply added up. In ALCOVE, the 
output neurons collect a weighted sum of all hidden neu-
rons. Assume once again M categories C1, . . . , CM, with 
one output neuron for each category. The activation fm of 
the neuron that is responsible for category Cm is defined 
as a weighted sum of the activation of the hidden-layer 
neurons:
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Each output neuron m has its own weights that are col-
lected in a vector wm. Each output neuron is an RBF 
network with a kernel given by the similarity measure 
(see Equation 4 and Figure 3). Whereas the GCM uses 
Luce’s choice rule, ALCOVE uses the logit response rule 
(Equation 6) directly on the weighted similarities to the 
exemplars:
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An identification task can be set up by having as many 
categories as stimuli, but contrary to the original GCM, 
the identification and the categorization task cannot be 
linked by the mapping hypothesis. This conceptual dif-
ference between the GCM and ALCOVE should not be 
overlooked, because the mapping hypothesis provided 
the main motivation for the GCM—even though it is also 
important to note that the GCM with changing attention 
weights and response-scaling mechanisms also cannot 
be linked with the mapping hypothesis (see Nosofsky & 
Zaki, 2002).

For obvious reasons, ALCOVE is called kernel logistic 
regression in machine learning and statistics (Hastie et al., 
2001). It is an RBF network combined with a logit model. 
In the important case of just two categories, ALCOVE re-
duces to
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the identification model is specified. A number of catego-
ries C1, . . . , CM with associated responses R1, . . . , RM are 
defined so that each possible stimulus x1, . . . , xN belongs 
to exactly one of the categories. The probability of observ-
ing response Rm given the stimulus xj is then
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For simplicity, we have again ignored response biases. 
Following the MDS choice model, Nosofsky identified the 
similarity measure in Equation 2 with πij 5 k(xi, xj) (No-
sofsky, 1986, 1987). He called this model the generalized 
context model because, with a certain choice of similarity 
kernel, it can be seen as the continuous generalization of an 
earlier exemplar model with binary features that was called 
the context model (Medin & Schaffer, 1978). Note that the 
identification model is recovered if every stimulus has a 
unique label—that is, there is a different category for each 
stimulus. In order to link identification and categorization 
data, Nosofsky had to allow different attention weights for 
the dimensions in the different tasks (see Equation 1).

From a statistical viewpoint, the GCM can be seen as a 
multinomial logit model (see Equation 6), just as the MDS 
choice model is. Let us introduce the shorthand

	
f x k x xm i

x Ci m

( ) ,= ( )
∈
∑

	

for the sum of the similarities. This is a special RBF net-
work (see Equation 4) with the weights for the exemplars 
in a category set to 1 and the other weights set to 0—but 
note that a later formulation of the GCM explicitly in-
cludes weights for exemplars (Nosofsky, 1992). Now, to 
see that the GCM can be interpreted as a logit model, con-
sider the case with only two categories. The GCM (Equa-
tion 7) then simplifies to
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where we have used the definition of the logistic function: 
logistic(x) 5 1/[1 1 exp(2x)]. Hence, the GCM for two 
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plars. In Equation 8, the GCM operates on the log of the 
summed similarities. Therefore, points that are clearly on 
one side of the decision boundary are categorized more 
easily in the GCM, because the ratio of f1 to f2 can still be 
big, even if the absolute difference between them is small. 
(Note that the exact behavior of the model also depends 
on the exponent p.)

Because it shows no generalization beyond its gener-
alization gradients, one could say that ALCOVE behaves 
like Spence’s classic model for discrimination learning 
(Spence, 1937) and thus shows no “true” categorization 
behavior. In contrast to ALCOVE, the GCM is capable 
of categorization beyond its generalization gradients, as 
already noted by Nosofsky (1991b). Intuitively, if a sub-
ject has really learned to categorize the two stimuli—as 
opposed to only discriminate them—one would expect 
stimuli clearly on one side of the decision boundary to 
be categorized easily. This is the criterion used in animal 
studies to define categorization (e.g., Ohl, Scheich, & 
Freeman, 2001). Although this may sound like subjects 
would have to implement an explicit rule in order to be-
have accordingly, the GCM can show this behavior with-
out representing a decision boundary explicitly.

Conclusions on Categorization
We have traced the history of exemplar models and 

the similarity kernel back to the work of Shepard (1957, 
1958) on generalization gradients and identification tasks. 
A bit later, the idea to link identification and categoriza-
tion via the mapping hypothesis was first tested experi-
mentally (Shepard & Chang, 1963; Shepard et al., 1961). 
In parallel, Shepard (1962) developed his ideas on ordinal 
MDS. Using the concept of attention weights, Nosofsky 
(1986, 1987) was able to assemble all of these parts into 
a working model of categorization and to link it to the ex-
isting literature on exemplar-based categorization (Medin 
& Schaffer, 1978). A bit later still, Kruschke (1992) sug-
gested a connectionist variant of the GCM that is closely 
related to RBF networks (Poggio, 1990) and kernel logis-
tic regression (Hastie et al., 2001). We have seen that both 
the GCM and ALCOVE are based on the logit rule and 
the use of the similarity kernel, but with important dif-
ferences. In contrast to the original GCM, ALCOVE does 
not use the mapping hypothesis. Also, ALCOVE does 
not show much categorization beyond its generalization 
gradients. This demonstrates that the way the generaliza-
tion gradients enter the response rule in a categorization 
model has an influence on how new stimuli will be clas-
sified. Whether this classification is likely to be correct, 
however, is also influenced by other factors that we will 
discuss in the next section.

Generalization

Building on Shepard’s (1987) work, exemplar theorists 
have basically completely identified similarity with gen-
eralization. However, we will argue that exclusive reliance 
on similarity does not necessarily lead to good general-
ization performance. Additional statistical considerations 
need to be taken into account. This will not come as a sur-

The first term in the logistic function is a nonparametric 
measure for the degree that the stimulus belongs to the 
first category. The second term does the same for the sec-
ond category. The logistic function is simply applied to the 
difference of the two category scales.4

Comparison of GCM and ALCOVE
Figure 5 shows a comparison between ALCOVE and 

the GCM for a simple two-category classification task. 
For both models, the attention and exemplar weights are 
set to 1. Both models are depicted with the city-block 
( p 5 1) and Euclidean ( p 5 2) metrics. On the equivo-
cality contour, the summed similarity to all exemplars of 
one class equals the summed similarity to all exemplars 
of the other (Ashby & Maddox, 1993). Since we assume 
that subjects are unbiased, the probability for a subject 
to respond with a given class is one half. The equivocal-
ity contours are shown as dashed lines. First, note that 
these lines are the same for the GCM and ALCOVE. AL-
COVE performs logistic regression on the difference of 
the summed similarities in Equation 9, and therefore the 
choice between city-block and Euclidean metrics only 
makes a difference close to the exemplars. Far away from 
them—that is, beyond the generalization gradients of all 
exemplars—categorization performance drops to chance 
level, because the summed similarities go to 0. ALCOVE 
and the GCM make very different predictions on stimuli 
that are outside the generalization gradients for the exem-

p 
=

 1
p 

=
 2

GCM ALCOVE

Figure 5. A comparison of GCM and ALCOVE for city-block 
( p 5 1) and Euclidean ( p 5 2) metrics. The circles and crosses 
depict exemplars from two classes. For both categorization mod-
els, the attention and exemplar weights are set to 1. The grayscale 
shows the response probabilities that would be obtained for a new 
stimulus at each position. White areas are classified as “cross” 
with probability 1, whereas black areas belong to the other class. 
The dashed line depicts the equal-probability contour, which is 
the same for the GCM and ALCOVE. Outside the generaliza-
tion gradients of the exemplars, the models make very different 
predictions.
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each stimulus are represented by coordinates in the space, 
which could be either a physically specified or a perceptual 
space. The difference of the densities of the two overlap-
ping normal distributions is indicated by the gray levels. 
The darker regions correspond to high-density regions of 
one of the classes, whereas the lighter regions correspond 
to high-density regions of the other class. Probabilistic 
category structures similar to this one are frequently used 
in experiments (Ashby & Gott, 1988; Ashby & Maddox, 
1992; Fried & Holyoak, 1984; McKinley & Nosofsky, 
1995, 1996). We have drawn 10 exemplars from each of 
the distributions for illustration (circles and crosses).

Since we know the distributions of the two classes, we 
can calculate the optimal decision boundary between them, 
which for two normal distributions is generally quadratic 
(Ashby & Maddox, 1993). The optimal decision boundary 
is shown by the dashed lines in Figure 6. A subject trying 
to maximize performance—that is, correct responses—
should place the decision criterion along the optimal deci-
sion boundary. On one side of the boundary, the subject 
should always choose one category label, and on the other 
side he or she should always choose the other. This sharp 
boundary without probabilistic responding will give the 
best generalization performance. However, subjects may 
not respond deterministically, and different models make 
different assumptions about how probabilistic decisions 
are (Ashby & Maddox, 1993). In the following discussion, 
we will ignore this additional complication and only talk 
about generalization performance under the assumption 
of (almost) deterministic responding. However, evidence 
exists that subjects do respond deterministically under cer-
tain circumstances (Ashby & Gott, 1988), and exemplar 
models can be and have been adapted to account for this 
(McKinley & Nosofsky, 1995; Nosofsky, 1991a). In fact, 
a considerable amount of debate has recently revolved 
around so-called response-scaling mechanisms that allow 
the GCM to respond more deterministically (Navarro, 
2007; Nosofsky & Zaki, 2002; Smith & Minda, 1998).

Even though we can calculate the optimal decision 
boundary for the example in Figure 6, the subject can-
not know the true distributions, because the subject has 
only observed a limited number of exemplars from these 
two categories. Therefore, the subject cannot respond op-
timally. One possible strategy in this case is to try to es-
timate the two category distributions from the observed 
exemplars and choose a decision boundary that would be 
optimal for the estimated category distributions. This can 
be done by assuming a particular parametric family for the 
category distributions and trying to estimate the param-
eters. For example, a category learner may assume that 
the distributions are normal, in which case he or she must 
estimate means and covariances (Fried & Holyoak, 1984). 
This strategy will work well if the underlying category 
structure to be learned is indeed approximately normal. 
A more flexible category learner, however, would try to 
avoid making very specific assumptions about the un-
known distributions.

Exemplar models have been compared with the more 
flexible (nonparametric) kernel density estimators (Ashby 
& Alfonso-Reese, 1995). In the simplest exemplar model, 

prise to the critics of exemplar theories, who have always 
doubted that merely remembering exemplars can lead to 
proper categorization. This does not, however, mean that 
exemplar models cannot generalize. Quite to the contrary: 
In machine learning, kernel methods are among the most 
successful tools, precisely because they are known to 
generalize well—if they are used wisely. We will show 
how exemplar theories can be made to reliably extract the 
structure underlying a category. To this end, we will dis-
cuss how kernel methods in machine learning and statis-
tics deal with the problem of generalization.

Kernel Density Estimation
The category learning problem is often phrased as a 

density estimation problem (Aizerman, Braverman, & 
Rozonoer, 1964; Ashby & Alfonso-Reese, 1995; Fried & 
Holyoak, 1984; Nosofsky, 1990). Imagine two classes in 
which exemplars from each category are drawn from a 
probability density function that completely determines 
the distribution of features within each category. If a 
learner knew the distribution of features within a category, 
he or she could examine the features of a new stimulus 
and assign it to the category with the highest likelihood 
of having generated this pattern of features. Hence, learn-
ing to categorize could mean learning the distribution of 
features.5

The upper left panel in Figure 6 gives an example. It 
shows a two-dimensional stimulus space. The features of 

Generating Model Specificity Too High

Specificity Too Low Optimal Specificity

Figure  6. A two-class problem. Samples from two classes 
(crosses and circles) are generated from two overlapping normal 
distributions. In the upper left panel, the differences between the 
distribution densities are shown as gray levels, and the optimal de-
cision boundary is shown as a dashed line. The other panels show 
kernel density estimates of the two classes with varying specific-
ity of a Gaussian kernel, as well as the corresponding decision 
boundaries (solid lines).
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of the known exemplars—which can always be driven to 
zero by choosing a narrow enough kernel, as seen in Fig-
ure 6—one tries to obtain an estimate of the generalization 
error by repeatedly splitting the data into a training and a 
test set. For a certain setting of the specificity, one asks 
how well the model uses the exemplars in the training set to 
predict the category membership of the those in the test set. 
The parameter value that gives the lowest estimated gener-
alization error is the one that will be used. This procedure 
was applied to obtain the specificity value for the lower 
right panel of Figure 6. We are not suggesting that human 
subjects use a procedure akin to cross-validation, but we do 
want to point out that from a normative point of view, the 
choice of similarity kernel is crucial. If the similarity ker-
nel is adaptable, subjects should then pay close attention to 
their generalization performance while changing it.

Overfitting With Exemplar Weights
The problem of overfitting becomes even more press-

ing with the introduction of exemplar weights into cat-
egorization models. Both ALCOVE and a later version of 
the GCM have such weights (Kruschke, 1992; Nosofsky, 
1992). It is desirable to introduce these weights for several 
reasons. For instance, it is unlikely that subjects will be 
able to remember all exemplars and to attach the same 
weight to each of them. Probably there will be frequency 
and recency effects, as well as forgetting. Some of the ex-
emplars will be more representative of a category than 
others and may get a greater weight. Furthermore, from 
a statistical point of view, the exemplar weights introduce 
a greater flexibility that makes it possible to learn more 
complicated decision boundaries. However, if these ex-
emplar weights can be modified by learning, it follows 
that each exemplar will have its own free parameter—an 
almost sure recipe for overfitting (Pitt et al., 2002).

Recall that ALCOVE is built on an RBF network. 
The RBF network implements a function by expressing 
it as a weighted sum of kernel functions centered on the 
exemplars:
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As noted before, Poggio has suggested RBF networks as 
a biologically plausible model for brain function (Poggio, 
1990; Poggio & Bizzi, 2004). A common view is to see the 
brain as a supervised learning machine. The network gets 
some input, calculates a function, and receives feedback 
on the errors it has made. This basic setup is used in most 
artificial neural network approaches and underlies the 
back-propagation algorithm (Rumelhart, Hinton, & Wil-
liams, 1986). Hence, learning means to adapt the weights 
in Equation 10 such that the error is minimized. The func-
tion that ALCOVE’s back-propagation learning algorithm 
is trying to learn outputs a 11 for one of the categories 
and a 21 for the other.

It is possible to give the optimal weights for this function 
without running a back-propagation algorithm. Let f  be a 
vector of the function values fi 5 f (xi) that we want the 
function to take on the exemplars. Let K be a matrix with 
entries k(xi, xj) in the ith row and jth column. This matrix is 

each data point is replaced by a kernel function—for 
example, a Gaussian kernel. As explained above, the 
summed similarity to all exemplars from one class can 
be seen as a density estimate. The upper right panel of 
Figure 6 shows just such a kernel density estimate. Black 
areas have a high similarity to the exemplars of one of the 
classes (circles), and white areas have a high similarity to 
exemplars of the other class (crosses). For the density esti-
mator, a high similarity to exemplars from one class trans-
lates into a high likelihood that a new stimulus that falls 
in this region belongs to the corresponding category. The 
black solid line indicates the equivocality contour, where 
the similarity to the exemplars from one class equals the 
similarity to those from the other. This equivocality con-
tour could be used as a decision boundary.

Finding the Right Kernel
In the example in the upper right panel of Figure 6, the 

specificity is chosen to be too high—that is, the width 
of the similarity kernel is chosen to be too narrow. New 
stimuli are essentially categorized in the same way as the 
most similar past exemplar. If this exemplar happens to 
lie on the wrong side of the optimal decision boundary, 
it is very likely that a wrong decision will be made. The 
similarity kernels of different exemplars hardly overlap, 
and therefore generalization to new stimuli is poor. The 
decision boundary that the category learner chooses is 
able to categorize all of the past exemplars perfectly, but 
only because the idiosyncrasies of this particular set of 
exemplars have been learned. This is called overfitting: 
The learner has not learned anything about the structure 
of the categories, but instead has only learned the labels 
and the exemplars by heart. The bottom left panel shows 
the opposite case, in which the specificity of the kernel is 
chosen to be too low. A wide similarity kernel means that 
exemplars far away from a new stimulus can influence 
the guess of which category it belongs to. In this case, 
the resulting decision boundary will also be very differ-
ent from the optimal one. Hence, in order to assure good 
generalization performance, it is important to choose the 
width of the similarity kernel to be appropriate for the 
problem and the sample size at hand. The lower right panel 
of Figure 6 shows the decision boundary that results from 
a well-chosen kernel width.

Sometimes it may be possible for a subject to choose a 
reasonable kernel width before seeing the first exemplars, 
but in general the specificity and the relative contributions 
of the attention weights have to be adapted by learning as 
well (but see Lamberts, 1994, for effects of background 
knowledge on specificity). In machine learning, choos-
ing a kernel and setting its parameters are considered to 
be model selection problems. In psychological models, 
the form of the kernel is given, but its parameters may 
be adapted during learning. ALCOVE adapts its atten-
tion weights during learning, but Kruschke (1992) did not 
directly address generalization performance. In machine 
learning, a common way to choose the best parameters 
for the kernel is by using cross-validation procedures (see 
Pitt, Myung, & Zhang, 2002, for an overview of model 
selection). Instead of trying to minimize the error on all 
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the approach advocated by Poggio and coworkers (Poggio, 
1990; Poggio & Bizzi 2004; Poggio & Girosi, 1989; Pog-
gio & Smale, 2003), and it is also used for kernel logistic 
regression (Hastie et al., 2001). The basic idea in regu-
larization is that weights are not allowed to become too 
big. Since large weights can override the similarity-based 
categorization, the weights should be as small as possible. 
This is achieved by trading off the error that the classifier 
makes with the size of the weights. Recall that learning in 
the neural network setup means finding weights w such 
that a loss function L(w) is minimized. Let us call the error 
that the classifier makes on the training exemplars c(w). 
The penalty for large weights is called a regularizer, and 
we denote it V(w) here. With this notation, the loss func-
tion that a regularized RBF network minimizes becomes

	 L(w) 5 c(w) 1 V(w).	 (11)

The regularizer reflects a “complexity” constraint on the 
function that the network implements. It is good if the 
available data are fitted well, but this should not be done 
at all costs. The fitted function should not be too compli-
cated, because complicated functions are more likely to 
overfit. Most model selection criteria trade off goodness 
of fit versus model complexity (Pitt et al., 2002).

The right panel of Figure 7 shows the same categoriza-
tion problem as before, but this time regularization tech-
niques were used. The gray levels code a function f of the 
form in Equation 10 that minimizes L(w) in Equation 11, 
with c chosen to be squared error and V chosen to be linear 
in the squared length of the vector w. For this loss function 
and several other interesting ones, the optimal weights w 
are unique and can be found easily (Schölkopf & Smola, 
2002). Because of the regularization, the category learner 
did not try to fit the available exemplars perfectly, but 
instead traded off goodness of fit with the penalty term. 
Clearly, the model is closer to the optimal decision bound-
ary than one without regularization. Intuitively speaking, 
the regularizer penalizes the large exemplar weights nec-
essary to make two similar stimuli have different category 
labels (Jäkel et al., 2007).

It should be emphasized again that the exemplar net-
work by itself does not guarantee good generalization 
performance. After all, the exemplar network can always 
implement a function that can fit all exemplars perfectly—
no matter what they look like. It is the joint choice of the 
kernel and the regularizer that determines the general-
ization performance of the network. The kernel captures 
some assumptions about the category structure, and the 
regularizer penalizes greedy optimization of goodness of 
fit. Different problems will require different kernels and 
different regularizers. In machine learning, the kernel and 
the regularization parameters are usually chosen by cross-
validation.

Learning a Category With ALCOVE
The learning algorithm of ALCOVE greedily tries to 

minimize the classification error on the exemplars. We 
have shown above that for such models, there is a danger of 
overfitting. If ALCOVE is shown the same exemplars over 
and over again, its back-propagation algorithm can find a 

called the kernel matrix. Let w be the vector of weights that 
we seek to implement the function. With this notation, we 
can rewrite the neural network from Equation 10 in matrix 
notation as f 5 K ⋅ w. In the Similarity section above, we 
mentioned that the similarity kernel has nice mathemati-
cal properties that are explained in a recent tutorial (Jäkel 
et al., 2007). The most important property is that the kernel 
is usually positive definite. For a positive definite kernel k, 
the matrix K is positive semidefinite. Most kernels used 
in categorization models are even strictly positive definite, 
and therefore invertible. Hence, we can find unique weights 
such that the function f makes no error at all on the exem-
plars: w 5 K21 ⋅ f. The resulting function f for the exemplars 
from Figure 6 is shown in the left panel of Figure 7. This 
function outputs a 11 for all exemplars from one of the 
categories and a 21 for all exemplars of the other category. 
Such a perfect (but probably useless) solution can always be 
found, independent of the specific exemplars and indepen-
dent of the specificity of the kernel.

The fitted function does not capture the underlying 
regularity well; the reason is that, by freely allowing the 
weights to be adapted, we can override the similarity-based 
categorization. The exemplar weights defeat the purpose 
of introducing a similarity measure for the stimuli. The 
similarity measure is introduced because similar stimuli 
should be treated similarly, since very similar stimuli are 
very likely to belong to the same category. However, the 
exemplar weights can be adjusted in a way to allow even 
very similar stimuli to belong to different categories with-
out interfering with each other. Imagine the case in which 
we only have two very similar stimuli x1 and x2 that have 
very different function values, f (x1) 5 1 and f (x2) 5 21. 
Say that their similarity is .99 and the self-similarity is 1. 
In order to make the network (Equation 10) output the 
right values, the small difference of .01 between their sim-
ilarity and their self-similarity needs to be compensated 
by large weights of 100 and 2100, respectively.

Regularization
One way to deal with overfitting in neural networks is 

regularization (Bishop, 1995; Orr & Müller, 1998). This is 

Overfitted Regularized

Figure 7. Unless regularized, an exemplar model with exemplar 
weights will overfit. The left and right panels use the same similar-
ity kernel with the same specificity. The only difference is whether 
regularization was used or not. The amount of regularization was 
chosen to give the best possible generalization performance for 
the chosen specificity.
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tions, a strategy that simply remembers all encountered 
exemplars seems unreasonable. Nevertheless, some of the 
studies above have successfully fitted exemplar models to 
human responses (McKinley & Nosofsky, 1995, 1996).

Interestingly, in this scenario with overlapping probabi-
listic categories, ALCOVE will not overfit as easily, and its 
behavior results in exemplar networks that are regularized. 
A subject encounters a new stimulus but does not know its 
category label. He or she predicts the category of the stimu-
lus on the basis of previous exemplars and then receives 
feedback about the true category label. It is reasonable to 
set the exemplar weights to 0 before an exemplar has been 
encountered. After ALCOVE is given the true category label 
of a new exemplar, it may be necessary to assign a large 
weight to the exemplar in order to output the correct label. 
How much the weights are allowed to change is determined 
by the learning rate parameter in ALCOVE. If the learning 
rate does not allow big changes in the weights, this is akin to 
regularization that penalizes large weights in order to avoid 
overfitting. Limiting the influence of individual points has a 
regularizing effect by increasing the stability of the solution. 
Indeed, solutions that are stable, in the sense of not depend-
ing too strongly on any individual training point, can be 
shown to generalize well with high probability (Bousquet 
& Elisseeff, 2002; Poggio, Rifkin, Mukherjee, & Niyogi, 
2004). Note also that the feedback that the subject receives 
is a direct measure of the generalization error—similar to 
cross-validation. The prediction error is a direct measure 
of the subject’s generalization performance, because each 
stimulus is a new one that has never been encountered be-
fore. This contrasts with experimental procedures in which 
the same stimuli are shown over and over again. Therefore, 
in the case in which each stimulus is new, ALCOVE does 
not try to minimize the error on past exemplars, but instead 
the prediction error on new exemplars. Early stopping in 
artificial neural networks is used for the same reason (Orr 
& Müller, 1998).

As mentioned before, regularization is used in ma-
chine learning to improve the generalization performance 
of kernel methods, and exemplar models in psychology 
should also make sure that they can generalize to new ex-
emplars. The analysis of ALCOVE’s learning algorithm 
shows that it is not hard to come up with psychologically 
plausible mechanisms akin to regularization. It would be 
premature to claim that humans implement regularization 
by choosing a small learning rate parameter. However, for 
ALCOVE, the learning rate parameter is indeed crucial 
for the model’s generalization performance.

Prototype Theories, Exemplar Theories, 
and Generalization

The prototype versus exemplar debate is usually framed 
in terms of mental representations. Subjects may store a 
summary representation of a category, or they may store 
exemplars of the category. The debate can also be seen as 
being about which assumptions a category learner makes 
about the category he or she is learning (Ashby & Alfonso-
Reese, 1995; Ashby & Maddox, 1993). These assump-
tions will determine the learner’s generalization perfor-
mance. Prototype theories make very strong assumptions 

solution that categorizes these exemplars perfectly—no 
matter what the category structure is. Since ALCOVE has 
been quite successful in describing subjects’ learning curves 
in various categorization tasks, this raises the question of 
whether human subjects also overfit. Considering that hu-
mans seem to categorize new stimuli reliably in everyday 
life, this seems unlikely. Perhaps humans do overfit in exper-
iments performed in the laboratory, however, and laboratory 
experiments are what exemplar theories try to model.

In most of the earlier experiments in favor of exem-
plar theories, subjects were shown a small number of 
exemplars over and over again. Remember that in the 
classic work of Shepard et al. (1961) and Shepard and 
Chang (1963), the original motivation was to see whether 
categorization could be described as mere rote learning 
of labels—this was called the mapping hypothesis. The 
GCM, too, was set up in order to link categorization with 
a rote-learning identification task, and the accompanying 
experiments used only a small number of stimuli (Nosof-
sky, 1986). Also, the experiments by Medin and Schaffer 
(1978), which are widely seen to provide good evidence 
for exemplar theories, have been criticized on the grounds 
that they used only few stimuli and poorly differentiated 
categories (Smith & Minda, 1998, 2000). Hence, subjects 
are perhaps encouraged to adopt an exemplar memoriza-
tion strategy in experiments, even though they may not do 
so in everyday categorization. Some of the categories used 
in psychological experiments have so little structure that 
rote learning of exemplars is in fact the only strategy that 
allows subjects to solve the task (Feldman, 2000; Shepard 
et al., 1961).6 If transfer items are presented in such ex-
periments, they are only used to assess the predictions of 
the model (see, e.g., Medin & Schaffer, 1978; Nosofsky, 
1986). There is usually no right or wrong answer for the 
subjects; therefore, no rational strategy exists to which a 
subject’s behavior could be compared in order to assess 
his or her generalization performance.

Other experiments have explicitly compared human 
performance with that of an ideal observer (Ashby & 
Gott, 1988; Ashby & Maddox, 1992; Fried & Holyoak, 
1984; McKinley & Nosofsky, 1995, 1996). Those stud-
ies used overlapping probabilistic categories like the one 
shown in Figure 6. This scenario is perhaps more akin to 
natural category learning. Contrary to many categories 
in psychological experiments, natural categories have a 
structure, and presumably it is this structure that humans 
learn when they learn a category. Rosch and colleagues 
(Rosch & Mervis, 1975; Rosch, Mervis, Gray, Johnson, & 
Boyes-Braem, 1976) have argued that, on the basic level, 
the stimuli within a natural category share perceptual 
properties, and that the distribution of the properties of a 
category is not completely random, but also is not deter-
ministically defined by necessary and sufficient condi-
tions. Since very little is known about the actual structure 
of natural categories, we may choose to use categories like 
the one shown in Figure 6 as a proxy. This has the advan-
tage that the number of possible exemplars is infinite, so 
that subjects never encounter the same exemplar twice. 
Furthermore, there is an objective way to assess a subject’s 
generalization performance. Clearly, under these condi-
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has been suggested in the object recognition literature 
(Poggio & Edelman, 1990) and is emphasized in several 
categorization models (Love et al., 2004; Rosseel, 2002; 
Verguts, Ameel, & Storms, 2004). The interesting psy-
chological question is, of course, which exemplars are 
remembered and which are not. This could merely be a 
question of primacy, recency, and frequency, but repre-
sentational considerations could also be important. On the 
one hand, some exemplars are simply better representa-
tives of a category than others. On the other, some ex-
emplars are more important for determining the decision 
boundary between categories. Kernel methods in machine 
learning could inspire new psychological models that do 
not have to remember all exemplars but could still achieve 
good generalization performance.

Conclusions on Generalization
Generalization plays a central role in theoretical ap-

proaches to the statistical learning problem (Vapnik, 
2000). In psychological categorization research, the prob-
lem of generalization is often hidden behind the prototype 
versus exemplars debate. Prototype theorists assume very 
restricted category structures and can therefore general-
ize well, even with very few exemplars (Smith & Minda, 
1998)—especially if their assumptions are true. Exem-
plar theories can deal with very complicated category 
structures but are prone to overfitting if not regularized 
properly. Our contribution here is to directly address con-
cerns about the generalization performance of exemplar 
theories by demonstrating how good generalization can 
be achieved. Our discussion was mainly guided by regu-
larization techniques, as used in machine learning. We 
demonstrated that ALCOVE incidentally has mechanisms 
akin to regularization already built in. The questions of 
whether humans regularize in a similar way, and if so, 
what their regularization looks like, open new directions 
for empirical research. On a more general level, the long-
standing theoretical question is, what are the regulariz-
ing assumptions that allow humans to generalize? There 
is evidence that humans cannot learn arbitrary category 
structures and that some categories are harder to learn 
than others (Alfonso-Reese, Ashby, & Brainard, 2002; 
Ashby, Waldron, Lee, & Berkman, 2001; Briscoe & Feld-
man, 2006; Feldman, 2000; McKinley & Nosofsky, 1995). 
Such results potentially give hints about the assumptions 
on which humans base their generalization behavior. For 
example, some of these assumptions could be that cat-
egories do not overlap, that decision bounds are linear, 
that generalization gradients are wide, that small exemplar 
weights are to be preferred, or that only a prototype is re-
membered. Furthermore, machine learning methods also 
suggest a middle ground between prototype and exemplar 
theorists by showing that flexible categorization models 
are possible that do not need to remember all exemplars 
in order to generalize well.

Discussion and Summary

In one recent review, parallels were noted between the 
object recognition and categorization literatures (Palmeri 

about the category structure: The whole category structure 
is summarized by the prototype. This leads to good gen-
eralization performance, even with only a few trials of 
learning, if the category structure to be learned is really 
so simple. Exemplar theories with exemplar weights, like 
ALCOVE, are at the other extreme. They are very flexible 
category learners and can learn more complicated cate-
gory structures. There is a trade-off between how restric-
tive the assumptions of a categorization model are and 
the complexity of the categories it can learn. Briscoe and 
Feldman (2006) have recently explored the consequences 
of this insight for human learning. However, even though 
exemplar models can learn more complicated category 
structures, they nonetheless do make some assumptions 
about the category structure. These assumptions are only 
given implicitly by the choice of kernel and the way that 
the learning algorithm sets the weights. Therefore, it is a 
lot harder to say what these models learn from the exem-
plars. Nevertheless, even if they do not abstract anything 
from the data, they are able to learn something about the 
structure of the category that then enables them to gen-
eralize to new stimuli. In any case, the assumptions of 
the category learner need to be matched to the category 
structures that he or she wants to learn; otherwise, gener-
alization performance can be extremely poor.

Unless all of the evidence in favor of exemplar theories 
is completely misleading because of small and ill-defined 
categories in the experiments (Smith & Minda, 1998, 2000), 
one would hope that exemplar theories can scale up to real-
world categorization behavior. Kernel methods in machine 
learning have already proved to be successful in real-world 
applications. And as we have shown, these methods build 
on intuitions similar to those of exemplar theories. In fact, 
kernel methods often outperform other methods with more 
restrictive assumptions, such as prototype classifiers, on 
real-world data sets (Schölkopf & Smola, 2002). This 
could suggest that the restrictive assumptions of prototype 
theories are not met for natural categories and that more 
flexible mechanisms, as implemented in exemplar models, 
are needed to deal with real-world categories. However, it 
is difficult to draw any strong conclusions from this spec-
ulation. The real-world problems that machine learning 
methods try to solve might be very different from the cat-
egorization problems that humans usually encounter—and 
those problems, ill-understood as they are, provide the gold 
standard against which the performance of a categorization 
model should be compared.

The problem also remains that seemingly all of the 
exemplars encountered need to be stored. However, the 
exemplar idea might scale up to a realistic number of 
stimuli if not all exemplars are remembered, but only cer-
tain crucial ones. This problem has also been addressed 
in machine learning, in which it is also desirable to store 
in memory as few exemplars as necessary. Solutions that 
only require few exemplars to be remembered are called 
sparse in machine learning. Variants of several kernel clas-
sifiers, including kernel logistic regression, try to achieve 
the same categorization performance while remembering 
fewer exemplars (Hastie et al., 2001; Schölkopf & Smola, 
2002). The idea that a few representatives may be enough 
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& Schölkopf, 2005). More importantly, theoretical work in 
machine learning may offer a better understanding of the 
core problems of learning and categorization. For example, 
what is the role of the complexity of the category to be 
learned (Alfonso-Reese et al., 2002; Briscoe & Feldman, 
2006; Fass & Feldman, 2003; Feldman, 2000)? Under what 
circumstances does a category learner generalize well 
(Vapnik, 2000)? In the end, both human categorizers and 
machine classifiers have to solve the same problems.
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notes

1. Briefly, for values of p that lie between 0 and 2, the function k 
is a so-called positive definite kernel (Schoenberg, 1938). This insight 
opens up a large box of mathematical tools from functional analysis that 
can be used to gain a better understanding of psychological models of 
similarity. We show, for example, that these tools can be used to over-
come some of the serious criticism of the metric axioms—the triangle 
inequality in particular—put forward by Tversky and coworkers (Beals 
et al., 1968; Tversky, 1977; Tversky & Gati, 1982). In fact, the same tools 
have greatly deepened the understanding of machine learning methods 
that also use positive definite kernels.

2. He used p 5 2 together with q 5 1.
3. Interestingly, the pth power of dp is a metric for 0 , p , 1, even 

though dp is not a metric for that range. Tversky and Gati (1982) reported 
data that suggest a p smaller than 1, and hence seemingly violate the 
metric axioms, but those researchers also noted that an unusual metric 
like the pth power of dp is a viable metric alternative to Tversky’s (1977) 
famous contrast model (Jäkel et al., 2008).

4. In the two-category case, ALCOVE is heavily overparameterized. 
There is a full RBF network f1 with as many weights as exemplars for 
Category 1 and a full network f2 for Category 2. One RBF network, 
f 5 f1 2 f2, with the weights set to the difference, w1i 2 w2i, would be 
enough.

5. It is potentially easier, however, to directly learn the decision func-
tion rather than trying to solve the difficult problem of density estimation 
first (Vapnik, 2000).

6. Unless the subject redefines the perceptual dimensions, as dis-
cussed by Shepard et al. (1961).
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revision accepted for publication July 10, 2007.)
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