
Large Scale Genomic Sequence SVM Classifiers

S. Sonnenburg1, G. Rätsch2, and B. Schölkopf3

1 Fraunhofer Institute FIRST, Kekuléstr. 7, 12489 Berlin, Germany
2 Friedrich Miescher Laboratory of the Max Planck Society, Spemannstr. 35, Tübingen, Germany
3 Max Planck Institute for Biological Cybernetics, Spemannstr. 38, 72076, Tübingen, Germany

Abstract. In genomic sequence analysis tasks like splice site recognition or promoter identification, large amounts
of training sequences are available, and indeed needed to achieve sufficiently high classification performances.
In this work we study two recently proposed and successfully used kernels, namely the Spectrum kernel and the
Weighted Degree kernel (WD). In particular, we suggest several extensions using Suffix Trees and modifications
of an SMO-like SVM training algorithm in order to accelerate the training of the SVMs and their evaluation on
test sequences. Our simulations show that for the spectrum kernel and WD kernel, large scale SVM training can
be accelerated by factors of 20 and 5 times, respectively, while using much less memory (e.g. no kernel caching).
The evaluation on new sequences is often several thousand times faster using the new techniques (depending on the
number of Support Vectors). Our method allows us to train on sets as large as one million sequences.

1 Introduction
Support Vector Machines (SVMs) (cf. [3, 22, 4, 23]) have been successfully used to solve biological sequence analysis
tasks (cf. [24, 17] and references therein). They employ a so-called kernel function k(si, sj) which intuitively computes
the similarity between two sequences si and sj . The result of SVM learning is a α-weighted linear combination of N
kernel elements and the bias b:

f(s) = sign

(

N
∑

i=1

αiyi k(si, s) + b

)

.

When applying SVMs on non-vectorial data types such as sequences, we face the following dilemma: on the one
hand, we often need huge datasets in order to achieve state of the art performances. On the other hand, we have to
use nontrivial kernels in order to deal with the data in an appropriate way. These two goals can be in conflict; indeed,
for SVMs, huge training sets are easiest to deal with using linear kernels, in which case one can work directly in the
primal problem. The content of the paper is to strike the best possible balance in this conflict, for the case of sequence
data. Five types of kernels have been proposed in order to deal with the discrete nature of biological sequences:
(a) polynomial-like kernels (including the locality improved kernel; e.g. [29]), (b) kernels derived from probabilistic
models (including the Fisher and TOP kernels; cf. [7, 26]), (c) alignment based kernels (e.g. SVM-Pairwise [14] and
Local Alignment kernels [27]), (d) the spectrum and mismatch kernel considering all appearing K-mers in a sequence
(independent of their position; cf. [12, 13, 28]) and (e) kernels such as the Weighted Degree kernel proposed in [20]
which incorporate positional information when comparing two sequences (see also [15, 28] for related approaches).

In this work we aim at accelerating and improving two representatives of the latter two families of kernels, namely
the Spectrum kernel and the Weighted Degree kernel. Both kernels have already been extensively studied, however,
we report several novel ways to more efficiently compute those kernels using suffix trees. While the idea of using trees
to optimize kernel computation has been proposed before [12, 28], we show in Section 3.2 that the newly proposed
algorithms for instance for K-mer kernels with m mismatches can be computed O(|Σ|mkm) times faster during
testing, where |Σ| is the size of the alphabet. In Section 3.3 we show that the same idea can be applied to the Weighted
Degree kernel leading to significant speedups. Moreover, we show in Section 4 how the trees can be exploited to
drastically reduce training times of SVMs while using significantly less memory.

The rest of the paper is structured as follows: In Section 2 we briefly review the Spectrum, Mismatch and Weighted
Degree Kernel. In Section 3 we propose and discuss several improvements and extensions of these kernels and describe
a simple extension of SMO-like algorithms (such as SVMlight; cf. [9]) in Section 4. We conclude the paper with sim-
ulation experiments on up to one million training sequences in a splice site recognition task, illustrating the efficiency
of the new algorithms (Section 5).

2 String Kernels for Sequence Analysis
2.1 The Spectrum Kernel

The spectrum kernel [12] implements the n-gram or bag-of-words kernel [8] as originally defined for text classification
in the context of biological sequence analysis. The idea is to count how often a K-mer (a contiguous string of length
K) is contained in the sequences s and s

′. Summing up the product of these counts for every possible K-mer (note that
there are exponentially many) gives rise to the kernel value which formally is defined as follows: Let Σ be an alphabet
and u ∈ ΣK a K-mer and #u(s) the number of occurrences of u in s. Then the spectrum kernel is defined as the
inner product of k(s, s′) = Φ(s) ·Φ(s′), where Φ(s) = (#u(s))

u∈ΣK . Note that spectrum-like kernels cannot extract
any positional information from the sequence which goes beyond the K-mer length. It is well suited for describing the
content of a sequence but is less well suited for instance for analyzing signals where motifs may appear in a certain
order. Note that spectrum-like kernels are capable of dealing with sequences with varying length.

The Spectrum kernel can be efficiently computed in O(K(|s|+ |s′|)) using suffix trees [12], where |s| denotes the
length of sequence s. An easier way to compute the kernel for two sequences s and s

′ is to separately extract and sort
the N K-mers in each sequence, which can be done in a pre-processing step. Note that for instance DNA K-mers of
length K ≤ 16 can be efficiently represented as a 32-bit integer value. Then one iterates over all K-mers of sequences
s and s

′ simultaneously and counts which K-mers appear in both sequences and sums up the product of their counts.
The computational complexity of the kernel computation is O(log(|Σ|)K(|s|+ |s′|)).

2.2 The Weighted Degree Kernel

The so-called weighted degree kernel efficiently computes similarities between sequences while taking positional
information of k-mers into account. The main idea of the WD kernel is to count the (exact) co-occurrences of k-mers
at corresponding positions in the two sequences to be compared. The WD kernel of order K compares two sequences
si and sj of length L by summing all contributions of k-mer matches of lengths k ∈ {1, . . . ,K}, weighted by
coefficients βk:

k(si, sj) =
K
∑

k=1

βk

L−k+1
∑

l=1

I(uk,l(si) = uk,l(sj)). (1)

Here, uk,l(s) is the oligomer of length k starting at position l of the sequence s and I(.) is the indicator function
which evaluates to 1 when its argument is true and to 0 otherwise. It is not a-priory clear how to choose the weighting
coefficients. For the task of splice site recognition [20] proposed to use βk = 2(K−k+1)/(K(K+1)). Matching sub-
strings are thus rewarded with a score depending on the length of the sub-string. Note that although in our case βk+1 <
βk, longer matches nevertheless contribute more strongly than shorter ones: this is due to the fact that each long match
also implies several short matches, adding to the value of (1). Exploiting this knowledge allows for reformulation of
the kernel using “block-weights” as will be discussed in Section 3.3.

In another approach the weighting coefficients can also be automatically determined in SVM-training using Mul-
tiple Kernel Learning (MKL) [25] where for a linear combination of kernels one learns a SVM solution (α, b) and
a kernel weighting β simultaneously. As the WD kernel can be written as a linear combination of subkernels [25]
k(si, sj) =

∑K

k=1 βk kk(si, sj) where each subkernel counts matches of length k kk(si, sj) =
∑L−k+1

l=1 I(uk,l(si) =
uk,l(sj)), one can apply MKL to also determine the weighting β.

Note that the WD kernel can be understood as a Spectrum kernel where each position is treated independently from
the others. Moreover, it does not only consider oligomers of length exactly K, but also all shorter matches. Hence, the
feature space for each position has

∑K

k=1 |Σ|k = |Σ|K+1−1
|Σ|−1 − 1 and additionally duplicated L times (i.e. leading to

O(L|Σ|K) dimensions). However, the computational complexity of the WD kernel is in the worst caseO(KL) as can
be directly seen from (1).

3 Faster String Kernels and Extensions
3.1 Efficient Storage of Sparse Weights

All considered kernels correspond to a feature space that can be huge. For instance in the case of the WD kernel on
DNA sequences of length 100 with K = 20, the corresponding feature space is 1014 dimensional. However, most

2

dimensions in the feature space are not used since only a few of the many different k-mers actually appear in the
sequences. In this section we briefly discuss three methods to efficiently deal with sparse vectors v. We assume that
the elements of the vector v are indexed by some index set U (for sequences, e.g. U = ΣK) and that we only need
three operations: clear, add and lookup. The first operation sets the vector v to zero, the add operation increases
the weight of a dimension for an element u ∈ U by some amount α, i.e. vu = vu +α and lookup requests the value
vu. The latter two operations need to be performed as quickly as possible (whereas the performance of the lookup
operation is of higher importance).

Explicit Map If the dimensionality of the feature space is small enough, then one might consider keeping the whole
vector v in memory and to perform direct operations on its elements. Then each read or write operation is O(1).4

This approach has expensive memory requirements (O(|Σ|K)), but is very fast and best suited for instance for the
Spectrum kernel on DNA sequences with K ≤ 14 and on protein sequences with K ≤ 6.

Sorted Arrays More memory efficient but computationally more expensive are sorted arrays of index-value pairs
(u, vu). Assuming the L indices are given and sorted in advance, one can efficiently change or look up a single vu for
a corresponding u by employing a binary search procedure (O(log(L))). When given L′ look up indexes at once, one
may sort them in advance and then simultaneously traverse the two arrays in order to determine which elements appear
in the first array (i.e. O(L+L′) operations – omitting the sorting of the second array – instead of O(log(L)L′)). This
method is well suited for cases where L and L′ are of comparable size, as for instance for computations of single
Spectrum kernel elements (as proposed in [13]).

Suffix Trees If the number of non-zero elements in the vector v becomes very large, then the Sorted Arrays method
become infeasible. If furthermore the dimensionality of the index set is too large to use the Explicit Mapping, then we
need suffix trees in order to introduce a structure over the non-zero weights that allows fast insertion and look up of
elements. The idea is to use a tree with at most |Σ| siblings of depth K. The leaves store a single value: the element
vu, where u ∈ ΣK is a K-mer and the path to the leaf corresponds to u. To add or lookup an element one only
needs K operations to reach a leaf of the tree (and to create neccessary nodes on the way in an add operation). Note
that the computational complexity of the operations is independent of the number of K-mers/elements stored in the
tree. On the other hand, a tree has a considerably larger storage overhead compared with for instance Sorted Arrays,
as each node needs to store pointers to its parent and siblings.

3.2 Spectrum Kernel with Mismatches

When considering longK-mers, the probability that exactly the sameK-mer appears in another sequence drops to zero
very fast. Therefore, it can be advantageous (depending on the problem at hand) to consider not only exact matches
but also matches with a few mismatching positions. [13] proposed to use the following kernel:

k(s, s′) = 〈Φm(s), Φm(s′)〉

where Φm(s) =
∑

u∈s
Φm(u), Φm(u) = (φσ(u))σ∈ΣK , where φσ(u) = 1 if σ mismatches with u in at most m

positions and zero otherwise. This kernel is equivalent to

k2m(s, s′) =
∑

u∈s

∑

u
′∈s

′

∆2m(u,u′), (2)

where ∆2m(u,u′) = 1 if u mismatches u′ in at most 2m positions. Note that if m = 1 then one already considers
matches of k-mers which mismatch in two positions.5 [13] proposed a suffix tree based algorithm that computes a
single kernel element in O(Km+1|Σ|m(|s|+ |s′|)). While we cannot improve the single kernel computation, we will
show that it is possible to compute N dot products between s with N sequences s1, . . . , sN of length L in O(KNL)
after a preparation of a tree which needs O(K2m+1|Σ|2m|s|) operations. The idea is to add for each u ∈ s all

4 More precisely, it is logK, but for small enough K (which we have to assume anyway) the computational effort is exactly one
memory access.

5 By using the formulation (2) one may of course also consider the case with at most one mismatch (i.e. m = 1

2
). While this kernel

is empirically positive definite, it is theoretically not clear whether it always has this property.

3

(K
2m) (|Σ| − 1)2m oligomers of length K to the tree which mismatch with u in at most 2m positions. After the tree

construction, a single lookup operation only takes K operations (finding the right leaf) and therefore it only takes
O(KNL) to perform NL lookup operations. Note, however, that the resulting tree may become huge for larger m,
i.e. only at the expense of increased memory usage we achieve a considerable speedup.

Additionally note that one can drastically speedup the computation of a linear combination of kernels (for instance
in testing), i.e.

g(s) =
∑

i∈I

αi k(si, s),

where I is some index set (for instance the set of support vectors). One simply follows the above recipe for each u ∈ si

(i ∈ I) and adds the corresponding αi to the value at the leaf addressed by u. Then the evaluation of g(s) only needs
O(KL) operations per test example, while the generation of the tree needs O(|I|K2m+1|Σ|2m|s|) operations.

3.3 Faster WD Kernel Computations

Identification of Blocks In the weighting scheme (1) higher-order matches seem to get lower weights, which appears
counter-intuitive. Note, however, that a k-mer contains two (k − 1)-mers, three (k − 2)-mers etc. Hence, a block of

Fig. 1. Given two sequences s1 and s2 of equal length, the kernel consists of a weighted sum to which each match in the sequences
makes a contribution wB depending on its length B, where longer matches contribute more significantly.

length k contains k − b+ 1 blocks of length b. We can make use of this finding and reformulate the kernel. Instead of
counting all matches of length 1, 2, . . . ,K one moves along the sequence only weighting the longest matching block
(and not the smaller ones contained within, c.f. Figure 1) using different weights w which can be computed from the
original weights as follows: For matches of length B with B ≤ K the “block weights“ wB are given by

wB =
B
∑

b=1

m(b)
2(K − b+ 1)

K(K + 1)
=

B
∑

b=1

(B + 1− b)
2(K − b+ 1)

K(K + 1)

=
B(−B2 + 3K ·B + 3K + 1)

3K(K + 1)

where m(b) is the number of times blocks of length b fit within blocks of length B. When the length of the matching
block is larger than the maximal degree, i.e. B > K, the block weights are given by:

wB =

B
∑

b=1

m(b)
2(K − b+ 1)

K(K + 1)
=

3B −K + 1

3

To compute the kernel one determines the longest matches between the sequences s and s
′ and adds up their corre-

sponding weights. This requires onlyL steps reducing the computational complexity toO(L). For illustration, Figure 2
displays the weighting wB for different block lengths B at fixed K: longer matching blocks get increased weights;
while the first few weights up to b = K increase polynomially higher order weights increase only linearly. Note that
in real world data sets very few higher order matches exists and thus the speedup to (1) can be less than K.

3.4 Suffix Trees

While we cannot hope to further improve a single kernel evaluation (which is alreadyO(L)), it turns out to be possible
to drastically speedup the computation of a linear combination of kernels, i.e. g(s) =

∑

i∈I αi k(si, s), where I is

4

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

 (b
lo

ck
)

PSfrag replacements

b

b

w

Fig. 2. Illustration of the block weights where the maximum match-length was set to K = 20 and the sequence length to N = 50.
The circle marks the switch from polynomial to linear growth in terms of the weights.

A G

A G

A A

A

A

PSfrag replacements
α1β1

α1β2

α1β3

α2β1

α2β2

α2β3

α3β1

α3β2

α3β3

α1β1 + α2β1

Fig. 3. Three sequences AAA, AGA, GAA beeing added to the tree. The plot displays the resulting weights at the nodes.

the index set. The idea is to create a suffix tree for each position l = 1, . . . , L of the sequence as done before for the
Spectrum kernel. The main difference is that the WD kernel not only considers K-mers but also k-mers with k ≤ K.
We therefore propose to attach weights not only to the leaves of the tree but also to internal nodes, allowing an efficient
storage for k < K. Now we may add all k-mers (k = 1, . . . ,K) of si (i ∈ I) starting at position l to the tree associated
with position l (using weight αiβk; operations per position:O(K|I|)). Then the lookup algorithm for sub-sequences
u starting at position l of s traverses down the tree associated with position l (following the path defined by u) and
adds all weights along the way (stopping when no children exists), see Figure 3. Note that we now can compute g in
O(LK) operations (compared to O(|I|LK) in the original formulation).

3.5 WD Kernel with Improved Positional Invariance

The WD kernel works well for problems where the position of motifs are approximately constant in the sequence or
when sufficiently many training examples are available. However, if for instance the sequence was shifted by only
one position (cf. Figure 1), then potentially existing matches would not be found anymore. We therefore extend the
WD kernel in order to find sequence motifs which are less precisely localized. Our proposed kernel lies in between
the completely position dependent WD kernel and kernels like the spectrum kernel which does not use positional
information.

The kernel with shifts is defined as

k(si, sj) =

K
∑

k=1

βk

L−k+1
∑

l=1

S(l)
∑

s=0
s+l≤L

δs µk,l,s,si,sj
, (3)

µk,l,s,si,sj
=I(uk,l+s(si)=uk,l(sj))+I(uk,l(si)=uk,l+s(sj)),

5

where βj is as before, δs is the weight assigned to shifts (in either direction) of extent s, and S(l) determines the shift
range at position l. Depending on the problem at hand, one may use δs = 1/(2(s+1)) and S(l) = γ|p− l|, where p is
the position of the signal of interest: the further away a motif is from the site, the less precisely it needs to be localized
in order to contribute to the kernel value. We successfully applied this kernel for detection of alternative splice events
[21]. See [15] for a different approach of improving the positional invariance of predictions applied to the problem of
prokaryotic translation initiation sites recognition.

From a mathematical point of view, it is important to ask the question whether this kernel is positive definite.
Suppose T is a shift operator, and Φ is the map associated with the zero-shift kernel k. Then the kernel k̃(s, s′) :=
〈Φ(s) + Φ(T s), Φ(s′) + Φ(T s

′)〉 is trivially positive definite. On the other hand, we have k̃(s, s′) = 〈Φ(s), Φ(s′)〉 +
〈Φ(T s), Φ(T s

′)〉+ 〈Φ(T s), Φ(s′)〉+ 〈Φ(s), Φ(T s
′)〉 = k(s, s′) + k(T s, T s

′) + k(T s, s′) + k(s, T s
′). Assuming that

we may discard edge effects, k(T s, T s
′) is identical to k(s, s′); we then know that 2 k(s, s′) + k(T s, s′) + k(s, T s

′)
is positive definite. Our kernel (3), however, is a linear combination, with positive coefficients, of kernels of this type,
albeit multiplied with different constants δs. The above arguments show that if δ0 is at least twice as large as the sum of
the remaining δs, the kernel will be positive definite. In our experience, δ0 does not in all cases satisfy this condition.
Nevertheless, we have always found the kernel to be positive definite on the given training data, i.e., leading to positive
definite matrices, and thus posing no difficulties for the SVM optimizer.6

Note that the proposed WD kernel with shifts can be implemented using the previously used suffix trees leading to
faster computations of linear combinations of kernel elements.

3.6 WD Kernel with Mismatches

Finally, we briefly discuss the extension of the WD kernel to consider mismatching k-mers. We propose to use the
following kernel

k(si, sj) =

K
∑

k=1

M
∑

m=0

βk,m

L−k+1
∑

l=1

I(uk,l(si) 6=m uk,l(sj)), (4)

where u 6=m u′ evaluates to true if and only if there are exactly m mismatches between u and u′. When considering
k(u,u′) as a function of u′, then one would wish that full matches are fully counted while mismatching u′ sequences
should be less influential, in particular for a large number of mismatches. If we choose βk,m = βk/ ((k

m) (|Σ| − 1)m)
for k > m and zero otherwise, then an m-mismatch gets the full weight divided by the number of possible m-
mismatching k-mers, which seems a reasonable choice. Note that this kernel can be implemented such that its com-
putation only needs O(LK) operations (instead of O(MLK)). This kernel has been successfully used in a siRNA
efficacy prediction task [19].

As discussed in Sections 3.2 and 3.3, it is possible to adapt the ideas developed for the Spectrum kernel in order
to generate a tree in O((|Σ| − 1)m (Km)) operations per position that has the property that a single lookup operation
(O(K)) is necessary in order to compute the kernel between some fixed u and another u′. We therefore omit details
of the algorithm.

4 Speeding up SVM Training

It is not feasible to use standard optimization tools (e.g. MINOS, CPLEX, LOQO) for solving the SVM training
problems on data sets containing more than a few thousand examples. So-called decomposition techniques overcome

6 One may construct weighting schemes that enforce positive definiteness by a simple generalization of the Φ(s) + Φ(T s) con-
struction. Suppose we have a kernel k with a feature map φ, and a transformation group Tn whose elements are indexed by
n ∈ Z, satisfying TnTm = Tn+m, and acting on X , the domain where the data live. Then we can define a positive definite
transformation kernel of order d as k̃(x, x′) :=< Φ̃(x), Φ̃(x′) >, where Φ̃(x) :=

Pd

n=0
gnΦ(Tnx). Here, the gn ∈ R

are arbitrary weighting coefficients. A positive gn ensures more invariance of order n, a negative gn ensures less invari-
ance. This leads to a kernel k̃(x, x′) =

Pd

n=0

Pd

m=0
gngmk(Tnx, Tmx). As above, we disregard edge effects, assuming

k(Tnx, Tmx
′) = k(Tn−mx, x

′) = k(x, Tm−nx
′). A short calculation of all terms contributing to a given 0 ≤ δ := |n−m| ≤ d

yields k̃(x, x′) = (
Pd

n=0
g2
n)k(x, x′)+

Pd

δ=1

Pd−δ

n=0
gngn+δ[k(Tδx, x

′)+k(x, Tδx
′)]. Under the above assumptions, all such

kernels (with arbitrary gn ∈ R) are positive definite. In our experiments, we found that empirically, the kernels we used were
always positive definite on the given data, independent of the above considerations.

6

this limitation by exploiting the special structure of the SVM problem. The key idea of decomposition is to freeze
all but a small number of optimization variables (working set) and to solve a sequence of constant-size problems
(subproblems of the SVM dual quadratic optimization problem [3]).

The general idea of the Sequential Minimal Optimization (SMO) algorithm has been proposed by [18] and is
implemented in many SVM software packages. While [18] used Q = 2 as a working set size, other implementations
such as SVMlight [9] typically uses larger values (e.g. Q = 40). The SVM optimization algorithm internally needs
the output f̂j =

∑

i αiyi k(si, sj) for all training examples in order to select the next variables for optimization [9].
In order to update f̂j one needs to compute full rows j of the kernel matrix for every changed αj . One typically uses
kernel-caching to reduce the computational effort of this operation, which is, however, in case of large scale simulations
not efficient enough.7 Fortunately, for the considered string kernels we can efficiently compute linear combinations of
kernel elements. Using the techniques described in Sections 3.2 and 3.3 we generate for instance suffix trees such that
the computation of g(s) =

∑Q

q=1(αiq − αoldiq)yiq k(siq , s) becomes more efficient as shown in Algorithm 1. When

Algorithm 1 Outline of the Linadd SMO-like algorithm that exploits the fast computations of linear combinations of
kernels (e.g. by suffix trees).
{INITIALIZATION}
fi = 0, αi = 0 for i = 1, . . . , N

{LOOP UNTIL CONVERGENCE}
for t = 1, 2, . . . do

Check optimality conditions and stop if optimal; select Q variables i1, . . . , iQ based on f and α

α
old = α

solve SVM dual w.r.t. the selected variables and update α generate data structures to prepare efficient computation of

g(s) =

Q
X

q=1

(αiq − α
old
iq)yiq k(siq , s)

and update
fi = fi + g(si) for all i = 1, . . . , N

end for

using the WD kernel this leads to a speedup of a factor of Q, in case of the Spectrum kernel with mismatches it can
be considerably higher. Note that creating the suffix tree(s) on Q examples can be expensive, however, it is a fixed
cost (given that Q is fixed) per iteration. If the number of examples is large enough, then the speedup of the evaluation
when using trees will eventually lead to an advantage.

Finally note that most time is spent in evaluating g(s) for all training examples. When using suffix trees, one may
perform parallel lookup operations using several shared memory CPUs, speeding up computations. Moreover, this
situation is almost ideal to distribute this part of the computations to many CPUs (little communication while large
chunks of computations can be done independently).

5 Results and Discussion

5.1 Speed Comparison

Experimental Setup To demonstrate the effect of the several proposed algorithmic optimizations, namely the WD
block formulation and the Linadd-SMO SVM training Algorithm 1 extension for the WD, the Spectrum and the
Mismatch-WD kernel, we applied each of the algorithms to a real world splice site data, comparing it to the original

7 For instance when using a million examples one can only fit 125 rows into 1 GB. Moreover, caching 125 rows is insufficient
when for instance having many thousands of active variables.

7

WD formulation and the case where the weighting coefficients where learning using Multiple Kernel Learning. The
splice data set contains 1,026,036 acceptor splice site sequences each 201 base pairs long. See Appendix A for more
details on data generation. We trained SVMs using SVMlight [9] on 500, 1000, 5000, 10000, 30000, 50000, 100000,
200000, 500000 and 106 randomly sub-sampled examples and measured the time needed in SVM training. We set the
degree parameter to K = 20 for the WD kernel and to K = 8 for the spectrum kernel fixing the SVMs regulariza-
tion parameter to C = 10. SVMlight’s subproblem size (parameter qpsize) and convergence criterion (parameter
epsilon) were initially set to Q = 41 and ε = 10−5, respectively, while a kernel cache of 1GB was used for all
kernels except the precomputed kernel and algorithms using the Linadd-SMO extension for which the kernel-cache
was disabled. Later on we measure how changing ε and the quadratic subproblem size Q influences SVM training
time and accuracy. Experiments were performed on a PC powered by a 2.4GHz AMD Opteron(tm) Processor running
Linux. We measured the training time for each of the algorithms and data set sizes.

WD Kernel Algorithm Comparison The obtained training times for the Weighted Degree Kernel are displayed in
Table 1 and in Figure 4. These SVMs were trained using the different kernel algorithms: First the kernel matrix was
precomputed using the standard WD kernel implementation (Pre). The training time including the time needed to
pre-compute the full kernel matrix as presented is in all cases larger than the times obtained using the original WD
kernel demonstrating the effectiveness of SVMlight’s kernel cache. The block-formulation of the WD kernel, although
theoretically K times faster only leads to a further 70% speedup which is due to the very few higher order matches
between two DNA sequences in the training set. Note that starting from 10,000 (30,000) examples Linadd-SMO
optimization becomes more efficient than the original (blockwise) WD kernel algorithm as at the same time the kernel
cache cannot hold all kernel elements.8 In the case of one million of examples the Linadd formulation outperforms
the original WD kernel by a factor of 5. Finally training with the original WD kernel with a sample size of 1,000,000
takes about 36 hours – which is even slower than the single mismatch WD kernel. Using Linadd, Multiple Kernel
Learning of the weighting coefficients on a million of examples is still feasible as it takes less than 14 days. Note
that the Linadd-SMO optimization using the original WD kernel is not significantly slower than the block-formulation
using Linadd-SMO.

N Pre WD Block Linadd LinB MKL WDMis WDLinMis Spec LinSpec
500 0 1 0 3 3 4 1 14 1 0

1000 1 1 1 5 5 7 3 23 2 1
5000 28 19 11 24 23 82 43 102 36 5

10000 108 58 33 45 49 178 131 208 123 17
30000 965 317 177 159 174 1655 703 779 3462 142
50000 - 794 485 355 312 3525 1827 1575 9025 423

100000 - 2507 1576 761 741 15818 5464 3932 - 2283
200000 - 8863 5226 2024 2031 58261 18524 10317 - 11673
500000 - 40632 23946 9119 9071 299782 - 42361 - -

1000000 - 131379 84737 26107 26085 1188204 - 129247 - -

Table 1. (left) Speed Comparison of the original Weighted Degree Kernel algorithm (WD) in SVMlight training, compared to a
precomputed version (Pre), its blockwise formulation (Block) the SMO Linadd extension used in conjunction with the original
WD kernel (Linadd), its block formulation (LinB) and when determining the WD kernel weight by Multiple Kernel Learning
(MKL). The first column shows the sample size N of the data set used in SVM training while the following columns display
the time (measured in seconds) needed in the training phase. (right) Speed Comparison analoguous to (left) of a single mismatch
Weighted Degree Kernel and the Spectrum Kernel, with (WDLinMis and LinSpec) and without (WDMis and Spec) the SMO
Linadd extension.

WD Mismatch and Spectrum Kernel Comparison For the single mismatch WD and the spectrum kernel the SVM
training times are listed in Table 1 and diagrammed in Figure 5.

8 When double precision 8-byte floating point numbers are used, caching all kernel elements is possible when training with up to
11585 examples.

8

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

number of training sequences (logarithmic)

S
V

M
 tr

ai
ni

ng
 ti

m
e

in
 s

ec
on

ds
 (l

og
ar

ith
m

ic
)

WD−Precompute
WD
WD−Block
WD−Linadd
WD−Linadd−Block

Weighted Degree Kernel
using Linadd

Weighted Degree Kernel
using Linadd in

Block Formulation

Weighted Degree Kernel
(precomputed)

Weighted Degree Kernel
in Block Formulation

Weighted Degree Kernel
(original version)

Fig. 4. Comparison of the running time of the different weighted degree kernel algorithms. Note that as this is a log-log plot small
appearing distances are large for larger N and that each slope corresponds to a different exponent. The empirically determined
complexity of the precomputed WD kernel is N 2, of the original WD kernel it is N1.71, of the block formulation N1.62 and for the
Linadd-SMO variants N1.55 (for N > 105).

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

number of training sequences (logarithmic)

S
V

M
 tr

ai
ni

ng
 ti

m
e

in
 s

ec
on

ds
 (l

og
ar

ith
m

ic
)

WD−Mismatch
WD−Mismatch−Linadd
Spectrum
Spectrum−Linadd

Spectrum Kernel using
Linadd

Spectrum Kernel

Weighted Degree Mismatch
Kernel

Weighted Degree Mismatch
Kernel

Fig. 5. In analogy to Figure 4: Comparison of the single mismatch WD and spectrum kernel with and without Linadd-SMO opti-
mization. Empirically determined complexity of the mismatch WD is N 1.64. Complexity estimates for the mismatch WD kernel
using linadd are N1.3 and for spectrum kernel using linadd N 2.32. Note however that more data points are needed to give reliable
estimates as the curves seem linear only for N > 10000 and N > 200000 respectively.

9

qpsize
N 11 21 31 41 51 71 81 91 101 111 121 131 141 151

10000 53 41 39 39 40 43 45 45 47 54 47 60 58 48
30000 230 175 158 180 157 164 183 168 194 211 181 226 222 205
50000 468 358 309 313 303 319 316 349 329 395 386 333 350 391

100000 1331 890 862 891 819 858 1049 821 867 874 861 811 826 830
200000 3700 2653 2456 2301 2321 2234 2349 2284 2207 2382 2366 2551 2418 2439
500000 15309 10587 9309 8989 9653 9581 9439 8879 9145 8745 8866 8903 9012 8769

1000000 46741 32686 30235 28022 28229 27458 26580 29197 26672 25902 28548 27068 24970 28956

Table 2. Influence on training time when varying the size of the quadratic program (qpsize) in SVMlight, when using the
LinAdd+Block formulation of the WD kernel. While training times do not vary dramatically one still observes the tendency that
with larger sample size a larger qpsize becomes optimal. The qpsize = 41 column displays the same result as column LinB in
Tab.1, leaving aside a certain variance in running time.

SVM ε 0.000001 0.000010 0.000100 0.001000 0.010000 0.100000 0.500000
AUC 99.7322% 99.7322% 99.7322% 99.7322% 99.7322% 99.7317% 99.7206%

Training Time 2343 2168 2029 1719 1544 1233 1013

Table 3. Running time and Area Under the Curve (AUC) of the SVM classifier when trained on 200,000 and evaluated on the
remaining 800,000 examples when varying the SVM light epsilon parameter. While with increased ε training time decreases,
the AUC seems to not change much.

Using the SMO optimization we gain speedups of 80% with respect to the mismatch WD kernel and even by a
factor of 21 to the linear spectrum kernel.

Varying SVMlights’s parameters qpsize and epsilon As discussed in Section 4 using the LinAdd algorithm
computing the output for all training examples w.r.t. to some working set can be speed up by a factor of Q (i.e. the size
of the quadratic subproblems, termed qpsize in SVMlight). However there is a trade-off in choosing Q as solving
larger quadratic subproblems is expensive (quadratic to cubic effort). Table 2 discusses this issue. For example the gain
in speed between choosing Q = 11 and Q = 141 for 1 million of examples is 87%, while it is much less for a choice
in the mid-range, e.g. for Q = 71 about 7%. Sticking with a mid-range Q seems to be a good idea for this task. Still
one observes the tendency that for larger training set sizes choosing larger quadratic subproblems is optimal. However
large variance can be observed as SVM training time to a large extend depends on which Q variables are selected in
each optimization step.

The story is similiar when varying ε (see Tab.3). Larger values of ε correspond to shorter running time, but this
time at the cost of achieving a slightly lower area under the Receiver Operator Characteristic Curve [16, 2] (AUC).
Surprisingly the choice of ε has very little effect, which can be explained by the fact that the influence due to ε depends
on the scale in which the data lives, as in SVMlight the stopping criteria is the maximum violation of a misclassified
example w.r.t. the regularization value C. Throughout the benchmarks the kernel value was not normalized to one and
thus reaches its maximum values of wB ≈ 195 for B = 201,K = 20 on the diagonal. One therefore should either
normalize k (e.g. by k′(s, s′) = k(s,s′)√

k(s,s) k(s′,s)
which we omitted to enable a comparison with MKL), choose larger

values of ε or even adaptively adjust the stopping criterion based on data scaling as has been done for nu-SVMs [11].

N 500 1000 5000 10000 30000 50000 100000 200000 500000 1000000
AUC 96.91% 97.82% 98.96% 99.28% 99.58% 99.65% 99.73% 99.80% 99.84% 99.87%

Relative AUC Improvement - 29.45% 52.29% 30.77% 41.67% 16.67% 22.86% 25.93% 20.00% 18.75%
Test Error 6.03% 6.03% 3.38% 2.40% 1.57% 1.31% 1.07% 0.92% 0.83% 0.71%

Table 4. The achieved AUC and test error for the WD-SVM trained on 500 to 1,000,000 examples. Test Error (AUC) are steadily
decreasing (increasing). After reaching 30,000 examples the relative improvement (i.e. the improvement relative to the previous
result) remains at a level of ≈ 20%

10

Classification Performance In Table 4 the Test Error and AUC achieved on the splice site classification task for several
sample sizes are shown9. With one million examples the method achieves 0.71% test error and 99.87% AUC. This is
a relative improvement upon training on a 500 sample of 96%. Going from 500 to 5000 or from 5000 to 50, 000
examples leads to an improvement of 66% and the accuracy is still improved by 54% when increasing the sample size
from 50, 000 to 500, 000.10

Conclusion We developed an efficient SMO-like SVM training algorithm, particularly well suited for string kernels
like the Weighted Degree and Spectrum kernel and formulated linear time algorithms for kernel computation and SVM
classifier prediction. Using the Spectrum, Weighted Degree and Mismatch Weighted Degree kernel in a large scale
splice site recognition experiment with up to one million of sequences we demonstrated significant speedups while
at the same time shrinking memory requirements (as kernel caching is not required). We show that SVM training is
up to 20 times faster using the Linadd-SMO algorithm in combination with the spectrum and up to 5 times faster in
combination with the WD kernel. For the WD kernel we developed a blockwise-formulation and extend it allowing
for mismatches or making it invariant with respect to small positional sequence shifts, demonstrating its effectiveness
on the splice site recognition task.

Acknowledgments

The authors gratefully acknowledge partial support from the PASCAL Network of Excellence (EU #506778), DFG
grants JA 379 / 13-2 and MU 987/2-1.

References

1. M.S. Boguski and T.M. Lowe C.M. Tolstoshev. dbEST–database for ”expressed sequence tags”. Nat Genet., 4(4):332–3, 1993.
2. A.P. Bradley. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition,

30(7):1145–1159, 1997.
3. C. Cortes and V.N. Vapnik. Support vector networks. Machine Learning, 20:273–297, 1995.
4. N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines. Cambridge University Press, Cambridge,

UK, 2000.
5. D.L. Wheeler et al. Database resources of the national center for biotechnology. Nucl. Acids Res, 31:38–33, 2003.
6. Harris, T.W. et al. Wormbase: a multi-species resource for nematode biology and genomics. Nucl. Acids Res., 32, 2004.

Database issue:D411-7.
7. T. Jaakkola, M. Diekhans, and D. Haussler. Using the Fisher kernel method to detect remote homologies. In T. Lengauer,

R. Schneider, P. Bork, D. Brutlag, J. Glasgow, H.-W. Mewes, and R. Zimmer, editors, Intelligent Systems in Molecular Biology,
pages 149–158, 1999.

8. T. Joachims. Text categorization with support vector machines: Learning with many relevant features. Technical Report 23,
LS VIII, University of Dortmund, 1997.

9. T. Joachims. Making large–scale SVM learning practical. In B. Schölkopf, C.J.C. Burges, and A.J. Smola, editors, Advances
in Kernel Methods — Support Vector Learning, pages 169–184, Cambridge, MA, 1999. MIT Press.

10. W.J. Kent. Blat–the blast-like alignment tool. Genome Res., 12(4):656–64, 2002.
11. W. Kienzle and B. Schö:lkopf. A minimal primal dual method for support vector learning. In Proceedings of the International

Conference on Machine Learning, ICML, 2005. (submitted).
12. C. Leslie, E. Eskin, and W.S. Noble. The spectrum kernel: A string kernel for SVM protein classification. In Proceedings of

the Pacific Symposium on Biocomputing, Kaua’i, Hawaii, 2002.
13. C. Leslie, Rui Kuang, and E. Eskin. Inexact matching string kernels for protein classification. In Kernel Methods in Computa-

tional Biology, MIT Press series on Computational Molecular Biology, pages 95–112. MIT Press, 2003.
14. L. Liao and W.S. Noble. Combining pairwise sequence similarity and support vector machines for remote protein homology

detection. In Proceedings of the Sixth Annual International Conference on Research in Computational Molecular Biology,
pages 225–232, April 2002.

15. P. Meinicke, M. Tech, B. Morgenstern, and R. Merkl. Oligo kernels for datamining on biological sequences: A case study on
prokaryotic translation initiation sites. BMC Bioinformatics, 5(169), 2004.

9 For all sample sizes, testing was done on the same 26,036 examples
10 Note that the degree of the WD kernel and the SVM-C were fixed to K = 20 and C = 10 throughout the experiments.

11

16. C.E. Metz. Basic principles of ROC analysis. Seminars in Nuclear Medicine, VIII(4), October 1978.
17. K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf. An introduction to kernel-based learning algorithms. IEEE

Transactions on Neural Networks, 12(2):181–201, 2001.
18. J. Platt. Fast training of support vector machines using sequential minimal optimization. In B. Schölkopf, C.J.C. Burges, and

A.J. Smola, editors, Advances in Kernel Methods — Support Vector Learning, pages 185–208, Cambridge, MA, 1999. MIT
Press.

19. G. Rätsch and J.Q. Candela. Predicting siRNA efficacy. In European Conference on Computational Biology, ECCB, 2005.
(submitted).

20. G. Rätsch and S. Sonnenburg. Accurate Splice Site Prediction for Caenorhabditis Elegans, pages 277–298. MIT Press series
on Computational Molecular Biology. MIT Press, 2004.

21. G. Rätsch, S. Sonnenburg, and B. Schölkopf. Rase: Recognition of alternatively spliced exons in c. elegans. In ISMB 2005,
2005. (accepted).

22. B. Schölkopf. Support vector learning. Oldenbourg Verlag, Munich, 1997.
23. B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press, Cambridge, MA, 2002.
24. B. Schölkopf, K. Tsuda, and J.P. Vert, editors. Kernel Methods in Computational Biology. MIT Press series on Computational

Molecular Biology. MIT Press, 2003.
25. S. Sonnenburg, G. Rätsch, and C. Schäfer. Learning interpretable svms for biological sequence classification. In RECOMB

2005, LNBI 3500, pages 389–407. Springer-Verlag Berlin Heidelberg, 2005.
26. K. Tsuda, M. Kawanabe, G. Rätsch, S. Sonnenburg, and K.R. Müller. A new discriminative kernel from probabilistic models.

Neural Computation, 14(10):2397–414, 2002.
27. J.-P. Vert, H. Saigo, and T. Akutsu. Local alignment kernels for biological sequences. In Kernel Methods in Computational

Biology, MIT Press series on Computational Molecular Biology, pages 131–154. MIT Press, 2003.
28. S.V.N. Vishwanathan and A.J. Smola. Fast kernels for string and tree matching. In Kernel Methods in Computational Biology,

MIT Press series on Computational Molecular Biology, pages 113–130. MIT Press, 2003.
29. A. Zien, G. Rätsch, S. Mika, B. Schölkopf, T. Lengauer, and K.-R. Müller. Engineering Support Vector Machine Kernels That

Recognize Translation Initiation Sites. BioInformatics, 16(9):799–807, September 2000.

A Splice Site Data Generation

EST and cDNA Sequences We collected all known C. elegans ESTs from Wormbase [6] (release WS118; 236,868
sequences), dbEST [1] (as of February 22, 2004; 231,096 sequences) and UniGene [5] (as of October 15, 2003;
91,480 sequences). Using blat [10] we aligned them against the genomic DNA (release WS118). The alignment was
used to confirm exons and introns. We refined the alignment by correcting typical sequencing errors, for instance by
removing minor insertions and deletions. If an intron did not exhibit the consensus GT/AG or GC/AG at the 5’ and 3’
ends, then we tried to achieve this by shifting the boundaries up to 2 nucleotides (nt). If this still did not lead to the
consensus, then we split the sequence into two parts and considered each subsequence separately. For each sequence
we determined the longest open reading frame (ORF) and only used the part of each sequence within the ORF. In a
next step we merged alignments, if they did not disagree and shared at least one complete exon. This lead to a set of
135,239 unique EST-based sequences.

We repeated the above procedure with all known cDNAs from Wormbase (release WS118; 4,848 sequences) and
UniGene (as of October 15, 2003; 1,231 sequences), which lead to 4,979 unique sequences. We removed all EST
matches fully contained in the cDNA matches, leaving 109,693 EST-base sequences.

Clustering We clustered the sequences in order to obtain independent training, validation and test sets. In the beginning
each of the above EST and cDNA sequences were in a separate cluster. We iteratively joined clusters, if any two
sequences from distinct clusters (a) match to the genome at most 100nt apart (this includes many forms of alternative
splicing) or (b) have more than 20% sequence overlap (at 90% identity, determined by using blat). We obtained 17,763
clusters with a total of 114,672 sequences. There are 3,857 clusters that contain at least one cDNA. Finally, we removed
all clusters that showed alternative splicing.

Data Set generation From the cDNA clusters we generated windows of fixed length around true acceptor splice
site sequences (59,968 of them). Each sequence is 201nt long and has the AG dimer at position 101-102. Negative
examples were generated from any occurring AG within the ORF of the sequence (966,068 of them were found).
Finally we obtain 1,026,036 sequences to be used throughout our experiments. Note that only 5.84% of them are
positive examples.

12

