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Declaration:
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Calvin: Ah! I got the letter I wrote to myself!
Hobbes: What did you write?
Calvin: “Dear Calvin, Hi! I’m writing this on Monday. What day is it now?

How are things going? Your pal, Calvin.”
Calvin: My past self is corresponding with my future self.
Hobbes: Too bad you can’t write back.

Bill Watterson, 19 April 1995
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1 Introduction

1.1 Problem and Motivation

Consider the following problem: We are givenm ordered valuesX1, . . . ,Xm from a time series,
but we do not know if the sample has been reversed. Our task is to find out whetherX1, . . . ,Xm

or Xm, . . . ,X1 represents the true time direction.

This problem regards the general difference in backward and forward going time and thus we
cannot expect it to be easily solvable. There is a lot of literature about the asymmetries regarding
the direction of time, whereas we will only mention shortly how the problem can be related
to physics, causality and everyday life. The following ideas should rather be taken as thought
impulses than as complete overviews of the fields.

Physics The question of the direction of time can be related in particular to the second law
of thermodynamics. One possible formulation of the latter states that the entropy of a closed
physical system can only increase but never decrease.1 This may suggest to use the entropy
criteria in the following way: for every timet, compute the entropy of the system, and propose the
direction for which the entropy increases as the correct one. If you consider real-world time series
from stock values, EEG data or geophysical data, for example, this method is not applicable. This
is mainly due to two different reasons: firstly, for these time series the entropy is often very hard
to recognize in the data and secondly, most of the observed time series can hardly be considered
as closed systems.

Causality It is a basic principle thatevery cause precedes its effect or equivalently that the
future cannot influence the past. There is a lot of philosophical work about the meaning of
causality and its relation to time. Here we rather address the understanding of time and causality
in everyday life; it is common sense that you cannot alter past events and that a car engine never
startsbeforethe key is turned.
Using the idea of the temporal ordering of cause and effect we can solve the time direction
problem in the following way: if we identify one cause and itseffect in the dataX1, . . . ,Xm, we
can order the whole series. Say, we found thatX5 is causingX2, then the true time ordering must
be Xm, . . . ,X1. See Figure 1.1 for an example2. In the following subsection we will introduce
causality in a more formal way and make use of this approach inthe ARMA method (see below).

1From a microphysical perspective the entropy is actually constant in time but only increases after appropriatecoarse-
graining the physical state space [1].

2Many thanks to my sister Mira for providing this sketch.
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1 Introduction

Figure 1.1: Since we can identify the blow with the club as thecause and the small bump as the effect, we can deduce
that the pictures are in the correct ordering.

Everyday Life One of the time asymmetries in everyday life is that we seem tocare more about
the future than the past. We often regard something that willhappen to us as more important than
something similar that has already happened to us: We prefera lot of unsatisfactory work to be
done and the vacations to be ahead to the other way around. Andas [2] mentions at first glance
it is astonishing that we dread death, whereas we do not care too much about the non-existence
before our birth.
Further, if we make decisions about our actions, we usually take into account (possible) events in
the future rather than those in the past. It does not seem to berational if someone acts in a special
way in order to ensure the occurrence of a past event. This is surely related to the causal point of
view stating that we can only changefutureevents or cause them to occur.
Opposing to decision making our knowledge is focused on the past and the memory even contains
only past events. We know much more about the past than about the future: It is easier to tell
who won the last European Championship in soccer than to predict who will win the next one.
Admittedly, there are a lot of periods and events from the past we do not know anything about
and we are quite good in predicting the next total eclipse of the sun, for example. In general,
however, our knowledge is biased towards the past.

1.2 Causality

We now formalize the concept of causality and relate it to thelanguage of statistics. (Some of
the following ideas can also be found in [3].) In many cases correlations or even dependencies
beyond the second order do not give sufficient information about the relationship between two
random variables. We are often interested in a deeper understanding of this relationship, namely
we want to identify cause and effect. We can use standard statistical tools in order to detecta
dependence between smoking habits and lung cancer, but it ismore difficult to infer the causal
structure. We suspect that smoking causes lung cancer, but how can we disprove that people with
a higher chance of getting lung cancer (driven by a specific genotype, for example) feel a higher
urge for smoking, too? For a long time, there was no formalismin classical statistics to deal with
this sort of causal problems until Pearl [4] established formal notations and computation rules for
the field of causality.
One possible definition of causality is the following: we saythat a random variablesX is causing
a second variableY if and only if Y can be written as a linear deterministic functionf (X) plus
some noise, which is independent ofX. This can be seen as a constraint on the joint distribution
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1.3 Proposed Methods

P(X,Y) of X andY: Let ǫ be the residuum after computing a linear regression ofY on X. If X
and ǫ are statistically independent (note that they areuncorrelatedby construction), the joint
distribution P(X,Y) admits a linear model fromX to Y. If X andY are not independent it turns
out (see Theorem 2.10) that the only case admitting a linear model in both directions is when
P(X,Y) is a bivariate Gaussian distribution.
Thus in this case causal inference (i.e. identifying cause and effect) can be done in the following
way: Assume the linear model to be true and the noise to be non-Gaussian. Then consider the
direction as causal that can better be fit by a linear model. This is the rationale behind LiNGAM
[5] and also applies to causal inference withn variablesX1, . . . ,Xn that linearly influence each
other.
The problem of identifying cause and effect in a time series, is different from usual causal infer-
ence problems because of the following reasons (and therefore the conventional methods [4, 6]
are not easily applicable): (1) The standard framework requires iid data of the joint distribution
over all involved random variables, but not only single timeinstances. (2) For interesting classes
of time series like MA and ARMA models (introduced in Section4.2.1), the observed variables
(Xt) are not causally sufficient since the (hidden) noise variables influence more thanone of the
observed variables. (3) Finite windows of observed variables are typically confounded by ob-
servable ancestors, which further complicates the problem. (4) as opposed to many real-world
problems in causal inference we have at leastpartial knowledge of the ground truth [7]. This is
an advantage because it makes it easier to evaluate our methods.
In [5] the authors applied their causal discovery algorithmLiNGAM to this problem. Their
approach was able to propose a hypothetical time direction for 14 out of 22 time series (for the
other cases their algorithm did not give a consistent result); however, only 5 out of these 14
directions turned out to be correct. The reasons for this could be the problems described below.
We have already seen how causality can help us to solve the problem of identifying the true time
direction. And because of these differences from usual causal inference problems we conversely
hope that studying the asymmetries of time series can also provide new insights for causal infer-
ence, too.

1.3 Proposed Methods

In this work we propose the following two methods for identifying the true time direction:

The SVM Method Consider a strictly stationary time series (that means thew-dimensional dis-
tribution of (Xt+h,Xt+1+h . . . ,Xt+w+h) does not depend onh for any choice ofw ∈ N). We assume
the difference between the two different time directions to be a difference in the finite-dimensional
distributions (Xt,Xt+1 . . . ,Xt+w) and (Xt+w,Xt+w−1 . . . ,Xt). We try to learn the nature of this dif-
ference without further specifying it. For many time serieswe represent both distributions in a
Hilbert Space (more specifically in an RKHS, see Section 3.1.2) and investigate if there are sim-
ilarities between the difference of the forward and backward distributions. If this isthe case, we
learn these similarities using Support Vector Machines (SVMs) within this Hilbert Space.

The ARMA Method This method is based on the causality approach mentioned above. We
assume the data to be an autoregressive moving average process (ARMA) with noise independent
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1 Introduction

of the last values of the time series; together with this additional condition these time series are
calledcausalARMA processes.
As a main result of this paper we will show that the identifiability result from linear causal models
extends to ARMA processes: if we assume that the time series is generated by a causal ARMA
model with a non-vanishing AR part and with non-Gaussian noise, the process is not invertible;
that means if the true direction follows a causal ARMA model with non-Gaussian noise, the other
direction is not.
This result can be used in the following way: We fit the observed data to an ARMA model and
test whether the regression residuals are statistically independent of the past values. Whenever
the dependence in one direction is significantly weaker thanin the other we infer the former to
be the true one. To this end, we need a good dependence measurethat is applicable to continu-
ous data and finds dependencies beyond second order. In this work we use the Hilbert-Schmidt
Independence Criterion (HSIC) [8] (see Section 3.3).

1.4 Outline

In Section 2 we formally introduce the concept of causality used here and show how linear causal
models can be identified.
We define Reproducing Kernel Hilbert Spaces and Support Vector Machines in Section 3. As
already mentioned before, we use the Hilbert-Schmidt Independence Criterion for independence
testing, which we describe in this section, too.
In Section 4 we prove one of the main theorems — that non-Gaussian ARMA processes admit an
ARMA model at most in one time direction— and we further explain the two different methods
we employ for identifying the true time direction of time series data in more detail.
Section 5 contains results of our methods on both simulated and real data.
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2 Causal Inference on Linear Models

2.1 Causal Models

As mentioned before the concept of statistical dependence between two random variables is often
not sufficient. In many cases we assume a causal relationship betweenthe two variables and need
to know, which one is the cause and which one the effect. We know that the position of the earth
relatively to the sun (which can be expressed in terms of an angle) and the temperature on the
earth are strongly dependent. Without having defined the term causality yet, the position should
cause the temperature and not vice versa. The goal of causal inference is to identify these sorts
of causal relationship between random variables. For a longtime, however, there was no formal
mathematical framework for these questions. The followingdefinition of causal models and their
corresponding graphs is from Judea Pearl [4].

2.1.1 Definitions

Definition 2.1 [of a causal model] LetX = {X1, . . . ,Xn} be a set of random variables and let
PAi ⊂ X be a subset ofX (the parentsof Xi). Assume that we only observe some of the
variablesXi. The error variablesǫi represent errors due to omitted factors; they are always
unobserved and independent of the variables PAi. A set of equations

Xi = fi(PAi , ǫi) ∀i = 1, . . .n, fi belonging to some function classF (2.1)

is called acausal modelif they describe the process of generating the data. It is important
to point out that this is not only a statement about probability distributions and conditional
independencies, but also about the way, the process is generated in reality. We assume that
the value ofXi is produced in the specific way of the equation above.
The correspondingcausal graphis constructed by drawing a node for every random vari-
able Xi and directed arrows from all its parents into this node. Nodes from unobserved
variables are often drawn with a dashed line. The following is an example for a causal
graph with PA1 = ∅,PA2 = ∅,PA3 = {X1,X2},PA4 = {X2,X3}:

X1 X2

X3 X4
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2 Causal Inference on Linear Models

Definition 2.2 A causal model is calledMarkovian if its corresponding graph is a Directed
Acyclic Graph (DAG) (i.e. it contains no cycles) and if all noise variables are jointly
independent.

It can be shown ([4], Theorem 1.4.1) that a Markovian causal model satisfies theMarkov condi-
tion meaning that every variableXi is independent of all its non-descendants given its parentsin
the graph.
The Markov condition also exists in Bayesian Networks; these do not treat causality and therefore
the Markov condition in causal models is sometimes called the causal Markov condition.

If further the joint distributionP(X1,...,Xn) is absolutely continuous with respect to a product mea-
sure, a Markovian causal model satisfies the factorization1 ([9], Theorem 3.27):

p(x1, . . . , xn) =
n∏

i=1

p(xi |pai) .

As said before a causal model satisfies more than just constraints on the probability distribution:
If we do a hypothetical intervention on a parent onXi, the probability distribution ofXi will
change. We say that a parent effects its children. This is a condition, which cannot be written in
terms of (conditional) probabilities, but deals with the generating process in reality.

2.1.2 What are causal models good for?

We want to give an idea, what causal graphs can be used for and how they can help to understand
the data. We will demonstrate this by introducing Judea Pearl’s do-notation. Out of reasons for
simplicity we will only consider discrete random variables. Causal graphs provide a context in
which a lot of causal problems can be formulated and solved. One of the most famous examples
is the old debate about the causal relationship between smoking and lung cancer. The tobacco in-
dustry tried to explain the observed correlation between smoking and lung cancer by a genotype,
which increases both the risk for getting cancer and the inborn craving for nicotine.
A powerful method to deal with these questions is thedo-notation. When wedo(X j = x̃ j) we set
the variableX j to x̃ j while leaving all the other variables unchanged. Then we investigate how
much this changes the distribution of another variableXi. More formally:

Definition 2.3 Define thecausal effectof X j on X1, . . . ,Xn to be the following distribution over
x1, . . . , xn:

p
(
x1, . . . , xn | do(X j = x̃ j)

)
≔

n∏

i, j

p(xi |PAi) · δxj ,x̃j ,

whereδxj ,x̃j = 1 if x j = x̃ j andδxj ,x̃j = 0 otherwise.

As we see in the following example, this differs from the usual conditional distribution
p(x1, . . . , xn | X j = x̃ j) = p(x1, . . . , xn | x̃ j):

1p(x1, . . . , xn) denotes the density with respect to the product measure mentioned above. This can be, for example, the
probability density function or the probability mass function (or a combination of both) evaluated at (x1, . . . , xn).
We adapt to this notation because it is widely used in the domain of causal inference.
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2.1 Causal Models

Example 2.4 Assume we have the following process:

X Y .

Then

p
(
y | do(X = x̃)

)
=

∑

x

p
(
x, y | do(X = x̃)

)
= p(y | x̃) ,

but p
(

x | do(Y = ỹ)
)

=
∑

y

p
(

x, y | do(Y = ỹ)
)

= p(x) , p(x | ỹ) .

It is important to realize, that thedo-procedure is just a hypothetical intervention:

Example 2.5 It is widely believed that both malnutrition and overweightare risk factors for car-
diac infarction. And certainly, malnutrition can also be a cause for overbalance. Therefore
we can assume the following causal graph

Z : malnutrition

X : overweight Y : cardiac inf.

We havep
(
y | do(X = x̃)

)
=

∑

z p(y | x̃, z)p(z). This shows that thedo procedure should be
interpreted as setting the variableX to x̃ hypothetically. We can hardly change the weight
of a person by adding a few pounds in a surgery, for example. Instead we use the new
distribution in order to determine the strength of the effect that overbalance has on the
probability of getting a heart attack.
There are many other examples, where a change of variables isnot only ethically irrespon-
sible, but also physically impossible.

Notice that the equation forp
(

y|do(X = x̃)
)

in the last example shows thatdo(X = x̃) is equivalent
to removing the arc betweenZ andX and settingX to the constant̃X. Instead of using Definition
2.3 we can generalise this idea and define the (doX= x̃)-notation by removing every arc between
the nodeX and its parents in the corresponding causal graph.2

Pearl provides a comprehensive theory for thedo-calculus. He gives several rules for calculations
within thedo-framework, for example. Also, he develops a criterion in order to decide if a set of
observed variables is sufficient in order to compute the causal effect ofX onY.

2This can be formalized by adding an additional parent node toX in the causal graph, which controls the functionf
in equation (2.1) and sets it to a constantf ≡ x̃ in the case ofdo(X = x̃). See Section 3.2.2 in [4] for more details.
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2 Causal Inference on Linear Models

2.2 Inferring causal graphs

Usually causal graphs are a good possibility for including prior knowledge into data analysis.
Note that this is conceptually different from putting prior distributions on parameters, which is
done in Bayesian Statistics. Sometimes, however, we do not have this prior knowledge and then
we want to infer the causal graph itself based on iid samples of the joint distributionp(x1, . . . , xn).
This is surely a hard problem and depending on the real generating process not even always
possible. To make life easier we require the functions in equation (2.1) to be additive in the noise
argument and linear in the parents of the node:

Xi = fi(PAi , ǫi) = gi(PAi) + ǫi ∀i = 1, . . . n, gi linear.

The question arises, under which conditions we can distinguish between

X Y

and

X Y .

Before we answer this question theoretically, we give two examples: in the first one both direc-

tions are possible, whereas in the second oneX → Y is the true direction and the process cannot
be reversed.

Example 2.6 (i) Assume

Y = φX + ǫ, ǫ ⊥⊥ X , (2.2)

whereX andǫ are normally distributed.ǫ ⊥⊥ X means thatǫ andX are independent.
Let σ2 be the variance of the noise. Now we want to construct a new noise ǫ̃, such
that

X = φ̃Y+ ǫ̃, ǫ̃ ⊥⊥ Y . (2.3)

DefineL2 from the usual spaceL2(Ω,G,P) of square integrable random variables by
identifying all random variablesU,V, for which U − EU = V − EV holdsP-almost
surely. Then it is easy to see that

〈U,V〉 ≔ cov(U,V)

defines a dot product onL2. Therefore we can interpret (2.2) and (2.3) geometrically:

10



2.2 Inferring causal graphs

b

b

Y

ǫ

X

ǫ̃

φX

φ̃Y

Now starting fromX,Y andǫ we construct ˜ǫ by projectingX on the one dimensional
subspace spanned byY:

ǫ̃ = X − 〈X,Y〉‖Y‖2 Y.

Then, by construction
X = φ̃Y + ǫ̃,

whereφ̃ ≔ 〈X,Y〉
‖Y‖2 . Because we used the projection, it is clear that ˜ǫ andY are uncorre-

lated:

cov(ǫ̃,Y) = 〈X,Y〉 − 〈X,Y〉‖Y‖2 〈Y,Y〉 = 0 .

Since all distributions are Gaussian, ˜ǫ is Gaussian, too and thus ˜ǫ ⊥⊥ Y. Furthermore
we can determinẽφ:

φ̃ =
φvar(X)

φ2var(X) + σ2
=

φ

φ2 + σ2/var(X)
,

1
φ
.

(ii) Let X andǫ be two iid random variables with distribution

P(X = −0.5) = P(X = 0.5) = 0.5 ,

P(ǫ = −0.5) = P(ǫ = 0.5) = 0.5 .

Thus the variable
Y = X + ǫ

has the distributionP(Y = −1) = P(Y = 1) = 0.25,P(Y = 0) = 0.5. Assume that

X = bY+ ǫ̃ ,

for someb ∈ R andǫ̃ ⊥⊥ Y. It is clear thatY = 1 impliesX = 0.5 and ˜ǫ = 0.5− b. On
the other hand it follows fromY = −1 thatX = −0.5 and ˜ǫ = −(0.5− b). ThereforeY
andǫ̃ are not independent. More formally we have

P(Y = 1) = P(Y = 1) · P(ǫ̃ = 0.5− b) and

P(Y = −1) = P(Y = −1) · P(ǫ̃ = −(0.5− b)) .

11



2 Causal Inference on Linear Models

ThusP(ǫ̃ = −(0.5− b)) = P(ǫ̃ = 0.5− b) = 1, which impliesb = 0.5 and ˜ǫ ≡ 0. Then
X = 0.5Y, which is obviously a contradiction.

The intermediate resultb = 0.5 in the second example is not surprising: the argumentation
from the first example holds for the second example, too (projections are unique) and we
get

b = φ̃ =
φ · var(X)

φ · var(X) + var(ǫ)
=

1 · 1/4
1 · 1/4+ 1/4

=
1
2
,

which leads to uncorrelated noise. Because we do not have a Gaussian distribution we
cannot deduce independence.
The normality assumption in the first example is not a coincidence, either. We will see that
the Gaussian distribution is the only distribution, for which a linear causal relation (2.2)
betweenX andY can be reversed.

In the rest of the section we want to further investigate thisspecial role of the Gaussian distri-
bution. Therefore we need some auxiliary results. We first prove the following lemma, which is
intuitively clear. The proof, however, has to be done carefully.

Lemma 2.7 Let X andǫ be two independent variables and assumeǫ to be non-deterministic.
Then

ǫ ⊥⊥� (X + ǫ) .

Proof Of course the proof becomes trivial if the variables have finite variance. Then cov(X,X +
ǫ) = var(X) > 0. For the general case, however, the argumentation is a bit more complex.
Assumeǫ ⊥⊥ (X + ǫ). Then for everyu, v ∈ R:

ϕ(ǫ,X+ǫ)(u, v) = E
[

exp(iuǫ + ivǫ + ivX)
]

= E
[
exp(iuǫ + ivǫ) · exp(ivX)

]

= E
[
exp(iuǫ + ivǫ)

] · E [
exp(ivX)

]

= ϕǫ(u+ v) · ϕX(v) .

We also have

ϕ(ǫ,X+ǫ)(u, v) = E
[
exp(iuǫ + ivǫ + ivX)

]

= E
[

exp(iuǫ) · exp(ivǫ + ivX)
]

= E
[

exp(iuǫ)
] · E [

exp(ivǫ + ivX)
]

= ϕǫ(u) · ϕ(ǫ+X)(v)

= ϕǫ(u) · ϕǫ(v) · ϕX(v) .

We know thatϕX(0) = 1 and that characteristic functions are continuous. Thus there exists
a non-empty open intervalV = (−r, r) ⊂ R, such that|ϕX(v)| > 0 ∀v ∈ V. Thus we have for
all u ∈ R andv ∈ V:

ϕǫ(u+ v) = ϕǫ(u) · ϕǫ(v) .

12



2.2 Inferring causal graphs

Note that this is still true for an arbitraryv ∈ R: Choosen ∈ N, such that‖v/n‖ ≤ r. It
follows

ϕǫ(u+ v) = ϕǫ
(

u+ (n− 1)
v
n
+

v
n

)

= ϕǫ

(

u+ (n− 1)
v
n

)

· ϕǫ
(v
n

)

...

= ϕǫ(u) · ϕǫ
(v
n

)n
= ϕǫ(u) · ϕǫ(v)

Then we know

ϕǫ(u) = zu for somez∈ C\{c ∈ C : Im c = 0,Rec < 0} .

We can writez= exp(a+ ib) and since‖ϕǫ‖∞ ≤ 1 we deduce thata = 0. It follows

ϕǫ(u) = exp(ib · u) .

Because of the uniqueness of characteristic functions thisimplies P(ǫ = b) = 1 andǫ is
degenerate. �

Furthermore we will use the following result, which was proved by Skitovich and Darmois inde-
pendently [10] [11] [12]:

Theorem 2.8 [Darmois-Skitovich] Let X1, . . . ,Xn be independent, non-degenerate random vari-
ables. If the two linear combinations

l1 = a1X1 + . . . + anXn, ai , 0

l2 = b1X1 + . . . + bnXn, bi , 0

are independent, each Xi is normally distributed.

There exist different proofs of this theorem, all using characteristic functions. We will sketch
one proof (see e.g. Chapter 8 in [13]), which has the advantage that it can be generalized to the
case of an infinite sum of random variables. This proof, however, requires the following powerful
theorem from Linnik [14] and Zinger [15]:

Theorem 2.9 Let f1, . . . , fn be characteristic functions, which satisfy

n∏

i=1

f αi
i (t) = f (t) ,

for someαi > 0 and for all t in a neighbourhood of zero. Here, f is the characteristic
function of a normal distribution. Then every fi itself is a characteristic function of a
normal distribution.

This theorem is a generalization of Cramér’s theorem [16],that only covers the caseαi = 1.

13



2 Causal Inference on Linear Models

Proof [of the Darmois-Skitovich theorem] We give the main steps ofthis proof, leaving some
details to the reader.
By a linear transformation it can be shown that without loss of generality (wlog) we can
setai = 1 for all i. We have

n∏

i=1

ϕi(u+ biv) =
n∏

i=1

ϕi(u)
n∏

i=1

ϕi(biv) , (2.4)

whereϕi denotes the characteristic function ofXi . We prove by contradiction that none of
theϕi vanishes on the real line: If any of them did, there would be a root u0 of ϕ j with
smallest absolute value (ϕi is continuous andϕi(0) = 1). Then for allv ∈ R

n∏

i=1

ϕi(u0 + biv) = 0 .

Choosingv, such that|biv| < |u0/2| for all i yields
n∏

i=1

ϕi

(u0

2

) n∏

i=1

ϕi

(u0

2
+ biv

)

= 0

and eitheru0
2 or u0

2 + biv is a root, which leads to a contradiction. Thus we can take
logarithms in (2.4) and obtain

n∑

i=1

ψi(u+ biv) =
n∑

i=1

ψi(u) +
n∑

i=1

ψi(biv) =: A(u) + B(v) ,

whereψi = lnϕi. Skitovich now considers finite differences and concludes thatψ1 is a
polynomial of second degree. We take a different approach by integrating overu:

n∑

i=1

∫ x

0
ψi(u+ biv)(x− u)du=

∫ x

0
A(u)(x− u)du+ B(v)

x2

2

⇒
n∑

i=1

∫ x+bi v

0
ψi(t)(x− t + biv)dt −

∫ biv

0
ψi(t)(x− t + biv)dt = C(x) + B(v)

x2

2

⇒
n∑

i=1

∫ x+bi v

0
ψi(t)(x− t + biv)dt = C(x) + B1(v)

x2

2
+ B2(v)x+ B3(v)

Here,B1(v), B2(v), B3(v) andC(x) are chosen such that the equations are satisfied. Differ-
entiating both sides twice with respect tov and settingv = 0 afterwards yields

n∑

i=1

b2
i ψi(x) = R(x)

and thus
n∏

i=1

ϕi(x)c2
i = exp(R(x)) , (2.5)

whereR is a polynomial of second degree with complex coefficients. UsingR(0) = 0 and
R(−x) = R(x), we see that the right hand side of (2.5) is the characteristic function of a
normal distribution and thus we can apply Theorem 2.9. �
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2.2 Inferring causal graphs

Now we are able to prove the following key statement of this section.

Theorem 2.10 Let X and Y be two random variables, for which

Y = φX + ǫ, ǫ ⊥⊥ X, φ , 0

holds.
Then we can reverse the process, i.e. there existsψ ∈ R and a noisẽǫ, such that

X = ψY + ǫ̃, ǫ̃ ⊥⊥ Y ,

if and only if X,Y, ǫ, ǫ̃ are Gaussian distributed.

Later we generalize this theorem, but to make the proof better understandable we prove the simple
case first.

Proof If X andǫ are Gaussian distributed, the statement follows from Example 2.6. Conversely,
we assume that

Y = φX + ǫ

and ǫ̃ = (1− φψ)X − ψǫ

are independent. Distinguish between the following cases:

1. (1− φψ) , 0 andψ , 0
Here, Theorem 2.8 implies thatX, ǫ and thus alsoY, ǫ̃ are normally distributed.

2. ψ = 0
We have (1− φψ)X ⊥⊥ φX + ǫ. ψ = 0 implies

X ⊥⊥ φX + ǫ,

which is a contradiction to Lemma 2.7.

3. (1− φψ) = 0
It follows −ψǫ ⊥⊥ φX + ǫ. Thus

ǫ ⊥⊥ φX + ǫ

and we can apply Lemma 2.7 again.

�

This result is already known. The LiNGAM algorithm [5] we mentioned before actually makes
use of this fact, which can be seen as a special case of Independent Component Analysis (see
Theorem 11 in [17]). Although our proof and the one given in [17] are not the same, both are
based on the Darmois-Skitovich Theorem 2.8. Our proof, however, can be generalized in different
ways (see Theorem 2.11 and Section 4.2).

Theorem 2.11 Let X1, . . . ,Xn and Y be random variables, for which

Y =
n∑

i=1

φiXi + ǫ, ǫ ⊥⊥ (X1, . . . ,Xn), φi , 0

15



2 Causal Inference on Linear Models

holds. Then we can reverse the process, i.e. there existsψi ∈ R and a noisẽǫ, such that

X1 =

n∑

i=2

ψiXi + ψY+ ǫ̃, ǫ̃ ⊥⊥ (Y,X2, . . . ,Xn)

if and only if X1, . . . ,Xn,Y, ǫ, ǫ̃ are Gaussian distributed.

Proof The proof is analogue to the one from Theorem 2.10: If all variables are Gaussian, we
can defineX̂1 as the projection ofX1 on span(Y,X2, . . . ,Xn). Then we can define the new
noise ˜ǫ ≔ X1 − X̂1 and by construction

X1 =

n∑

i=2

ψiXi + ψY + ǫ̃ ,

where ˜ǫ is independent ofY and of allXi , i = 2, . . . , n.
Conversely, we assume

Y =
n∑

i=1

φiXi + ǫ

and ǫ̃ = (1− ψφ1)X1 −
n∑

i=2

(ψi + ψφi)Xi − ψǫ

are independent. Again, it is straightforward (mainly by using Lemma 2.7) to argue why
the coefficients cannot vanish. We can apply Theorem 2.8 and it followsthat all involved
variables are Gaussian distributed. �
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3 Theory of Statistical Methods

In this section we introduce Reproducing Kernel Hilbert Spaces, Support Vector Machines and
the Hilbert-Schmidt Independence Criterion. We present these concepts in a strict mathematical
context.

3.1 Kernels

3.1.1 Definition of Kernels

In the following subsection letX be a separable metric space with Borelσ-algebraΓ. We think of
X as being an input space, in which we receive the data; that means single data points are treated
as (X, Γ) -valued random variables. Note that we implicitly assume the existence of a probability
space (Ω,A, µ).

Definition 3.1 Considerk : X × X → R andx1, . . . , xm ∈ X. Then the matrixK with

Ki j ≔ k(xi , x j)

is called theGram matrixof a kernelk.

Definition 3.2 A symmetricm×mmatrix K satisfying

〈Kc, c〉 =
∑

i, j

cic jKi j ≥ 0 ∀ci ∈ R

is calledpositive definite1. Obviously this is equivalent to all eigenvalues ofK being non-
negative.

Remark 3.3 If a matrix K comes from a dot product of a dot product space
(
V, (., .)

)
, i.e.

Ki j ≔ (vi , v j), v1, . . . , vm ∈ V ,

we have that

n∑

i, j=1

cic jKi j =

n∑

i, j=1

cic j(vi , v j) =
(

n∑

i=1

civi ,

n∑

j=1

c jv j

)

≥ 0 ∀ci ∈ K ,

and thereforeK is positive definite.

1Strictly speaking such a matrix should be calledpositive semi-definite. Nevertheless we adapt to the commonly used
notation and omit the prefixsemi-. Conversely we say a matrix isstrictly positive definiteif it additionally satisfies
∑

i, j cicj Ki j = 0⇔ ci = 0∀i.

17



3 Theory of Statistical Methods

Definition 3.4 We callk : X×X → R apositive definite kernel(or justkernel) if its corresponding
Gram matrix is positive definite for every choice ofx1, . . . , xm ∈ X.

Example 3.5 The following functions are well-known examples of kernelsfor X = Rn:

• Gaussian kernel with bandwidthσ > 0

k(x, y) = exp

(

−‖x− y‖2
2σ2

)

• polynomial kernel of degreed ∈ N

k(x, y) = 〈x, y〉d

• inhomogeneous polynomial kernel withc ≥ 0 and degreed ∈ N

k(x, y) =
(〈x, y〉 + c

)d

• sigmoid kernel withκ > 0 andθ < 0

k(x, y) = tanh(κ〈x, y〉 + θ)

• Bn splines of odd ordern:

k(x, y) = Bn
(‖x− y‖) whereBn = 1[− 1

2 ,
1
2 ] ∗ . . . ∗ 1[− 1

2 ,
1
2 ]

︸                    ︷︷                    ︸

n-times

using the convolution (f ∗ g) (t) =
∫

f (z)g(t − z) dz.

All these examples are kernels onRd, which is the most important space for practical
purposes, but there exist kernels on many other domains, too(e.g. graphs, sets of strings
[18], etc.).

3.1.2 Reproducing Kernel Hilbert Spaces

Now we consider Hilbert spaces whose dot products are related to such kernels. These spaces
turn out to be very useful. They consist of real-valued functions f : X → R, for which -as usual-
summation and multiplication by a scalar is defined pointwise:

(λ · f )(x) ≔ λ · f (x) ∀λ ∈ R,∀ f ∈ H and∀x ∈ X

( f + g)(x) ≔ f (x) + g(x) ∀ f ∈ H ,∀g ∈ H and∀x ∈ X

The follwing definitions can be found in [19], for example.

Definition 3.6 LetH be a Hilbert space of functionsf : X → R. H is called aReproducing
Kernel Hilbert Space (RKHS)if there is a kernelk such that

• k(x, .) ∈ H ∀x ∈ X
• 〈 f , k(x, .)〉 = f (x) ∀ f ∈ H

18



3.1 Kernels

For f = k(x′, .) the second condition yields
〈
k(x′, .), k(x, .)

〉
= k(x′, x). This explains the term

ReproducingKernel Hilbert Space. Notice that the two conditions together imply that

H = span{k(x, .) | x ∈ X} .

This can be seen as follows: Consider an elementg ∈ H with g ⊥ k(x, .) ∀x ∈ H . The reproduc-
ing property impliesg(x) = 〈g, k(x, .)〉 = 0 ∀x ∈ H . Thusg ≡ 0.

There is a natural way to represent the data in an RKHS using the following definition:

Definition 3.7 Thefeature mapis defined as

Φ :
X → H
x 7→ k(x, .)

.

An RKHS should be thought of a high-dimensional (or even infinite-dimensional) feature space.
Mapping the data into the RKHS corresponds to extracting relevant features. This sometimes
makes it easier to work with the data (see Example 3.11). Usually in a high-dimensional feature
space computations, especially evaluations of the dot product, are quite expensive. For an RKHS,
however, we have

〈
Φ(xi),Φ(x j )

〉
= k(xi , x j) ,

which can be computed very efficiently.

Remark 3.8 AssumeH is an RKHS with kernelk and k̃ is another kernel ofH satisfying the
conditions of Definition 3.6. Then

k̃(x, x′) = k̃(x′, x) =
〈
k̃(x′, .), k(x, .)

〉
=

〈
k(x, .), k̃(x′, .)

〉
= k(x, x′)

and we can see that the kern of an RKHS is unique.

There is also a more abstract characterization of an RKHS [19]:

Proposition 3.9 LetH be a Hilbert space of functions f: X → R. ThenH is an RKHS if and
only if for every x∈ X the point evaluation operator

δx :
H → R

f 7→ f (x)

is a bounded linear functional.

Proof This proposition is a consequence of Riesz’ representationtheorem (e.g. [20]).

• ⇒: SinceH is an RKHS there is a kernelk(., .), such that

δx( f ) = f (x) = 〈 f , k(x, .)〉 ∀ f ∈ H ,∀x ∈ X .

Let x ∈ X be fixed. The linearity ofδx is clear and its operator norm is bounded
because of the Cauchy-Schwartz inequality:

‖δx‖ = sup
‖ f ‖=1

∣
∣
∣
∣

〈
f , k(x, .)

〉
∣
∣
∣
∣ =

∣
∣
∣
∣

〈 k(x, .)
‖k(x, .)‖ , k(x, .)

〉
∣
∣
∣
∣ = ‖k(x, .)‖ =

√

k(x, x)

(In fact, this is true in general: In every Hilbert spaceH the functionalf 7→ 〈 f , g〉 for
a fixedg ∈ H is linear and bounded.)
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3 Theory of Statistical Methods

• ⇐: It follows from Riesz that∀x ∈ X∃gx ∈ H such thatδx = 〈., gx〉. Thus

gx′ (x) = δx(gx′ ) = 〈gx′ , gx〉 = 〈gx, gx′〉 = δx′ (gx) = gx(x
′) .

We can define the symmetric functionk(x, x′) = gx(x′). Remark 3.3 guarantees thatk
is positive definite and thus a kernel.

�

We now proof the existence of such an RKHS by an explicit construction.

Proposition 3.10 For any given kernel k there exists an RKHS with corresponding kernel k.

Proof Define the space

H0
≔

{

f : X → R | f (.) =
m∑

i=1

αik(., xi) for somem and someαi ∈ R
}

Define further forf =
∑m

i=1αik(., xi) andg =
∑m′

j=1 β jk(., y j)

〈 f , g〉 =
m∑

i=1

m′∑

j=1

αiβ jk(xi , y j)

=

m′∑

j=1

β j f (y j )

=

m∑

i=1

αig(xi)

The last two identities show that the expression does not depend on the expansion off or
g. Therefore this form is well-defined. It is easy to check thatthis form is bilinear and
symmetric. It is positive semi-definite, since

〈 f , f 〉 =
m∑

i, j=1

αiα jk(xi , x j) ≥ 0 .

It can be proved [21] that the Cauchy-Schwarz inequality

|〈v,w〉| ≤ ‖v‖ · ‖w‖

holds not only for dot products, but also for symmetric positive semi-definite bilinear
forms. It follows that

f (x)2 = 〈 f , k(x, .)〉2
C-S
≤ 〈 f , f 〉 · k(x, x) ∀x ∈ X

and therefore
〈 f , f 〉 = 0 ⇒ f ≡ 0 .
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3.1 Kernels

Thus we have shown that〈., .〉 is a dot product.
As the final step of the construction we defineH to be the completion ofH0. This standard
procedure creates a new space, in which the initial space canbe embedded and in which all
Cauchy sequences converge:H is a Hilbert space withH0 as a dense subspace.
Convergence inH implies pointwise convergence inR: For eachx ∈ X we have

| fi(x) − f j(x)| =
∣
∣
∣〈k(x, .), fi − f j〉

∣
∣
∣ ≤

√

k(x, x) · ‖ fi − f j‖H .

Thus the reproducing property holds in the completionH , too:

〈 f , k(x, .)〉 = 〈 lim
i→∞

fi , k(x, .)〉

= lim
i→∞
〈 fi , k(x, .)〉

= lim
i→∞

fi(x)

= f (x)

Since all conditions are met,H is an RKHS with kernelk. �

We have seen that every functionf ∈ H can be written as the limit of a sequence
(
∑n

i=1αn,ik(xn,i , .))n in the RKHS norm. It is clear that this class of functions strongly depends on
the kernelk. We will see later (in Section 3.3.3), how to choosek in order to make the class very
rich, but still handable.
With the following example we try to give an intuition, why the concept of an RKHS can be
useful.

Example 3.11 LetX = R2 be the input space and consider a polynomial kernel of degree2:

k
(

(a, b), (x, y)
)

=
〈

(a, b), (x, y)
〉2

= (ax+ by)2

= a2x2 + 2abxy+ b2y2

Define
H0
≔ span

{

k
(
(a, b), .

) | (a, b) ∈ R2
}

.

Using the map

ψ :
H0 → R3

(
(x, y) 7→ cx2 + dxy+ ey2) 7→ (c, d√

2
, e)

we can see easily thatH0 is isometric isomorphic toR3: ψ is surely linear and injective.
Furthermore we have

(1, 0, 0) = ψ
(

k
(
(1, 0), .

))

(0, 1, 0) = ψ
(

k
(
(1,

1
√

2
), .

) − k
(
(0,

1
√

2
), .

) − k
(
(1, 0), .

))

(0, 0, 1) = ψ
(

k
(

(0, 1), .
))
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3 Theory of Statistical Methods

Additionally this map turns out to be isometric in the sense that it preserves dot products:

〈
n∑

i=1

αik
(
(ai , bi), .

)
,

m∑

j=1

β jk
(
(ã j , b̃ j), .

)〉

H0
=

∑

i, j

αiβ jk
(
(ai , bi), (ã j , b̃ j)

)

=
∑

i, j

αiβ j
(
a2

i ã2
j + 2aibi ã j b̃ j + b2

j b̃
2
j
)

=
〈(∑

i

αia
2
i ,

∑

i

αi

√
2aibi ,

∑

i

αib
2
i

)

,

(∑

j

β j ã
2
j ,
∑

j

β j

√
2ã j b̃ j ,

∑

j

β j b̃
2
j

)〉

R3

=
〈

ψ
(

n∑

i=1

αik
(
(ai , bi), .

))

, ψ
(

m∑

j=1

β jk
(
(ã j , b̃ j), .

))〉

R3

SinceR3 is complete it follows thatH0 is, too. ErgoH0 = H .
For this polynomial kernel we showed that working in the RKHSis equivalent to mapping
the data intoR3 via the mapping

Φ̃ :
R2 → R3

(x, y) 7→ (x2, y2,
√

2xy)
.

and working there using the usual Euclidean dot product. If we now receive data belonging
to two different classes (o and∗), it may happen that it is difficult to separate the data in
the input space (e.g. we have to use a circle), whereas in the feature space the data can be
separated easily (e.g. using a hyperplane), compare Figure3.1. This example relates to the
concept of Kernel Support Vector Machines (Section 3.2.4) and shows, why it can be an
advantage to work in a feature space.

−2 −1 0 1 2
−2

−1

0

1

2

x

y

0
2

4 0
2

4−5

0

5

y
x

z

Figure 3.1: The left picture shows the data in input space, the right picture its representation in the RKHS

Remark 3.12 In this work we make the following assumptions on the kernel.(Notice that all of
them are satisfied by the Gaussian kernel.)

• k is bounded, i.e.∃c ∈ R : k(x, x̃) < c ∀x, x̃ ∈ X. It follows that all functions in the
RKHS are bounded

| f (x)| ≤ ‖ f ‖H · ‖k(x, .)‖H ≤ ‖ f ‖H ·
√

k(x, x) ≤ ‖ f ‖H ·
√

c
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3.1 Kernels

• k is continuous

These conditions together with the fact thatX is separable guarantee that the corresponding
RKHS is separable, too; this is not hard to see and is shown forexample in [22]. The
separability of the RKHS is needed for the definition of the Hilbert-Schmidt norm.

3.1.3 A Hilbert Space Embedding of Distributions

We already saw, how we can represent single data points in an RKHS. In this section we learn a
way to represent probability distributionsP onX in an RKHS.
Therefore consider the mapping2

H → R

f 7→ E
[
f (X)

] .

This is well-defined becausef is continuous and bounded. Furthermore this is obviously a linear
function in f and it is continuous since

∣
∣
∣E

[
f (X)

]∣∣
∣ =

∣
∣
∣E〈 f , k(X, .)〉

∣
∣
∣

≤ E
∣
∣
∣〈 f , k(X, .)〉

∣
∣
∣

≤ E ‖ f ‖H ‖k(X, .)‖H
= ‖ f ‖H E

√

k(X,X) ,

so
sup
‖ f ‖H=1

|E f (X)| < ∞ .

By Riesz’ representation theorem there is an elementµ[P] ∈ H such that

E
[
f (X)

]
= 〈 f , µ[P]〉 ∀ f ∈ H .

Therefore we can represent any probability measure in an RKHS using

P 7−→ µ[P] .

We will refer toµ[P] as being themean element.

Proposition 3.13 It holds

µ[P] :
X → R

x 7→ EX
[

k(X, x)
] .

Proof For everyx we have

µ[P](x) = 〈k(., x), µ[P]〉 = E
[
k(X, x)

]
.

�

2Instead ofEX∼P f (X) we use the shorthandEX f (X) or evenE f (X).

23



3 Theory of Statistical Methods

3.2 Support Vector Machines

A Support Vector Machine (SVM) is an algorithm that addresses the task of classification, which
itself is a common problem in data analysis: in a data spaceX we are given a pointZ, that we
want to assign to one ofJ different classes. Obviously there is a huge variety of applications: It
was estimated that between January and March 2008 92.3 per cent of email traffic is spam [23]
and therefore good spam filters are needed, which can classify incoming mail reliably as being
spam or not. Looking at an MRI scan a computer can do a ”pre-diagnosis” and predict if a patient
has got a special disease. The post companies use computers for assigning hand written numbers
on an envelope to one of the digits 0, . . . , 9 in order to sort the mail according to their destinations.
You can also think of a company, which checks a calling customers prefix, age, income and the
number of children, decides that he probably rather have complaints than the intention to open a
bank account and therefore place him on hold.
In a lot of applications we have to deal with a huge amount of data and therefore efficient algo-
rithms are indispensable.
Formally, in binary classification problems the data is given inX×{−1, 1}, i.e. we receive the data
in an input spaceX together with an attached label (-1 or 1). We expect there to be a function (or
classification rule)

f : X → {−1, 1} ,
such that the data lie on the subspace

(X, f (X)
)
. For received data the goal is to learn this function

f . Obviously we have to restrict the class of function candidates by introducing some smoothness
condition, for example. Otherwise there is no way of learning f . We consider classification
rules that are constructed using hyperplanes. Most of the definitions and statements given in this
subsection can also be found in [19].

3.2.1 Hyperplanes

Let H be a complete vector space with a dot product (i.e. a Hilbert space). For now you can
think ofH beingRn, but it is important to notice that the following works for every complete dot
product space. In Section 3.2.4 we use the algorithm on Reproducing Kernel Hilbert Spaces and
obtain the so-called kernel SVM.

Definition 3.14 A subsetH ⊂ H is called ahyperplaneif there existw ∈ H \ {0} andb ∈ R,
such that

H = {x ∈ H | 〈w, x〉 + b = 0} .
We call (w, b) a representation ofH.3

These hyperplanes separate the space into two half spaces: asingle point lies either on one side
of it or on the other and we can define the classifier:

Definition 3.15 For givenw ∈ H andb ∈ R define the classification rule

fw,b :
H −→ R

x 7−→ sgn
(〈w, x〉 + b

) .

3In this subsection we use the following convention: small bold letters denote vectors in vector spaces, small normal
letters numbers inR.
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3.2 Support Vector Machines

Thus we say a given pointx belongs to class 1 if it lies on one side of the hyperplane and to
class−1 if it lies on the other side. Note thatfw,b and f−w,−b define two different classifiers.

By elementary geometry it can be shown that a representationof a hyperplane is not unique:

Remark 3.16
{x ∈ H | 〈w1, x〉 + b1 = 0} = {x ∈ H | 〈w2, x〉 + b2 = 0}

if and only if there exists ak ∈ R such that

w2 = kw1 and b2 = kb1 .

In particular this means thatw andb are not uniquely determined byH.

In a real situation we use the given training data in order to define a unique representation of a
hyperplane:

Definition 3.17 (i) Let x1, . . . , xm ∈ H . We call (w, b) a canonical representationof the hy-
perplaneH if

min
i=1,...,m

|〈w, xi〉 + b| = 1.

(ii) The marginρ is the distance from the closest pointxi to the hyperplane4:

ρ ≔ min
i=1,...,m

dist(xi ,H) .

Remark 3.18 Let x1, . . . , xm ∈ H . Then for (w, b) ∈ H ×R and its generated hyperplaneH the
following is equivalent:

(i) (w, b) is the canonical form ofH.
(ii) The margin ofH is 1

‖w‖ .

(See Figure 3.2.)

Proof Let z ∈ H. Notice that the projection fromx− z onto w
‖w‖ is exactly the distance fromx to

the hyperplane. Thus we have

|〈w, x〉 + b| = |〈w, x〉 + b− (〈w, z〉 + b)|
= |〈w, x − z〉|

= ‖w‖ |〈 w
‖w‖ , x − z

〉|

= ‖w‖ dist(x,H)

Ergo |〈w, x〉 + b| and dist(x,H) are minimized by the samex1, say, and the statement
follows. �
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H = {z ∈ H : 〈w, z〉 + b = 0}

Figure 3.2: A hyperplane in its canonical form (w,b); its margin is 1
‖w‖ .

Remark 3.16 and Remark 3.18 together show that there are exactly two canonical representations
of a hyperplaneH: If (w, b) is one canonical representation, (−w,−b) is the other. As we want to
construct classifiers from these hyperplanes the distinction is necessary. Although they describe
the same hyperplane and therefore the same set of points inH , the corresponding classifiers differ
(see Definition 3.15).
Now we introduce theSupport Vector Machine, which is a method that constructs such a hyper-
plane from the labelled data.

3.2.2 Hard Margin SVM

Given some training data we want to learn the classification rule, i.e. the form of the hyperplane
(cf Definition 3.15).
Among all possible hyperplanes a hard margin SVM chooses thehyperplane, such that

1. all training data are classified correctly and

2. the margin is maximized.

The hyperplane drawn in Figure 3.2 is an example for a hard margin hyperplane (the two classes
are represented by white and black points).

Remark 3.19 (i) Note that the training data does not have to be separable by a hyperplane,
furthermore even if possible a separation may not be advisable as it may lead to over-
fitting (cf soft margin SVMs and kernel SVMs).

4Observe that〈x, .〉 is continuous and thereforeH is a closed subspace ofH . Thus the distance dist(x,H) is well-
defined.
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3.2 Support Vector Machines

(ii) Maximizing the margin is intuitively a good idea: we choose the hyperplane, such
that the distance to the point closest to it is as large as possible. Assume in a survey
people are asked if they like the TV show Musikantenstadl. All young people (aging
21-57) said no, the others (aging 63-103) said yes. Then we suspect the border to be
at around 60 because it seems to be the best generalization.
This choice can even be justified theoretically: there are bounds on the probability
of making a test error. Of course these bounds themselves only hold with a certain
probability, but it can be seen that they get the tighter the larger the margin is (for
details see Section 7.2. of [19]).

For canonical hyperplanes the margin is always 1//|w‖ and thus maximizing the margin corre-
sponds to minimizing‖w‖ or equivalently 1/2 · ‖w‖2. We take the latter because then the problem
turns out to be a quadratic programming problem. Further, given some data (x1, y1), . . . , (xm, ym)
inH × {−1, 1} we assume that both classes−1 and 1 occur within theyi at least once.
Now we can summarize the hard margin SVM procedure to be the following optimization prob-
lem:

minw,b
1
2‖w‖2

subject to fw,b(xi) = yi ∀i = 1, . . . ,m
and (w, b) is a canonical representation

This can be rewritten as

O1 :
minw,b

1
2‖w‖2

subject to yi
(〈xi ,w〉 + b

) ≥ 1 ∀i = 1, . . . ,m

Assume the problem is feasible, which means that the data canbe separated linearly in the space
H . If (ŵ, b̂) is the solution of this problem, we can check easily that forat least one of the vectors
xi the constraint is precisely met:

yi
(〈xi ,w〉 + b

)
= 1 .

This means that (̂w, b̂) is automatically a canonical representation of a hyperplane.

Proposition 3.20 O1 is equivalent to

O2 :
maxα∈Rm

∑m
i=1αi − 1

2

∑m
i, j=1 αiα jyiy j〈xi , x j〉

subject to αi ≥ 0 ∀i = 1, . . . ,m and
∑m

i=1αiyi = 0

Notice that this is a quadratic programming problem (with positive definite matrix in the objective
function) and can be solved very efficiently by the ellipsoid method [24].

Proof Because of the inequality constraint we introduce some slack variablesηi , such thatO1

becomes
minw,b,η

1
2‖w‖2

subject to yi
(〈xi ,w〉 + b

) − ηi − 1 = 0 ∀i = 1, . . . ,m

Because of the convexity of the objective function, the convexity of the constraints and
the satisfied interior point condition (or Slater constraint qualification), we know that the
problem is strong Lagrangian (“min of the primal=max of the dual”); for details see e.g.
Chapter 5.3 in [25] (Rk) or Chapter 10 in [26] (general Hilbert spaces). Thus solving the
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3 Theory of Statistical Methods

primal is equivalent to solving the dual.
To compute the dual we note that the Lagrangian equals

L(w, b, η, α) =
1
2
‖w‖2 −

m∑

i=1

αi

(

yi
(〈w, xi〉 + b

) − ηi − 1
)

.

The dual problem is defined to be

maxα∈Rm g(α) ≔ infw,b,η L(w, b, η, α)
subject to α ∈ Y≔ {α ∈ Rm | g(α) > −∞}

The constraint forα is equivalent to5 α ≥ 0, which implies that we can setη = 0. The
current optimization problem is

max
α∈Rm

≥0

inf
w,b

L̃(w, b, α) ≔ max
α∈Rm

≥0

inf
w,b

1
2
‖w‖2 −

m∑

i=1

αi

(

yi
(〈w, xi〉 + b

) − 1
)

. (3.1)

For the optimal solution ˆα let (ŵ, b̂) be minimizingL̃. Then we know by the Lagrangian
Sufficiency Theorem (or Kuhn-Tucker Saddle Point Condition) that (ŵ, b̂) is also a solution
to the primalO1. It follows

∂

∂b
L̃(ŵ, b, α̂)b=b̂ = 0 ⇒

m∑

i=1

α̂iyi = 0

∂

∂w
L̃(w, b̂, α̂)w=ŵ = 0 ⇒ ŵ =

m∑

i=1

α̂iyixi

Plugging this into (3.1) yieldsO2. �

Notice that the solution̂w can be written as a linear combination of the training data. Some of the
Lagrangian multipliersαi may be zero and thus the solutionŵ is not supported by these vectors.

Definition 3.21 Assume (̂w, b̂) is the solution of the optimization problemO2 described above.
The vectorsxi which satisfy

αi > 0

are calledsupport vectors.

In Figure 3.2 the pointsx4 andx5 are support vectors.
It can further be shown (see Chapter 7.3. in [19]) that the data pointsxi corresponding to La-
grangian multipliersαi > 0 satisfy the constraints ofO1 exactly.

5This is shorthand forαi ≥ 0 ∀i = 1, . . . ,m.
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Figure 3.3: The VC dimension ofR2 is 3: in the left picture, a separation of the points is possible for any
labelling, whereas the right figure is an example, where the points are not linearly separable.

Furthermore this helps to determine the thresholdb: if α j > 0 (i.e. x j is a support vector), then

y j
(〈x j , ŵ〉 + b̂

)
= 1

⇒ 〈x j ,

m∑

i=1

α̂iyixi〉 + b̂ = y j

⇒
m∑

i=1

α̂iyi〈x j , xi〉 + b̂ = y j

⇒ b̂ = y j −
m∑

i=1

α̂iyi〈x j , xi〉

Ergo the thresholdb can be computed by choosing only one support vectorx j and using this
equation. In practice, however, we find small differences in the values forb if we use different
support vectors. This is due to numerical problems and is dealt with by averaging over all values
of b we obtain for different support vectors.

Remark 3.22 The hard margin SVM has two major drawbacks:

1. We need the training data to be linearly separable, otherwise we cannot construct the
separating hyperplane. The concept of soft margin classifiers (Section 3.2.3) relax the
constraint that all training data must be classified correctly.

2. We can only separate the data linearly. The Vapnik-Chervonenkis (VC) dimension
[19] of the class of half-spaces inRn can be shown to ben+ 1. In the case ofn = 2,
this means that we can arrange 3 points inR2 in such a way that for any labelling of
these 3 points, we can separate the two classes by a straight line. This is not possible
for any arrangement of 4 points inR2. We can always attach class labels to 4 points,
such that the classes cannot be separated anymore (see Figure 3.3).
Now we can either conclude that the class of hyperplane classifiers is too small or

we find a way of mapping our data in a high-dimensional space, where the class gets
more powerful. The latter is exactly realised by kernel SVMs, which we explain in
Section 3.2.4.
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3.2.3 Soft margin SVM

In the last section we constructed the hyperplane, which separated all training data according to
their classes. In order to relax this constraint, we could try to separate as many data as possible.
Unfortunately, this turns out to be anNP-hard problem (see for example [27]).
Instead, Cortes and Vapnik [28] changed the constraints of the original optimization problemO1.
They added some slack variablesξi ≥ 0 and obtained

yi
(〈xi ,w〉 + b

) ≥ 1− ξi ∀i = 1, . . . ,m.

Some classification errors on the training set are now allowed, but if ξi gets too large, the con-
straints can always be satisfied. Therefore we penalize big values ofξi and add the term

C
m

m∑

i=1

ξi ,

to the objective function. HereC > 0 is a constant, which adjusts the strength of the regularization
term6. This leads to the following quadratic programming problem

Õ1 :
minw,b,ξ

1
2‖w‖2 +

C
m

∑m
i=1 ξi

subject to yi
(〈xi ,w〉 + b

) ≥ 1− ξi ∀i = 1, . . . ,m

A computation analogue to the one before shows that this is equivalent to

Õ2 :
maxα∈Rm

∑m
i=1αi − 1

2

∑m
i, j=1 αiα jyiy j〈xi , x j〉

subject to C
m ≥ αi ≥ 0 ∀i = 1, . . . ,m and

∑m
i=1αiyi = 0

As before, we can write the solution as a linear combination of the training data:

ŵ =
m∑

i=1

α̂iyixi ,

and again the support vectors are thosexi , which support the solution, i.e.αi > 0. As before
Lagrangian multipliers greater than zero correspond to precisely met constraints

yi
(〈xi , ŵ〉 + b̂

)

= 1− ξi ,

and we can conclude that for support vectorsx j satisfying additionallyξi = 0 (both together is
equivalent to 0< αi < C) the following holds:

b̂ = y j −
m∑

i=1

α̂iyi〈x j , xi〉 . (3.2)

And again we average over all those vectorsx j to deal with the numerical problems.
In practice, there are different procedures to chooseC: as a rule of thumb you can setC = 10·mfor
first results; you can also chooseC by cross-validation or raiseC from a very low starting value
until the training error (misclassifications on the training set) is lower than a certain fraction.

6There exist other formulations as well, where the interpretation of the adjusting constant gets somehow easier. See
for example Schölkopf’sν classifier in [29].
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3.2.4 Kernel SVM

As mentioned before, SVMs can get much more powerful if we mapthe data in a high-dimensional
space, the so-called feature space. Performing an SVM classification in the high-dimensional fea-
ture space often corresponds to a non-linear classificationin the input space; such a procedure,
however, is usually computationally very expensive because of the evaluations of the dot products
in the high-dimensional space.
We can avoid this problem if we choose the feature space to be an RKHS. Recall the definition
of the feature map:

Φ :
X → H
x 7→ k(., x)

.

Then we perform the usual SVM in the RKHS. This so-calledkernelizingof the SVM is possible
because the whole original SVM algorithm only depends on thedot product of the data〈xi , x j〉.
This means, in the feature space we only have to consider dot products〈Φ(xi ),Φ(x j )〉, which can
be calculated very quickly by writing it in terms of the kernel:

〈Φ(xi ),Φ(x j )〉 = k(xi , x j) .

Herein lies a lot of the power of the kernel trick: the expensive evaluation of the dot product in
a suited high-dimensional feature space can be replaced by arelatively cheap evaluation of the
kernel function.
As a summary the procedure of the kernel SVM is as follows:

1. Choose a kernel,

2. map the data into the (possibly infinite-dimensional) Reproducing Kernel Hilbert Space
and

3. apply an SVM in this RKHS.

It seems obvious that choosing the kernel and its parameterscarefully can increase the perfor-
mance of an SVM a lot.
Note that the soft margin SVM now has an additional advantage: we introduced it as a possibility
of creating a hyperplane, even if the training data was not separable. Using a kernel SVM it is
often the case that separating all training data is possible. It may not be advisable though because
this would lead to overfitting: If there is an outlier in the data, which is wrongly labelled, a clas-
sifier which tries to be correct on the whole training data depends a lot on the outlier and will not
perform very well on the test data. How a bad choice ofC can lead to over- or underfitting is
shown in Figures 3.4-3.6.
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Figure 3.4: The dark line is the hyperplane in the RKHS represented in the input space and therefore our decision
boundary. ChoosingC = 1 ·m leads to underfitting: 5 classification errors.
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Figure 3.5: ChoosingC = 10 ·m results in only 1 classification error.
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Figure 3.6:C = 1000·m leads to overfitting: all points are classified correctly.

3.3 Hilbert-Schmidt Independence Criterion

There are different methods to measure the dependence or association between two random vari-
ables. Optimally, this measure should be zero if and only if the variables are independent. Some
approaches, however, only take second order dependence into account, which means they cannot
detect dependencies beyond correlation. Other methods (like the widely usedχ2 test) only work
for discrete data, which is a drawback because there is no canonical way of discretizing continu-
ous data. If we use too few bins for discretization, we loose information and if we use too many,
we do not have enough data in each bin. In our work we chose the Hilbert-Schmidt Independence
Criterion (HSIC); it does not suffer from those problems. Note that our method works for other
independence tests as well. In the experiments we tried several independence tests and the HSIC
performed best, probably because of the reasons mentioned above.
The HSIC is a kernel based method to detect dependence between two random variables: both
the joint probability distribution and the product of the marginal distributions are mapped in an
infinite-dimensional feature space in such a way that these two points coincide if and only if the
two random variables are independent.
In the first subsection we give some well-known results from functional analysis, that we need
later. Afterwards we introduce HSIC in two different ways; first we define it as the Hilbert-
Schmidt norm of the cross-covariance operator [8] and then as a special case of the Maximum
Mean Discrepancy (MMD) [30]. We show both possibilities in order to develop a deeper under-
standing for the HSIC.

Remark 3.23 For the formal setup of this whole section letX andY be two random variables,
that take values on (X, Γ) and (Y,Λ), respectively; here,X andY are two separable metric
spaces,Γ andΛ are Borelσ-algebras. Then (X × Y, Γ ⊗ Λ) is again a measurable space

33
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andX andY are independent if and only ifP(X,Y) = PX ⊗ PY.

We define kernelsk(., .) and l(., .) on the spacesX andY and denote the corresponding
RKHSs withHX andHY, respectively.

3.3.1 Some Functional Analysis.

We want to introduce HSIC as the Hilbert-Schmidt norm of the cross-covariance operator. In
order to do so we give some definitions and results from functional analysis, which include the
concepts of singular value decomposition and Hilbert-Schmidt operators.

Let H , H1 andH2 be two separable Hilbert spaces overR. Denote the set of all continuous
operators (i.e. bounded and linear functions)T : H1 → H2 by L(H1,H2) and setL(H) ≔
L(H ,H). We further define

Definition 3.24 A subsetS ⊂ H is called anorthonormal systemif 〈ei , ej〉 = δi j for all ei , ej ∈
H . An orthonormal systemS ⊂ H is called anorthonormal basisofH if H = spanS.

Definition 3.25

• ForT ∈ L(H1,H2) the adjoint ofT is the unique operatorT∗ ∈ L(H2,H1) satisfying

〈T x, y〉 = 〈x,T∗y〉 ∀x ∈ H1, y ∈ H2 .

• T ∈ L(H) is calledself-adjointif

T∗ = T .

• T ∈ L(H1,H2) is calledunitary if T is invertible and

T∗ = T−1 .

• T ∈ L(H) is calledpositiveif

〈T x, x〉 ≥ 0 ∀x ∈ H .

(This implies that all eigenvalues are non-negative.)

• A linear mapT : H1 → H2 is calledcompact(or a compact operator) if it maps
bounded subsets ofH1 onto relatively compact subsets ofH2. We writeK(H1,H2)
for the set of all compact operators andK(H) ≔ K(H ,H). It is not hard to see
that a compact operator is bounded and therefore continuous. ThusK(H1,H2) ⊂
L(H1,H2).

The following results from functional analysis are well-known. (For complete proofs see [20],
for example.)
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Remark 3.26

• Spectral Decomposition:
The spectral theorem allows us to decompose a compact self-adjoint operatorT ∈
K(H) into:

T x=
∑

k≥1

λk〈x, ek〉ek ∀x ∈ H ,

where7 (λ1, λ2, . . .) are the non-zero eigenvalues (each eigenvalue is repeatedas many
times as the dimension of its eigenspaces) with corresponding eigenvectors7 (e1, e2, . . .)
andλk → 0. Furthermore we have

‖T‖ = sup
k≥1
|λk| .

We can expand (e1, e2, . . .) to an orthonormal basis ofH by adding an orthonormal
basis of kerT:

H = ker T ⊕ lin(e1, e2, . . .) .

Notice, however, that opposed toEλ ≔ ker (λ − T) with λ , 0, the spaceE0 = ker T
can be infinite-dimensional and even non-separable.
For a general compact operatorT ∈ K(H1,H2) the spectral theorem does not hold,
of course, but we can apply it to the self-adjoint operatorTT∗. To do so we first need
the following two auxiliary results.

• Roots of operators:
Using the spectral decomposition you can construct roots from compact operators:
For every positive, self-adjoint operatorT ∈ K(H) there is a unique positive, self-
adjoint operatorS ∈ K(H), such that

S2 = T .

We writeS = T
1
2 . In case of the positive, self-adjoint operatorTT∗ we write |T | ≔

(TT∗)
1
2 .

• Polar Decomposition:
For everyT ∈ K(H1,H2) there is a unique operatorU ∈ L(H1,H2), such that

T = U |T | , U
∣
∣
∣
(kerU)⊥

is unitary and kerU = ker T .

(This reminds of the polar decompostion in the complex plane: z= |z|exp(iφ).)

• Singular Value Decomposition:
For everyT ∈ K(H1,H2) there exist orthonormal systems (e1, e2, . . .) of H1 and
( f1, f2, . . .) ofH2 (both possibly finite) and a non-decreasing sequence (sk) converging
to zero, such that

T x=
∞∑

k=1

sk〈x, ek〉 fk ∀x ∈ H1 .

This can be shown as follows: WriteT = U |T | and according to the spectral decom-
position we have|T |x = ∑

k sk〈x, ek〉ek. Now definefk ≔ U(ek).

7These collections may be finite.
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It follows that thes2
k are the eigenvalues ofTT∗ (repeated according to the dimension

of their eigenspaces). Thesk = sk(T) are calledsingular values.

Definition 3.27 T ∈ K(H1,H2) is called aHilbert-Schmidt operatorif
(
sk(T)

) ∈ l2, i.e.
∑∞

k=1 s2
k < ∞. For these operators define

‖T‖HS≔
∥
∥
∥
(
sk(T)

)∥∥
∥

l2
=





∞∑

k=1

s2
k





1/2

.

The linear space of all Hilbert-Schmidt operatorsT : H → H is denoted by HS(H).

Proposition 3.28 Assume T∈ K(H1,H2) is a Hilbert-Schmidt operator. Then the following
holds for all orthonormal bases(gm) ofH1 and(hn) ofH2;

‖T‖2HS =

∞∑

m,n=1

〈Tgm, hn〉2 =
∞∑

m=1

‖Tgm‖2

Proof Let T x=
∑∞

k=1 sk〈x, ek〉 fk be the singular value decomposition ofT. Following VI.6.2 in
[20] we have

∞∑

m,n=1

〈Tgm, hn〉2 =
∞∑

m=1

∞∑

n=1

〈Tgm, hn〉〈hn,Tgm〉 =
∞∑

m=1

‖Tgm‖2

=

∞∑

m=1

∥
∥
∥
∥
∥
∥
∥

∞∑

k=1

sk〈gm, ek〉 fk

∥
∥
∥
∥
∥
∥
∥

2

=

∞∑

m=1

∞∑

k=1

s2
k|〈gm, ek〉|2

=

∞∑

k=1

∞∑

m=1

〈gm, skek〉2 =
∞∑

k=1

‖skek‖2

=

∞∑

k=1

s2
k

Here we used Parseval’s equality [20] twice. �

Proposition 3.29 ‖.‖HS is a norm on HS(H).

Proof This follows from Proposition 3.28 and the fact that‖.‖l2 itself is a norm. Note, for
example

‖T‖HS = 0 ⇒
∞∑

m=1

‖Tgm‖2 = 0

⇒ Tgm = 0 ∀m≥ 0

⇒ T x=
∞∑

m=1

〈x, gm〉Tgm = 0 ∀x ∈ H

⇒ T = 0

�
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Most of the following proposition is easy to prove [20] (onlythe completeness requires some
work), but it is still useful:

Proposition 3.30 For T,S ∈ HS(H) define

〈T,S〉HS≔

∞∑

m,n=1

〈Tgm, hn〉〈S gm, hn〉 =
∞∑

k=1

〈S gk,Tgk〉 ,

for any orthonormal basis(g1, g2, . . .). Then〈., .〉HS is a dot product and induces‖.‖HS .
(HS(H), 〈., .〉HS) is a Hilbert space.

The tensor product between two functions is the last definition in this subsection.

Definition 3.31 For f ∈ H1 andg ∈ H2 define

f ⊗ 〈g, .〉 :
H2 → H1

h 7→ 〈g, h〉 f .

As a shorthand notation we writef ⊗ g≔ f ⊗ 〈g, .〉.
It holds

‖ f ⊗ g‖ = sup
‖h‖H2

=1
|〈g, h〉| · ‖ f ‖H1 = ‖g‖H2 · ‖ f ‖H1

and also

‖ f ⊗ g‖2HS = 〈 f ⊗ g, f ⊗ g〉HS

=
∑

m

〈
( f ⊗ g)(hm), ( f ⊗ g)(hm)

〉

H1

=
∑

m

〈〈g, hm〉H2 f , 〈g, hm〉H2 f
〉

H1

= 〈 f , f 〉H1

∑

m

〈g, hm〉H2 〈hm, g〉H2 = ‖ f ‖2H1
· ‖g‖2H2

,

where (h1, h2, . . .) is a (possibly finite) orthonormal basis ofH2.

3.3.2 HSIC using the cross-covariance operator

Let X andY be two random variables taking values on (X, Γ) and (Y,Λ), respectively and let
HX andHY be the corresponding Reproducing Kernel Hilbert Spaces. Wedefine the cross-
covariance operator, which – for carefully chosen kernel – captures all sorts of dependencies
betweenX andY. This definition is similar to the one given by Baker [31], although he uses
measures defined directly on the function spaces.

Definition 3.32 Thecross-covariance operator CX,Y : HY → HX is defined as being the unique
linear operator satisfying

〈 f ,CX,Yg〉 = EX,Y f (X)g(Y) − EX f (X)EYg(Y) ∀ f ∈ HX, g ∈ HY .

The expectations exist sincef andg are continuous and bounded functions (see Remark
3.12).
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The existence of such an operator is again ensured by Riesz representation theorem: obviously
the right-hand side is linear inf and additionally it is bounded with a similar argumentationas
above:

∣
∣
∣EX,Y f (X)g(Y) − EX f (X)EYg(Y)

∣
∣
∣ ≤

∣
∣
∣EX,Y f (X)g(Y)

∣
∣
∣ +

∣
∣
∣EX f (X)EYg(Y)

∣
∣
∣

≤ EX,Y| f (X)| · |g(Y)| + EX| f (X)| · EY|g(Y)|
≤ EX,Y‖ f ‖HX‖k(X, .)‖HX · |g(Y)|

+ EX‖ f ‖HX‖k(X, .)‖H · EY|g(Y)|
= ‖ f ‖HXEX,Y

√

k(X,X) · |g(Y)|
+ ‖ f ‖HXEX

√

k(X,X) · EY|g(Y)|

so
sup
‖ f ‖H=1

∣
∣
∣EX,Y f (X)g(Y) − EX f (X)EYg(Y)

∣
∣
∣ < ∞ .

Thus the expression can be written as a dot product〈 f ,CX,Y(g)〉. The right-hand side is also
linear ing, which implies linearity ofCX,Y.
Our next goal is to derive the Hilbert-Schmidt norm of this operator. If the norm is finite,CX,Y is
a Hilbert-Schmidt operator and we define

HSIC(P(X,Y)) ≔ ‖CX,Y‖2HS .

Lemma 3.33
CX,Y = EX,Y

[

k(X, .) ⊗ l(Y, .)
] − µ[PX] ⊗ µ[PY]

Proof We have for everyg ∈ HY and everyx ∈ X

CX,Yg(x) = 〈k(., x),CX,Yg〉
= EX,Yk(X, x)g(Y) − EXk(X, x)EYg(Y)

= EX,Y
(
k(X, .)g(Y)

)
(x) − EXk(X, .)EYg(Y) (x)

= EX,Y
(
k(X, .) ⊗ l(Y, .)

)
g (x) − µ[PX] ⊗ µ[PY]g (x)

=
(

EX,Yk(X, .) ⊗ l(Y, .) − µ[PX] ⊗ µ[PY]
)

g (x)

Ergo
CX,Y = EX,Y

[

k(X, .) ⊗ l(Y, .)
] − µ[PX] ⊗ µ[PY]

�

The lemma helps us to express the HSIC in terms of kernels:

HSIC(P(X,Y)) = EX,YEX̃,Ỹk(X, X̃)l(Y, Ỹ) − 2EX,YEX̃EỸk(X, X̃)l(Y, Ỹ) + EXEX̃EYEỸk(X, X̃)l(Y, Ỹ),

which is computed in [8].
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3.3.3 HSIC using the Maximum Mean Discrepancy

The Maximum Mean Discrepancy (MMD) provides a kernel based method for the so-called Two-
Sample-Problem. For this setting letX be a separable metric space with Borel-σ algebraΓ and
probability measuresP andQ. We are given two sets of iid samples{X1, . . . ,Xm} and{Y1, . . . ,Yn},
which are drawn fromP andQ respectively. The Two-Sample-Problem asks if the two samples
come from two different measures or ifP andQ are actually the same. The MMD measures the
difference between two probability measures and can be used to create a statistical test for testing

H0 : P = Q against

H1 : P , Q

Therefore the MMD is one solution to the Two-Sample-Problem.

Considering the distributionsP = P(X,Y) andQ = PX ⊗ PY leads to an independence criterion,
which turns out to be HSIC. This section consists of the following paragraphs:

• MMD as the Maximum Difference in Means

• MMD as the Distance of Mean Elements

• Conditions for the MMD to be a metric

• HSIC as a special Case of MMD

MMD as the Maximum Difference in Means We now investigate the difference between
two probability measuresP andQ. The MMD measures this difference depending on a function
classF .

Definition 3.34 Let X be a measurable space with measuresP andQ and letF be any class of
measurable functionsf : X → R. Then define theMaximum Mean Discrepancy (MMD)
as

MMD(F ,P,Q) = sup
f∈F

∣
∣
∣EX∼P f (X) − EY∼Q f (Y)

∣
∣
∣ .

Notice that for some classes we obtain well-known concepts,e.g.:

• F = {1A | A ∈ B} leads to the total variation between the measuresP andQ.

• F = { f | f continuous and bounded leads to the metrization of the weak convergence.

• F = { f | f = exp(i〈t, .〉), t ∈ Rd} leads to the biggest difference in the characteristic functions
of P andQ.

Surely the MMD is zero ifP equalsQ. And the larger the classF , the more probability measures
we are able distinguish. The following lemma (e.g. [21]) shows a sufficient condition for two
measures being equal.
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bc

bc

P
Q

bc

bc

µ[P]
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µ

Figure 3.7:P andQ are mapped from the space of all probability measures (left)into an RKHS (right). The MMD
can be shown to be their distance in the RKHS.

Lemma 3.35 LetX be a metric space andP, Q two Borel measures on(X, Γ). If
∫

f dP =
∫

f dQ
for all f ∈ Cb(X), thenP = Q.

Ergo, forF being the class of bounded continuous functions the MMD is zero only if P = Q.
This means, the MMD defines a metric on the space of all probability measures. For such a
huge class, the quantity is very hard to compute, of course. The question arises, how to choose a
function classF , which satisfies the following three criteria:

1. It is big enough to guarantee that the MMD is a metric.

2. It is small enough, such that it can be computed efficiently.

3. It is chosen in a way, such that sample estimate of the MMD converges reasonably fast to
the true value.

Gretton et al. [32] proposed to chooseF as being the unit ball in an RKHS:

F = { f ∈ H | ‖ f ‖H ≤ 1} .

Now the question for a good function class reduces to the problem of choosing a good kernel.
Before we come back to this question, we first introduce a different way of interpreting the MMD:

MMD as the Distance of Mean Elements The MMD has a very nice geometric interpre-
tation, too. Recall that we can represent probability measures as single points in an RKHS via
P 7→ µ[P] = EXk(X, .). If you take two measuresP andQ and map them into the RKHS, the
distance between these two mean elements turns out to be the MMD defined above.

Proposition 3.36 Let k(., .) ∈ L1. Then

MMD(P,Q) = ‖µ[P] − µ[Q]‖H

(see Figure 3.7).
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Proof

MMD(P,Q) = sup
‖ f ‖H≤1

∣
∣
∣EP f (X) − EQ f (Y)

∣
∣
∣

= sup
‖ f ‖H≤1

∣
∣
∣〈µ[P], f 〉H − 〈µ[Q], f 〉H

∣
∣
∣

= sup
‖ f ‖H≤1

∣
∣
∣〈µ[P] − µ[Q], f 〉H

∣
∣
∣

C-S
=

〈

µ[P] − µ[Q],
µ[P] − µ[Q]
‖µ[P] − µ[Q]‖

〉

H

= ‖µ[P] − µ[Q]‖H

�

This way of looking at the MMD is nice because of three different reasons:

1. It connects two quite different mathematical approaches of defining a distance for proba-
bility measures.

2. Using this formulation we can write the MMD in an easy closed-form expression:

MMD(P,Q) = ‖µ[P] − µ[Q]‖H
= 〈µ[P], µ[P]〉 − 2〈µ[P], µ[Q]〉 + 〈µ[Q], µ[Q]〉
= EXEX̃k(X, X̃) − 2EXEYk(X,Y) + EYEỸk(Y, Ỹ)

3. The problem of choosing a kernel that assures the MMD to be ametric is now equivalent
to finding a kernel that makes the embedding

P 7−→ µ[P]

injective.

Conditions for the MMD to be a metric Now we answer the question, for which kernels
the MMD is a metric or equivalently the embeddingµ is injective by stating results from the
literature. There are two different sufficient conditions on the kernel: It has to be either

• a universal kernel or

• a convolution kernel onRd, for which the Radon-Nikodym derivative of its inverse Fourier
transform is supported almost everywhere.

Definition 3.37 Let (X, d) be a compact metric space. A kernel onX is calleduniversalif the
corresponding RKHS is dense in the spaceC(X) of all continuous functions. Such an
RKHS is also calleduniversal.

The following theorem shows that this assumption is indeed sufficient (the proof is given by
Gretton et al. [33]):
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Theorem 3.38 LetF ≔ { f ∈ H | ‖ f ‖H ≤ 1} be the unit ball in a universal RKHS on a compact
metric spaceX. Then

MMD(P,Q) ≔ MMD(F ,P,Q) = 0 ⇐⇒ P = Q

Definition 3.39 LetX = Rd. A kernelk onX is called aconvolution kernelif it can be written as

k(x, y) = ψ(x− y) ,

whereψ is a bounded continuous positive definite function.

Bochner’s theorem (e.g. Theorem 6.6. in [34]) states that every positive definite function is the
Fourier transform of a Borel measure:

Theorem 3.40 Letψ : Rd → C be a continuous function. It is positive definite if and only if

ψ(x) =
∫

Rd
exp(−i〈x,w〉)dΛ(w) ,

whereΛ is a finite non-negative Borel measure onRd.

From now on we assume thatΛ is absolutely continuous with respect to the Lebesgue measureλ
and we write

dΛ
dλ
=: Ψ .

The following shows that the support ofΨ being strictly greater than zero almost everywhere, is
also a sufficient condition for the injectivity of the embedding, i.e. the property thatMMD(P,Q)
is zero only ifP = Q:

Theorem 3.41 Let k be a convolution kernel onRd whose corresponding Borel measureΛ has
the Radon-Nikodym derivativeΨ and let

supp(Ψ) ≔ {x ∈ Rd | Ψ(x) > 0} = Rd .

For the unit ballF = { f ∈ H | ‖ f ‖H ≤ 1} in the corresponding RKHS we then have once
more

MMD(P,Q) = MMD(F ,P,Q) = 0 ⇐⇒ P = Q

This result is due to [35].

Remark 3.42 The universal property has the drawback that we require the input spaceX to be
compact (that excludesRd), whereas the second condition needsX to beRd. Our data,
however, lie inRd and thus we make use of the second approach. We further note that all
conditions of this section on the kernel are satisfied by the Gaussian kernel

k(x, y) = exp

(

−‖x− y)‖2
2σ2

)

.

It is bounded, continuous and additionally it is universal [36] and the inverse Fourier trans-
form of a Gaussian is supported everywhere.
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HSIC as a special Case of MMD We show that the HSIC can be regarded as a special case of
the MMD. Consider a random vector (X,Y) taking values in the product space (X,Y) and define
a product kernel on the space (X,Y) via

X ×Y → R
(
(x, y), (x̃, ỹ)

) 7→ k(x, x̃) · l(y, ỹ)
,

wherek(., .) and l(., .) are kernels onX, Y, respectively. Then the MMD for the distributions
P = P(X,Y) andQ = PX ⊗ PY can be expressed as

MMD(P(X,Y),PX ⊗ PY)2 = HSIC(P(X,Y)) ,

which can be seen as follows:

MMD(P(X,Y),PX ⊗ PY)2 = 〈µ[P(X,Y)] − µ[PX ⊗ PY], µ[P(X,Y)] − µ[PX ⊗ PY]〉
= 〈µ[P(X,Y)], µ[P(X,Y)]〉 − 2〈µ[P(X,Y)], µ[PX ⊗ PY]〉

+ 〈µ[PX ⊗ PY], µ[PX ⊗ PY]〉
= EX,YEX̃,Ỹk(X, X̃)l(Y, Ỹ) − 2EX,YEX̃EỸk(X, X̃)l(Y, Ỹ)

+ EXEX̃EYEỸk(X, X̃)l(Y, Ỹ)

which is exactly the expression for HSIC(P(X,Y)) defined earlier (cf Section 3.3.2).

3.3.4 Sample Estimate of HSIC and its distribution

In any real-world situation we have to deal with a finite amount of data and thus we need a
sample estimate of HSIC, which is converging reasonably fast to the true value of HSIC. If we
want to create a statistical test, we further need at least anapproximation of the distribution of
this estimate under the null hypothesis of independence in order to bound the type one error.
Writing the HSIC in terms of kernels provides an easy way to get such a sample estimate. If we
are given (X1,Y1), . . . , (Xm,Ym), we can estimate HSIC(P(X,Y)) by a V-statistic [37] that is denoted
by ˆHSIC. An unbiased estimator for HSIC(P(X,Y)) is

k(X1,X2)l(Y1,Y2) − 2k(X1,X2)l(Y1,Y3) + k(X1,X2)l(Y3,Y4) ,

and the corresponding V-statistic has the form

ˆHSIC=
1

m2

m∑

i, j

k(Xi ,X j)l(Yi ,Yj) − 2
1

m3

m∑

i, j, f

k(Xi ,X j)l(Yi ,Yf ) +
1

m4

m∑

i, j, f ,g

k(Xi ,X j)l(Yf ,Yg) .

We can think of the V-statistic as being a plug-in estimator:if F denotes the distribution function,
you estimate the magnitude of interestθ(F) by θ(F̂m), where

F̂m(x) =
1
m

m∑

i=1

1Xi≤x

denotes the empirical (or sample) distribution function.
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Writing8 (K)i j ≔ ki j ≔ k(Xi ,X j) and (L)i j ≔ l i j ≔ l(Yi ,Yj) andH ≔ I − 1
m1 · 1t we can express

this estimate for HSIC(P(X,Y)) as a simple product of matrices:

1

m2
trace(KHLH) =

1

m2

∑

f ,l

(KH) f l(LH)l f

=
1

m2

∑

f ,l




− 1

m

∑

s,l

kf s +

(

1− 1
m

)

kf l








− 1

m

∑

s, f

l ls +

(

1− 1
m

)

l l f





=
1

m2

∑

f ,l





1

m2

∑

s,l

∑

r, f

kf sl lr −
m− 1

m2

∑

s, f

kf l l ls −
m− 1

m2

∑

s,l

kf sl l f

+
(m− 1)2

m2
kf l l l f

]

=
1

m2

∑

f ,l

[

kf l l l f
]

− 2

m3

∑

f ,l




kf l l l f +

∑

s, f

kf l l ls +
∑

s,l

kf sl l f





+
1

m4

∑

f ,l





∑

s,l

∑

r, f

kf sl lr + kf l l l f + 2
∑

s,l

kf sl l f





=
1

m2

m∑

i, j

ki j l i j − 2
1

m3

m∑

i, j, f

ki j l i f +
1

m4

m∑

i, j, f ,g

ki j l f g

= ˆHSIC

Moreover, this shows that the estimatêHSIC can be computed inO(m2) time. [8] investigated the
convergence of this estimator and computed corresponding deviation bounds.

As already mentioned, for a hypothesis test for independence we further need to know the distri-
bution of the test statistic ˆHSIC under the assumption of independence.
One approach is using abootstrap estimator: you brake the connection betweenXi andYi, cre-
ate new pairs (Xi ,Yj) by shuffling and compute a new value forˆHSIC. This is done many times
and sinceXi andYj can be regarded as being independent, you obtain an empirical distribution of

ˆHSIC under the null hypothesis of independence. This takes alot of running time, though.
A different approach is using aGamma approximation for the distribution of HSIC, which is
based on the following result (see [32] and Section 5.5.2. in[37]):

Theorem 3.43 Under the assumption of independence (i.e. HSIC(P(X,Y)) = 0), we have

m · ˆHSIC
d→ 6 ·

∞∑

l=1

λl w2
l ,

where w2
l

iid∼ χ2
1 andλl solves the eigenvalue problem

λl gl (zj) =
∫

hi jqr gl(zi) dP(Zi ,Zq,Zr ) ,

8Here,I is them×m identity matrix and1 them× 1 vector containing only ones.
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where Zj = (X j ,Yj) and hi jqr =
1
4!

∑

{t,u,v,w}={i, j,q,r} ktultu + ktulvw − 2ktultv; here, the sum
represents all ordered quadruples(t, u, v,w) drawn without replacement from(i, j, q, r).
(There are4! summands.)

Although we know the asymptotic distribution ofˆHSIC, it is hard to get exact quantiles, for ex-
ample. This is due to the difficult eigenvalue problem and to the infinite sum of random variables.
Therefore we use an approximation for this distribution, which was suggested by Kankainen [38]:

m ˆHSIC
d≈ Γ(α, β) ,

where the parametersα andβ are chosen, such that the first two moments of this gamma distri-
bution are matched to the first two moments ofm · ˆHSIC under the independence hypothesis:

α =
(E ˆHSIC)2

var ˆHSIC

β = m · var ˆHSIC

E ˆHSIC

The moments of ˆHSIC can be estimated efficiently (computable inO(m2)) with a negligible bias
[32]:

Ê =
1
m
+

1
m4(m− 1)2

∑

i< j

ki j

∑

i< j

l i j −
1

m2(m− 1)

∑

i< j

ki j −
1

m2(m− 1)

∑

i< j

l i j

ˆvar=
2(m− 4)(m− 5)

m(m− 1)(m− 2)(m− 3)
1t (

B− diag(B)
)

1

whereB =
(

(HKH). · (HLH)
)

.2. Here,A. · B andA.2 denote entrywise operations between matri-
ces.

We now summarize

Theorem 3.44 [Independence Test based on HSIC] Let(X1,Y1), . . . , (Xm,Ym) be independent
and identically distributed according toP(X,Y). We can test the hypothesis

H0 : X ⊥⊥ Y against

H1 : X ⊥⊥� Y

with a significance level ofα by using two kernels k and l satisfying the conditions of
Theorem 3.41 (e.g. Gaussian kernels). Compute the statistic

ˆHSIC=
1

m2
trace(KHLH) ,

where Ki j = k(Xi ,X j), Li j = l(Xi ,X j) and H= 1− 1
m1 · 1t and define the decision function

d(X1, . . . ,Xn,Y1, . . .Ym) =

{

H0, ˆHSIC≤ c
H1, ˆHSIC> c

.
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Use the fact that m· ˆHSIC is approximatelyΓ(α, β) distributed with

α =
Ê2

ˆvar

β = m · ˆvar

Ê

and choose c such that the type 1 error is bounded by the significance levelα.
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4 Causal Inference on Time Series

We now consider the problem already mentioned in the introduction: We are given some obser-
vationsX1, . . . ,XT of a (real-valued) time series, but we do not know if this sample has been
reversed. That means we do not know ifX1, . . . ,XT or if XT , . . . ,X1 represents the true time
direction. This can occur in the following situation: We receive the time series sample on a sheet
of paper written by an Israeli. Fortunately, he used Arabic numerals, but unfortunately we do not
know if he started writing on the right or on the left.
Thus we are looking for an algorithm, which can distinguish between the true and the reversed
time direction based on a finite sample (see Figure 4.1).

23.12.91 23.12.92

1500

1600

1700

1800

DAX forwards

23.12.92 23.12.91

1500

1600

1700

1800

DAX backwards

Figure 4.1: DAX values between 23.12.1991 and 23.12.1992. The left panel shows the true time direction, the right
panel the reversed one. This is one of the examples, for whichour ARMA method was able to identify the correct
direction.

Notice that this a hard problem and we surely have to make somerestrictions on the class of
considered time series in order to be able to identify the true time direction.
In this section we propose two methods, one using SVMs and oneusing an ARMA model for
time series.

4.1 Learning the Time Direction using SVMs

For this method we apply Support Vector Machines in different ways in order to distinguish
between the two directions of time. Therefore assume we are given a strictly stationary time series
(Xt)t∈Z. Strictly stationary means that the distribution of (Xt1+h, . . . ,Xtn+h) does not depend onh
(see Definition 4.3 below). We further assume that there is a difference in the finite-dimensional
distributions (Xt,Xt+1, . . . ,Xt+w) and (Xt+w, . . . ,Xt+1,Xt). If all of these distributions were the
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same, we could not detect a difference.
In the SVM approach we do not further investigate this difference and try to learn the nature of
it by training an SVM on many data from time series, for which we know the true direction. As
a naive methodwe just use an SVM on fixed sized windows of the time series. Forthe second
approach (theSVM-RKHS method) we construct an SVM on the finite-dimensional distributions
of the time series. Therefore we embed these distributions into an RKHS (see Section 4.1.1) and
try to separate the points in the RKHS by a standard SVM, i.e. linearly. This is extended to a
non-linear separation in theSVM-RKHS-PCA method, in which we choose the same embedding
for the distributions, but we first apply a principal component analysis (Section 4.1.2) to the data
points and perform an SVM on the new coordinates.
These methods are described in more detail in Section 4.1.3.

4.1.1 Hilbert Space Embeddings of Sample Distributions

Recall that for some kernels (like the Gaussian kernel) we have an injective embedding of prob-
ability measures into an RKHS via the mapping

µ[PX] = Ek(X, .) .

Notice that even if we use a kernel, which does not satisfy theconditions necessary for the embed-
ding to be injective, this embedding can still be useful. If we use a polynomial kernel of degree
d onR, for example, the embedding will be injective only on a smaller class of distributions. If
two distributions coincide in the firstd moments, for example, they will be indistinguishable in
the RKHS.

Now assume we are given an iid sample (X1, . . . ,Xm) of the distributionPX. We know that we
can estimate the distribution functionF of X by its sample estimtate

F̂m(t) =
1
m

m∑

i=1

1Xi≤t .

If (X1, . . . ,Xm) takes the value (x1, . . . , xm), this corresponds to a measureP̂X
m that has mass1m on

each observed valuexi. ReplacingPX by P̂X
m leads to the following sample estimate of the mean

element in the RKHS:

µ̂[PX] ≔ µ[P̂X
m] =

1
m

m∑

i=1

k(xi , .) . (4.1)

It turns out that these representations are unique in the following sense1:

Proposition 4.1 Let k be a strictly positive definite kernel. Then

1
m

m∑

i=1

k(xi , .) =
1
n

n∑

j=1

k(x̃ j , .) ⇔ m= n and xi = x̃σ(i) ∀i = 1, . . . ,m ,

for a permutationσ ∈ Sm.

1B. Schölkopf, MPI Tuebingen, told me this remark in a personal discussion.

48



4.1 Learning the Time Direction using SVMs

Proof We prove the even more general case

m∑

i=1

αik(xi , .) =
n∑

j=1

β jk(x̃ j , .) ⇒ m= n and xi = x̃σ(i) ∀i = 1, . . . ,m

Wlog it is enough to show that there is aj ∈ {1, . . . ,m}, such thatx1 = x̃ j . Assume
x1 , x̃ j ∀ j. Then we can rewrite the left hand side as

max(m,n)∑

i=1

γik(yi , .) = 0 ,

whereyi are distinct values (eitherxi or x̃i) andy1 = x1, γ1 = α1. Taking the norm yields

max(m,n)∑

i, j=1

γiγ jk(yi , y j) = 0 ,

which is contrary to the strictly positive definite kernel. �

This proposition shows that a single point in the RKHS contains all information about the whole
sample. This statement, however, is not surprising, since we already know that the embedding
of distributions is injective under some conditions on the measures and on the kernel. Here we
showed that we do not even need these additional conditions if the kernel is strictly positive defi-
nite.

Notice that for the two SVM-RKHS approaches we want to apply an SVM (or a Principal Com-
ponent Analysis (PCA), respectively) to these points in theRKHS. We have already seen that we
only need the dot product matrix〈φi , φ j〉 of the considered pointsφi in order to perform an SVM.
As we will see below (Section 4.1.2) the same is true for PCA. Thus we still have to compute the
pairwise dot products of the pointsφx =

1
m

∑m
i=1 k(xi , .) in the RKHS. This is done as follows

〈 1
m

m∑

i=1

k(xi , .),
1
n

n∑

j=1

k(x̃ j , .)
〉

=
1

m n

m∑

i=1

n∑

j=1

〈

k(xi , .), k(x̃ j , .)
〉

=
1

m n

m∑

i=1

n∑

j=1

k(xi , x̃ j) . (4.2)

4.1.2 PCA

Let X be a vector of random variables inL2 with mean zero and covariance matrixΣ. For
m samplesx1, . . . xm with sample mean zero, the sample covariance matrix is defined as Σ̂ =
1
m

∑m
i=1 xixT

i . In standard PCA we consider the eigenvalue decomposition of the sample covari-
ance matrix (which is symmetric and therefore has only real eigenvalues). The eigenvectors are
called principal components and are usually ordered according to the eigenvalues. The first prin-
cipal component corresponds to the largest eigenvalue. From

Σ̂v =
1
m

m∑

i=1

〈xi , v〉xi
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4 Causal Inference on Time Series

it is obvious thatΣ̂ is positive (semi-)definite and all eigenvalues are non-negative. Further we
notice that all eigenvectorsv with λ > 0 lie in span(x1, . . . , xm). It follows that all vectors in this
span are eigenvectors ofΣ to the eigenvalueλ if and only if

λ〈xi , v〉 = 〈xi , Σ̂v〉 ∀i = 1, . . . ,m

This can be seen as follows: Construct an orthonormal basisx̃1, . . . , x̃m̃ of the span using Gram-
Schmidt, for example. We then have

λ〈x̃i , v〉 = 〈x̃i , Σ̂v〉 ∀i = 1, . . . , m̃

and it followsλv = Σ̂v.

Principal component analysis can also be done in an RKHS (see[19]). Therefore we considerm
pointsφ1, . . . , φm in the Hilbert space and again we assume that they are centered:

∑m
i=1 φi = 0.

Define the covariance operator as

Σ̂ =
1
m

m∑

i=1

〈φi , .〉φi .

Since the Hilbert space may be infinite-dimensional, we cannot necessarily write this in terms of
matrices. Again this operator is positive (〈Σ̂v, v〉 ≥ 0) and thus all eigenvaluesλ are non-negative.
Notice further that all non-zero eigenvalues can again be written as a linear combination of the
φ j:

v =
m∑

j=1

α jφ j . (4.3)

Furthermore (with the same argumentation as above), the eigenvalue equation reduces to

λ〈φi , v〉 = 〈φi , Σ̂v〉 ∀i = 1, . . . ,m.

Using (4.3) yields

λ

m∑

j=1

α j〈φi , φ j〉 =
1
m

m∑

j=1

α j
〈

φi ,

m∑

k=1

φk〈φk, φ j〉
〉 ∀i = 1, . . . ,m,

which reduces to
mλKα = K2α (4.4)

if we write K for the Gram matrixKkl ≔ 〈φk, φl〉 andα for (α1, . . . , αm)t. This eigenvalue problem
is equivalent to

mλα = Kα (4.5)

since we can show (see e.g. the appendix ofKernel Principal Component Analysisin [39]) that
all solutionsα which satisfy (4.4) but not (4.5) are of the formKα = 0. And for such a solution,
however, we would have

〈φi ,

m∑

j=1

α jφ j〉 = (Kα)i = 0 ∀i ,
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4.1 Learning the Time Direction using SVMs

which shows that we are not interested in it: It corresponds to a vectorv =
∑m

j=1α jφ j, which does
not lie in span(φ1, . . . , φm). Conversely, it is obvious that all solutions of (4.5) satisfy (4.4).
Thus we have seen that performing a PCA in an RKHS basically reduces to diagonalizing the
Gram matrix (4.5). Letα(i) denote the eigenvector corresponding to the eigenvaluemλi. Note
that we still have to normalize the solutions to ensure that the principal components have length
one:

1 =

〈 m∑

j=1

α
(i)
j φ j ,

m∑

j=1

α
(i)
j φ j

〉

= 〈α(i),Kα(i)〉 = mλi〈α(i), α(i)〉 .

The projection of data pointφk onto thei-th principal component
∑m

j=1α
(i)
j φ j is easily computed:

〈φk,

m∑

j=1

α
(i)
j φ j〉 = (Kα(i))k .

Similarly, we can compute the expansion in the principal components for a new pointψ in the
RKHS:

〈ψ,
m∑

j=1

α
(i)
j φ j〉 =

m∑

j=1

α
(i)
j 〈ψ, φ j〉 .

4.1.3 The SVM Method

Naive Method As a first idea we use a kernel SVM on a finite subset of the time series data
with fixed length. For testing its performance consider 200 time series, for example. We first
take 100 consecutive values out of each time series and then choose our training set (say 180 out
of the 200 samples). Then we have 360 training points, each ofwhich is labelled as+1 or −1
depending if they represent the true direction or if they arereversed samples. We then train the
SVM and evaluate the predictions it makes on the test set consisting of the last 40 time series.
This method cannot be expected to work well: We expect that the difference between forward
and backward going time can be found in the finite-dimensional distributions of the time series.
The corresponding information does lie in the first 100 data points, but in a subtle way. Therefore
the naive SVM is more unlikely to pick up this information than the following SVM methods,
which are adjusted to the finite-dimensional distributions. In Machine Learning the way the data
is presented to the machine matters.
We annihilated the linear trend of the time series because wedid not want the SVM adapt to this
feature. It is improbable, however, that the naive SVM finds any relevant features needed for the
distinction between forwards and backwards going time.

SVM-RKHS Method We learned in Section 3.3.3 that we can map a distribution of arandom
variable in an RKHS, such that all statistical properties are represented. If we have a finite sample
of this variable, this mean element can be estimated by looking at the sample mean of the feature
maps (cf (4.1)). In Section 4.1.1 we have seen that the mapping is one-to-one in the following
sense: if two function values in the RKHS are the same then thesamples are of the same size and
consist of exactly the same points. Therefore we can say thatthese Hilbert space representations
inherit all relevant statistical information of the finite sample in input space. Now we want to
apply this idea to the finite-dimensional distributions of atime series. Since we can compute the
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4 Causal Inference on Time Series

pairwise dot products of these points we are able to perform alinear SVM in the RKHS. This
approach can be summarized as follows:

1. Choose a fixed window lengthw and take for each time series many finite-dimensional
samples

xt1 = (Xt1,Xt1+1, . . . ,Xt1+w)

xt2 = (Xt2,Xt2+1, . . . ,Xt2+w)
...

xtm = (Xtm,Xtm+1, . . . ,Xtm+w) .

The ti can be chosen in a way, such thatti+1 − (ti + w) = const, for example. The larger
this gap between two samples of the time series is, the less dependent these samples will
be (ideally, we would like to have iid data, which is, of course, impossible for time series).
Represent the distribution of (Xt, . . . ,Xt+w) in the RKHS using the point

1
m

m∑

i=1

k(xti , .) .

2. Perform a (linear) soft margin SVM on these points (one foreach time series) using (4.2).

This procedure should not be confused with the usual kernel SVM, which is fundamentally dif-
ferent.

SVM-PCA-RKHS Method The SVM-RKHS method just mentioned is doing an SVM on sam-
ple representations of the finite-dimensional distributions in the RKHS. Although the RKHS may
be infinite-dimensional, the Support Vector Machine still performs a linear classification. It may
be the case, however, that the vectors in the RKHS cannot be separated linearly. The goal of this
last SVM method is to do a non-linear classification within the RKHS. This can be done using
principal component analysis (PCA). Therefore we determine the principal components (in the
RKHS), project all data points on the most important directions and do a usual kernel SVM clas-
sification on these coefficients. In Section 4.1.2 we have given a short review of standard PCA
and showed, how it can be implemented in an RKHS. To summarizethis method:

1. As above, represent each time series in the RKHS using the point

1
m

m∑

i=1

k(xti , .) .

2. Perform a PCA on these points (one for each time series) using (4.2) and expand the points
with respect to the principal components: for each time series you get a vector of coeffi-
cients.

3. Discard all principal components with eigenvalue smaller than a threshold, such that you
remain with shorter coefficient vectors (of length 10, say).
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4.2 Learning the Time Direction using ARMA Models

4. Perform a kernel SVM on these coefficient vectors.

Remark 4.2 Note that the SVM-RKHS and the SVM-RKHS-PCA method are both possibilities
of performing an SVM on probability distributions and therefore are interesting concepts
in itself. They combine the idea of embedding distributionsinto an RKHS and performing
an SVM. We have not heard that this idea has been used before.

4.2 Learning the Time Direction using ARMA Models

We first introduce the concept of ARMA processes. Later we show how they can be used to
distinguish between the two time directions.

4.2.1 Time Series Analysis

Time series are stochastic processes indexed overZ, which means they are a (countable) collec-
tion of random variables. Throughout the whole section we consider only non-degenerate ran-
dom variables, that means random variables, for which thereis noa ∈ R, such that its distribution
function can be written as

F(x) = 1x≥a(x) .

We now give some basic definitions and important results.

Definition 4.3 • A time seriesis a family of random variables (Xt)t∈Z over a probability space
(Ω,F ,P).

• A time series (Xt)t∈Z is calledstrictly stationaryif

(Xt1, . . . ,Xtk)
d
= (Xt1+h, . . . ,Xtk+h) ∀k, t1, . . . , tk, h ∈ Z .

• A time series (Xt)t∈Z is calledweakly (or second-order) stationary2 if Xt ∈ L2 and

EXt = µ and cov(Xt,Xt+h) = γh ∀t, h ∈ Z ,

i.e., both mean and covariance do not depend on the timet, but the latter only depends
on the time gaph. h 7→ γh is called theauto-covariance function.

• A time series (ǫt)t∈Z is called awhite noiseprocess ifǫt ∈ L2, Eǫt = 0 and

cov(ǫt, ǫt+h) = 0 ∀h ∈ Z

.
• A time series (ǫt)t∈Z is called aniid white noiseprocess ifǫt is iid.

Definition 4.4 • A time series (Xt)t∈Z is called amoving averageprocess of orderq and we
write MA(q) if it is weakly stationary and if

Xt =

q∑

j=1

θ jǫt− j + ǫt ∀t ∈ Z ,

for iid white noiseǫt ∈ L2.
2In the literature sometimes the prefixweaklyor strictly is omitted; we do not adapt to this notation in order to avoid

confusion.
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4 Causal Inference on Time Series

• A time series (Xt)t∈Z is called anauto-regressiveprocess of orderp and we write
AR(p) if it is weakly stationary and if

Xt =

p∑

i=1

φiXt−i + ǫt ∀t ∈ Z ,

for iid white noiseǫt ∈ L2

• A time series (Xt)t∈Z is called anauto-regressive moving averageprocess of order
(p, q) and we write ARMA(p, q) if it is weakly stationary and if

Xt =

p∑

i=1

φiXt−i +

q∑

j=1

θ jǫt− j + ǫt ∀t ∈ Z ,

for iid white noiseǫt ∈ L2

• A time series (Xt)t∈Z is called an auto-regressiveintegratedmoving average process
of order (p, q, d) and we write ARIMA(p,q,d) if∆dXt is an ARMA(p,q), where∆Xt =

Xt − Xt−1.

Define the backward shift operatorB via B jXt = Xt− j in order to simplify the notation in
the definitions above. The equation for an ARMA process, for example, simplifies to

φ(B)Xt = θ(B)ǫt ∀t ∈ Z ,

whereφ(z) = 1− φ1z− . . . − φpzp andθ(z) = 1+ θ1z+ . . . + θqzq.

Note that in the literature ARMA processes are sometimes defined without the iid assumption of
the noise, that means they only require white noise processes.

The following remark helps us to determine the auto-covariance function of an AR process:

Remark 4.5 Assume that (Xt) is an AR(p) process. That means for allt ∈ Z

Xt = φ1Xt−1 + . . . + φpXt−p + ǫt .

Considering cov(Xt,Xt+k), k ≥ 1 yields the so-called Yule-Walker equations:

γk = φ1γk−1 + . . . + φpγk−p .

For the special case of an AR(1) process we haveγk = φ1γk−1. With

γ0 = cov(Xt,Xt) = φ
2
1γ0 + σ

2

it follows

γ0 =
σ2

1− φ2
1

and γk =
φk

1 · σ
2

1− φ2
1

.

Remark 4.6 Now we consider ARMA processes with additional constraintson the coefficients.
The following arguments (mainly given by [40]) show why these restrictions can be re-
garded as natural:
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4.2 Learning the Time Direction using ARMA Models

• φ(z) andθ(z) do not have common zeros
Assume there is at least one common zero. If none of the zeros lie on the unit circle,Xt

is the unique weakly stationary solution of the ARMA equation, in which all common
factors are cancelled. If one of the common zeros lie on the unit circle, the ARMA
equation may have more than one weakly stationary solution.

• φ(z) does not have a zero on the unit circle
If it did and additionally there are no common zeros ofφ(z) andθ(z), it can be shown
that the ARMA equation has no weakly stationary solution at all. A simple example
for this is the equationXt = Xt−1 + ǫt. Considering the variance of this process, it is
clear that there is no such thing as an AR(1) process withφ = 1.

Further, it is natural to consider processes for which the noise is independent of the last values of
the time series; that means for every point in time there is anadditive random shock, which does
not depend on the last values of the time series:

Definition 4.7 An ARMA( p, q) process satisfyingφ(B)Xt = θ(B)ǫt is calledcausalif

ǫt ⊥⊥ (Xt−1, . . . ,Xt−h) ∀h ≥ 1 . (4.6)

Proposition 4.8 For an ARMA(p, q) process satisfyingφ(B)Xt = θ(B)ǫt, whereφ(z) andθ(z) have
no common zeros, the following is equivalent3:

(i) The process is causal.
(ii) There exists a sequence(ψi), such that

∑∞
i=0 |ψi | < ∞ and

Xt =

∞∑

i=0

ψiǫt−i . (4.7)

(iii) φ(z) does not have any zeros in the unit circle|z| ≤ 1.

If this is the case, the coefficientsψi of (4.7)are determined by

ψ(z) =
∞∑

i=0

ψiz
i =

θ(z)
φ(z)

|z| ≤ 1

and the sum(4.7) converges absolutely with probability one (Proposition 3.1.1 in [40]).
Furthermore(4.7) is the unique weakly stationary solution ofφ(B)Xt = θ(B)ǫt.

It is important that (ii ) is not a property of the processXt alone, but rather of the relationship
betweenXt andǫt.

Proof • (i)⇐ (ii ) :
Wlog let h = 1. Define

X(n)
t ≔

n∑

k=1

ψiǫt−k .

3Note that in [40] causal processes are actually defined as those satisfying condition (ii).
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Because cos and sin are bounded continuous functions, we know by the definition of
weak convergence that the characteristic functions are converging pointwise:

ϕ
PX(n)

t
(s) −→ ϕPXt (s) ∀s∈ R .

Further (X(n)
t , ǫt+1)

d→ (Xt, ǫt+1) holds, sinceX(n)
t

P-a.s.→ Xt and thus (X(n)
t , ǫt+1)

P-a.s.→
(Xt, ǫt+1). Then

ϕP(ǫt+1,Xt )(u, v) = lim
n→∞

ϕ
P(ǫt+1,X

(n)
t )

(u, v)

= lim
n→∞

ϕPǫt+1(u) · ϕ
PX(n)

t
(v)

= ϕPǫt+1(u) · lim
n→∞

ϕ
PX(n)

t
(v)

= ϕPǫt+1(u) · ϕPXt (v)

= ϕPǫt+1⊗PXt (u, v)

and because of the uniqueness of characteristic functions we have thatǫt+1 andXt are
independent.

• (i)⇒ (ii ) :
We know (e.g. Theorem 3.1.3 in [40], Laurent series expansion) thatXt can be written
as

Xt =
∑

i∈Z
ψiǫt−i . (4.8)

We have to show that for causal processes all of theψi , i < 0 are zero. Ifψi0 , 0 for
i0 < 0, it follows that

ψi0ǫt−i0 +
∑

i∈Z−i0

ψiǫt−i = Xt ⊥⊥ ψi0ǫt−i0 , (4.9)

whereψi0ǫt−i0 and
∑

i∈Z−0ψiǫt−i are independent (same reasoning as above). Thus
(4.9) contradicts Lemma 2.7.

• (ii )⇔ (iii ) :
This is shown as Theorem 3.1.1. in [40].

�

Above we have considered processes, which have finite variance and which are weakly stationary.
Of course processes with finite variance and strict stationarity are just special cases. It is possible,
however, to extend the last result to strictly stationary processes, which do not require a finite
variance. In order to ensure strict stationarity we consider so-called Levy skew stable (orα-
stable) distributions (see Section 13.3. in [40]):

Definition 4.9 A random variableZ has aLevy skew stabledistribution if the characteristic func-
tion of Z has the form

ϕZ(t) =






exp
(

itµ − |ct|α
2

(
1− iβ sgn(t) tan(πα/2)

))

for α , 1

exp
(

itµ − |ct|α
2

(
1+ iβ sgn(t) ln|t| )

)

for α = 1
,
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4.2 Learning the Time Direction using ARMA Models

where the exponentα lies in [0, 2], the skewness parameterη in [−1, 1] and the scale pa-
rameterc in R. Forα = 2 we obtain a Gaussian distribution, forα = 1 andβ = 0 a Cauchy
distribution.

These distributions have the following stability property[40]:
A random variableZ is Levy stable if and only if there existan > 0 andbn ∈ R, such that

Z1 + . . . + Zn
d
= anZ + bn

for all Z1, . . . ,Zn,Z
iid∼ Levy stable.

Now we extend the definition of ARMA processes:

Definition 4.10 A process (Xt) is called astrictly stationary ARMA(p, q) process if the noiseǫt
is Levy stable distributed and the process satisfies

φ(B)Xt = θ(B)ǫt .

Again, under some conditions onφ andθ, we can write the process as a general linear process
(see Proposition 13.3.2 in [40]):

Theorem 4.11 Let (Xt) be a strictly stationary ARMA(p, q), which satisfiesφ(B)Xt = θ(B)ǫt,
whereφ(z) and θ(z) have no common zeros. Ifφ(z) does not have any zeros in the unit
circle |z| ≤ 1,

Xt =

∞∑

i=0

ψiǫt−i

is the unique strictly stationary solution ofφ(B)Xt = θ(B)ǫt. The coefficientsψi are deter-
mined by

ψ(z) =
∞∑

i=0

ψiz
i =

θ(z)
φ(z)

|z| ≤ 1 .

This extension to strictly stationary ARMA processes is necessary because in real data you often
have noise with heavier tails than the Gaussian, which may not even have a finite variance. In our
simulations we use Cauchy distributed noise as an example for a Levy stable distribution (with
non-finite variance).

4.2.2 Reversibility of linear Time Series

In Section 2.2 we have already seen that linear causal relationships do not have to be reversible. In
fact, the normal distribution turned out to be a necessary and sufficient condition for reversibility.
One of the main theoretical results of this work is a corresponding statement for auto-regressive
moving average processes.

Definition 4.12 We call a causal ARMA(p, q) process withφ(B)Xt = θ(B)ǫt, time-reversibleif it
can also be written as a causal ARMA( ˜p,q̃) process in the different time direction, i.e. if
there exist ˜p,q̃, φ̃1, . . . , φ̃p̃, θ̃1, . . . , θ̃q̃ and a noise ˜ǫt, such that

Xt =

p̃∑

i=1

φ̃iXt+i +

q̃∑

j=1

θ̃ j ǫ̃t+ j + ǫ̃t ǫ̃t ⊥⊥ (Xt+1,Xt+2, . . . ,Xt+h) ∀h .
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In the theoretical work [41] and [42] the authors call a strictly stationary process time-reversible
if (X0, . . . ,Xh) and (X0, . . . ,X−h) are equal in distribution for allh. This notion is not appropriate
for our purpose because, a priori, it could be that both forward and backward process both are
ARMA processes even though they do not coincide in distribution. Nevertheless, their result that
(mainly) only Gaussian ARMA processes are time-reversibleis similar to the one we will prove,
but as already said it is more restrictive, though.

For an AR(1) process
Xt = φ1Xt−1 + ǫt

Theorem 2.10 of Section 2.2 shows that this process is only reversible for Gaussian noise. It is
not straightforward to apply Theorem 2.11 to an AR(p) process

Xt =

q∑

i=1

φ1Xt−i + ǫt

because the sum does not only consist of independent random variables. In order to cope with
this problem we first introduce a characterization of the normal distribution, which is a gener-
alization of the Darmois-Skitovich theorem and then consider the MA(∞) representation of an
ARMA process. Recall that the Darmois-Skitovich theorem tells us that if two different linear
combinations of independent random variables are themselves independent then all summands
are normally distributed. It turns out that this can be generalized to an infinite sum. This was first
done by Mamai [43]:

Theorem 4.13 Let (Xt)t be a sequence of independent random variables and assume that both
∑∞

i=1 ai Xi and
∑∞

i=1 biXi converge almost surely. Further suppose that the sequences{ai
bi

:

bi , 0} and{bi
ai

: ai , 0} are bounded. If

∞∑

i=1

aiXi and
∞∑

i=1

biXi

are independent, then each Xi , for which aibi , 0, is normally distributed.

Before we can prove this theorem we need the following generalized version of Theorem 2.9,
which was also given by Mamai [43] (see also Theorem 7.8 in [13]).

Theorem 4.14 Let f1, f2, . . . be a sequence of characteristic functions, which satisfy

∞∏

i=1

f αi
i (t) = f (t) ,

for someαi > α > 0 and for all t in a neighbourhood of zero, where f is the characteristic
function of a normal distribution. Then every fi itself is the characteristic function of a
normal distribution.

Proof [of Theorem 4.13] The core of the proof is the same as the one for Theorem 2.8. We have
to extend all sums and products to infinity. If the series converge almost surely, it is obvious
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that the corresponding products of characteristic functions are converging pointwise. We
even know that this convergence is uniformly in any finite interval. This can be seen, for
example, in [44]. Therefore we have

∞∏

i=1

ϕi(aiu+ biv) =
∞∏

i=1

ϕi(aiu)
∞∏

i=1

ϕi(biv) .

Now we cannot conclude as easily as in the proof of Theorem 2.8that ϕi(t) , 0 for all
t ∈ R (if one side vanishes, it does not imply that one of the factors does). Instead, we have
to restrict ourselves to an interval around 0 and consider functionsϕ̃i(t) ≔ ϕi(t)ϕi(−t) =
|ϕi(t)2|, which are the characteristic functions of the random variablesYi ≔ Xi − X̃i , where
X̃i is an independent copy ofXi. These functions are always positive and bounded away
from zero in an interval around the origin. Now we are able to consider logarithms (which
are continuous!).

∞∑

i=1

ψi(aiu+ biv) =
∞∑

i=1

ψi(aiu) +
∞∑

i=1

ψi(biv) =: A(u) + B(v)

whereψi = ln ϕ̃i. If Yi turns out to be Gaussian,Xi is as well because of Cramér’s theorem
[16]. The rest is analogue to above if we take the uniform convergence into account, which
justifies a term-by-term integration, and if we use Theorem 4.14 instead of Theorem 2.9.�

Now we are able to prove the following, central theorem:

Theorem 4.15 Assume that(Xt) is a causal ARMA process with iid noise and non-vanishing AR
part. Then the process is time-reversible if and only if the process is Gaussian distributed.

Furthermore, if this is the case, the order of the process andthe parameters stay the same:
p̃ = p, q̃ = q, φ̃i = φi , θ̃ j = θ j and even the variance of the Gaussian noise does not change.

Proof Although technically this is not necessary, we do the proof not only for the general case
of an ARMA(p,q) process but also for the special cases of AR(1) and AR(p) processes
with finite variance noise in order to achieve a better understanding.

• ⇐:

1. AR(1)
Letσ2 denote the variance of the iid white noise Gaussian processǫ.
The reversibility is shown in Example 2.6. There we constructed a new noise ˜ǫ,
such that

Xt =
φ

φ2 + σ2/var(Xt)
Xt+1 + ǫ̃t .

We have seen before that

γ0 = var(Xt) =
σ2

1− φ2
1

and γ1 =
φ1σ

2

1− φ2
1

,
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4 Causal Inference on Time Series

which implies

φ̃1 =
σ2/(1− φ2

1)

φ1σ2/(1− φ2
1)
= φ1 .

We know that ˜ǫt ⊥⊥ Xt+1, but technically we still have to check if ˜ǫt andXt+k are
independent fork ≥ 2:

〈ǫ̃t,Xt+k〉 =
〈

Xt −
〈Xt+1,Xt〉
‖Xt+1‖2

Xt+1,Xt+k

〉

= γk − φγk−1

= 0

Now we can easily conclude

〈ǫ̃t, ǫ̃t+k〉 = 〈ǫ̃t,Xt+k − φXt+k+1〉
= 0

for all k ≥ 1. That means (˜ǫt) is a sequence of independent random variables.
Furthermore

var(ǫ̃t) = 〈ǫ̃t, ǫ̃t〉 = ‖Xt+1‖2 − 2 · 〈Xt+1,Xt〉2
‖Xt+1‖2

+ 〈Xt+1,Xt〉

=
σ2 − 2φ2

1σ
2 + σ2φ2

1

1− φ2
1

= σ2 ,

so the new noise ˜ǫt has the same variance as the old oneǫt.
2. AR(p)

Again the reversibility was already mentioned in the proof of Theorem 2.11. We
considered the projection ofXt on span(Xt+1, . . . ,Xt+p) and defined the new noise
as being the difference betweenXt and the projected vector. It remains to show,
that the coefficients do not change. Therefore we use that a projection always
minimises the distance between vector and projection space:

(ψ1, . . . , ψp) = argmina‖(a1, . . . , ap)(Xt+1, . . . ,Xt+p)t − Xt‖2

= argmina

p∑

i, j=1

aia jcov(Xt+i ,Xt+ j ) − 2
p∑

i=1

aicov(Xt,Xt+i)

= argmina

p∑

i, j=1

aia jcov(Xt+p−i ,Xt+p− j) − 2
p∑

i=1

aicov(Xt+p,Xt+p−i )

= argmina‖(a1, . . . , ap)(Xt+p−1, . . . ,Xt)
t − Xt+p‖2

= (φ1, . . . , φp)

The last step holds, since
∑p

i=1 φiXt+p−i −Xt+p = −ǫt+p and〈ǫt+p,Xt+p−i〉 = 0, for
all i = 1, . . . , p.
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4.2 Learning the Time Direction using ARMA Models

Again, we notice that for allk ≥ p

〈ǫ̃t,Xt+k〉 = 〈Xt,Xt+k〉 −
p∑

i=1

φ j〈Xt+i ,Xt+k〉

= γk −
p∑

i=1

φiγk−i

= 0

according to the Yule-Walker equations. As above it follows

〈ǫ̃t, ǫ̃t+k〉 =
〈

ǫ̃t,Xt+k −
p∑

i=1

Xt+k+i

〉

= 0

It remains to check that the variance of the noise is not changing:

〈ǫ̃t, ǫ̃t〉 =
∥
∥
∥
∥Xt −

p∑

i=1

φiXt+i

∥
∥
∥
∥

2

= γ0 − 2
p∑

i=1

φiγi +

p∑

i, j=1

φiφ jγ|i− j|

=

∥
∥
∥
∥Xt+p −

p∑

i=1

φiXt+p+i

∥
∥
∥
∥

2

= σ2

Notice, that in the whole proof the stationarity of the time series plays a crucial
role.

3. ARMA(p, q)
Now we consider a Gaussian ARMA(p, q) process (Xt) and define

X :
Ω → RZ

ω 7→ {t 7→ Xt(ω)} .

Recall that its finite-dimensional distributions (Xt1, . . . ,Xtd) are normally dis-
tributed and therefore they are characterized only by the mean and the covari-
ance matrix. So the distribution of the whole process only depends on the mean
function

s 7→ µX(s) ≔ EXs

and its covariance function

(s, t) 7→ covX(s, t) ≔ cov(Xs,Xt) .

We define the backward process

Y :
Ω → RZ

ω 7→ {t 7→ X−t(ω)} ,
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4 Causal Inference on Time Series

which is again normally distributed and has the covariance function

covY(s, t) = cov(X−s,X−t) = γ|−s−(−t)| = γ|s−t| = covX(s, t) .

Ergo

X
d
= Y ,

meaning thatP(Xt = Yt ∀t) = 1 (X andY areindistinguishable). For the forward
direction there exists a way to construct a processǫ : Ω → RZ as a function
of X, such that (Xt) together with the noise (ǫt) is a causal ARMA process with
specific coefficients; or, phrasing it differently, such that the joint distribution
of (X, ǫ) satisfies certain conditions. The explicit construction of ǫ can be done
usingǫt =

∑∞
j=−∞ π jXt− j [40], but is not relevant for the following. Important is

that we can construct a (possibly different) noisẽǫ from Y in exactly the same
way. Because the distribution of (X, ǫ) only depends on the distribution ofX (this
is due to the fact thatǫ is just a function ofX), (X, ǫ) and (Y, ǫ̃) have the same
properties.

• ⇒:

1. AR(1)
This was already shown in Theorem 2.10.

2. AR(p)
See the general case below.

3. ARMA(p, q)

By assumption, we have

Xt =

p̃∑

i=1

φ̃iXt+i +

q̃∑

j=1

θ̃ j ǫ̃t+ j + ǫ̃t ∀t ∈ Z .

Thus using (4.7) we can write

q̃∑

j=1

θ̃ j ǫ̃t−p̃+ j + ǫ̃t−p̃ = Xt−p̃ −
p̃∑

j=1

φ̃ jXt−p̃+ j

=





∞∑

i=0

ψiǫt−p̃−i




−





p̃∑

j=1

φ̃ j

∞∑

i=0

ψiǫt−p̃+ j−i





=

∞∑

i=0




ψi−p̃ −

p̃∑

j=1

φ̃ jψi+ j−p̃




ǫt−i ,

whereψi = 0 for all i < 0. Additionally we have

Xt−p̃+q̃+1 =

∞∑

i=0

ψi ǫt−p̃+q̃+1−i =

∞∑

i=q̃−p̃+1

ψp̃−q̃−1+i ǫt−i .
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4.2 Learning the Time Direction using ARMA Models

Both sums are converging absolutely with probability one (see Proposition 4.8)
and by assumption, the left hand sides are independent of each other. Clearly, we
want to apply Theorem 4.13, but therefore we need the boundedness condition
to be satisfied. This we show in Lemma 4.16 below. Given the boundedness
Theorem 4.13 implies that the noiseǫt is Gaussian distributed. (Note that we
actually have someǫt occurring on both sides because of the non-vanishing AR
part.) ThenXt is Gaussian distributed, too: Define again

X(n)
t ≔

n∑

i=1

ψiǫt−i .

We know that (X(n)
t )n is converging inL2. Ergo

‖Xt‖2 − ‖X(n)
t ‖2 ≤ ‖Xt − X(n)

t ‖2 −→ 0 ,

and thus
σ2

n ≔ varX(n)
t −→ varXt =: σ2 .

Furthermore (X(n)
t )n converges in distribution and therefore the cumulative dis-

tribution functionsFn are converging pointwise:

Fn(x) = Φ0,σ2
n
(x) −→ Φ0,σ2(x) = F(x)

and thereforeXt is Gaussian distributed.

�

Recall the proof of Theorem 4.15. It remains to show that the boundedness condition on the
coefficients is satisfied:

Lemma 4.16 For all possible causal backward models ARMA(p̃, q̃) both

∣
∣
∣
∣
∣
∣
∣
∣

ψp̃−q̃−1+i
∑ p̃

j=0 c jψi+ j−p̃

∣
∣
∣
∣
∣
∣
∣
∣

and

∣
∣
∣
∣
∣
∣
∣
∣

∑p̃
j=0 c jψi+ j−p̃

ψp̃−q̃−1+i

∣
∣
∣
∣
∣
∣
∣
∣

(4.10)

are bounded in i (see(4.7) for the coefficientsψi).

Here, c1 ≔ −φ̃1, . . . , cp̃ ≔ −φ̃p̃ ∈ R and c0 ≔ 1.

Proof First we show for an example that this Lemma holds and then we generalize the arguments
for a rigorous proof: Consider an ARMA(2, 1) process with the following coefficients:
φ1 = 1, φ2 = −0.25, θ1 = 1. For this process we haveψi = (1+ 3i)2−i for all i (see Chapter
3.3 in [40]). Thus the first fraction reduces to

∣
∣
∣
∣
∣
∣
∣
∣

(

1+ 3(p̃− q̃− 1+ i)
) · 2q̃+1−p̃ · 2−i

∑p̃
j=0 c j

(

1+ 3( j − p̃+ i)
) · 2p̃− j · 2−i

∣
∣
∣
∣
∣
∣
∣
∣

.
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4 Causal Inference on Time Series

The leading terms ini determine the limit behaviour of this fraction; thus for allp̃ and
c1, . . . , cp̃ it converges against

∣
∣
∣
∣
∣
∣
∣
∣

3 · 2q̃+1−p̃

∑ p̃
j=0 3 · c j · 2p̃− j

∣
∣
∣
∣
∣
∣
∣
∣

asi → ∞ and is therefore bounded ini.

A similar reasoning can be applied to general ARMA processessince we have the following
expression forψi (see Chapter 3.3 in [40]):

ψi =

S∑

s=1

Ts−1∑

t=1

αs,t it ξ−i
s ,

whereαs,t are some coefficients,ξs are the distinct (possibly complex) roots ofφ(z) andTs

their multiplicity. Wlog assume thatαs,Ts−1 , 0 ∀s. We can write the left fraction of (4.10)
as

∑S
s=1

∑Ts−1
t=1 αs,t (p̃− q̃− 1+ i)t ξ

−p̃+q̃+1−i
s

∑p̃
j=0 c j

∑S
s=1

∑Ts−1
t=1 αs,t (i + j − p̃)t ξ

−i− j+p̃
s

=

∑S
s=1

∑Ts−1
t=1 αs,t ξ

−p̃+q̃+1
s (p̃− q̃− 1+ i)t ξ−i

s
∑S

s=1
∑Ts−1

t=1 αs,t ξ
p̃
s
∑p̃

j=0 c j ξ
− j
s (i + j − p̃)t ξ−i

s

. (4.11)

To investigate the limit behaviour we again consider only leading terms ini. More specif-
ically, all summands are going to zero since|ξ−1

s | < 1. The rootξs0 with the smallest
modulus converges towards zero with the slowest rate and thus the corresponding sum-
mand determines the overall convergence. We divide both numerator and denominator of
(4.11) byiTs0−1 ξ−i

s0
to see that the fraction converges towards

∣
∣
∣
∣
∣
∣
∣
∣

αs0,Ts0−1 ξ
−p̃+q̃+1
s0

αs0,Ts0−1 ξ
p̃
s0

∑ p̃
j=0 c j ξ

− j
s0

∣
∣
∣
∣
∣
∣
∣
∣

for i → ∞. This surely implies boundedness.

Note that the coefficient

αs0,Ts0−1 ξ
p̃
s0

p̃∑

j=0

c j ξ
− j
s0

does not vanish because this implies
∑p̃

j=0 c j ξ
− j
s0 = φ̃(ξ−1

s0
) = 0. That meansξ−1

s0
is a root

of φ̃(z), which is contrary to the restriction of a causal backward model (|ξs0| > 1, cf
Proposition 4.8). �

Remark 4.17 Note that in Theorem 4.15 we excluded all pure MA processes

Xt =

q∑

i=0

θiǫt−i .
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4.2 Learning the Time Direction using ARMA Models

This is partly necessary because for some configurations of the coefficientsθ j , the pro-
cess is time-reversible even for non-Gaussian distributions. In [41], for example, the au-
thor considers MA(q) processes, whose coefficients satisfyθ j = θq− j , j = 0, . . . , q, where
θ0 ≔ 1. He remarks that

(Xt1, . . . ,Xtn)
d
= (X−t1, . . . ,X−tn) ,

which can be seen as follows (we need the symmetry of the coefficients for the second and
the fourth equality)

(Xt1, . . . ,Xtn) =





q∑

i=0

θiǫt1−i , . . . ,

q∑

i=0

θiǫtn−i





d
=





q∑

i=0

θiǫ−(t1−i), . . . ,

q∑

i=0

θiǫ−(tn−i)





d
=





q∑

i=0

θiǫ−t1−q+i , . . . ,

q∑

i=0

θiǫ−tn−q+i





=





q∑

i=0

θiǫ−t1−i , . . . ,

q∑

i=0

θiǫ−tn−i





= (X−t1, . . . ,X−tn)

With the same reasoning as in the “⇐”-part of the proof of Theorem 4.15, we can now
conclude that the time series is time-reversible for all distributions ofǫt satisfying the above
symmetry constraints.
This shows, why at least some of the cases of pure MA processeshave to be excluded from
Theorem 4.15.

4.2.3 The ARMA Method

We use these theoretical results to propose a method which isable to detect the true direction of
time series. The main idea of this method is based on Theorem 4.15: We assume that the time
series (Xt) is a causal stationary ARMA process with non-Gaussian iid noise. Remember that
the causality assumption means that noise and past values ofthe time series are independent. We
showed that the reversed time series cannot be expressed as acausal stationary ARMA process.
Having this result we fit an ARMA process to both directions and test for independence between
noise and past values of the time series. This can be done as a significance test. If we can reject
the independence assumption only in one direction, we take the other direction as the true one. If
we do not reject independence in any direction, the time series may be a Gaussian process and if
we reject independence in both directions, our model assumption is probably wrong. In both of
the latter cases we do not decide.
We now summarize the main steps of the ARMA method:

1. ARMA Fit
Assume that the data come from a causal ARMA process with non-vanishing AR part

65



4 Causal Inference on Time Series

and with independent, non-Gaussian noise. Fit an ARMA process to both directions
(X1, . . . ,XT) and (XT , . . . ,X1) and compute the fitted residuals.
The ARMA coefficients are fitted using a Maximum Likelihood approach, the exact Like-
lihood is computed by representing the ARMA process as a State Space Model and using
a Kalman Filter. We do not give further details, but refer to Chapter 12 in [40]. In the ex-
periments we used the implementation from R (arima with method=“ML” ) for fitting the
ARMA process. Moreover, we used the Akaike Information Criterion in order to determine
the order of the ARMA process.

2. Normality Test
If the residuals seem to be Gaussian, i.e. the hypothesis of anormal distribution cannot be
rejected, do not make a decision. In this work we used a test based on the skewness and
the kurtosis of the distribution: the so-called Jarque-Bera test uses the test statistic

JB=
m
6

(

s2 +
(k− 3)2

4

)

,

wherem is the number of samples,s is the skewness andk the kurtosis of the sample.
Under the hypothesis of a normal distribution the test statistic JB follows a Chi-Square
distribution with two degrees of freedom [45].

3. Independence Test
Using HSIC and a significance level ofα test ifǫt depends onXt−1,Xt−2, . . . or if ǫ̃t depends
on Xt+1,Xt+2, . . . and call the p-values of both testsp1 and p2, respectively. According to
Theorem 4.15 only one dependence should be found. If the independence is indeed rejected
for only one direction, i.e. exactly one p-value is smaller thanα:

min(p1, p2) < α and max(p1, p2) > α

and additionally,
max(p1, p2) −min(p1, p2) > δ ,

then propose the direction of argmax(p1, p2) to be the correct one. See Figure 4.2 for an
example.

4. If both directions seem to lead to dependent noise, conclude that the model fit is not good
enough and do not decide.

Note that there are two parameters to choose:

• the minimal difference in p-valuesδ and

• the significance levelα.

We expect that the largerδ and the smallerα is, the less decisions our algorithms makes, but the
more accurate these decisions will be.

We further point out that this is a heuristic method. Although Theorem 4.15 is a theoretical
justification for our approach, we cannot bound the probability of choosing the wrong direction,
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4.2 Learning the Time Direction using ARMA Models

for example. Furthermore we need iid data for the independence test. The noise can be assumed
to be iid, but the time series values cannot. Even if we assumestrict stationarity we have that
the values are identically distributed, but they cannot be regarded as being independent. To come
over this problem, we do not consider all consecutive valuesof the time series, but introduce a
gap instead; that means we take only every third value of the time series for the independence
test, for example. This reduces the dependence between the samples, but does not completely
annihilate it.
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Figure 4.2: Simulated AR process with uniformly distributed noise: The fitted residuals of the forward model (left)
and of the backward model (right) are plotted against past time series values. The fit in the wrong direction leads to
a strong dependence between residuals and time series (p-value of 0.0008), the residuals of the forward model are
regarded as independent (p-value of 0.8796).
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5 Experiments

We applied the SVM and the ARMA method both to simulated ARMA processes and to real data.
Mainly there are four different data sets:

• ARMA Processes (simulated)
We simulated data from an ARMA(2, 2) time series of length 500 with fixed parameters
and varying kinds of noise. For different values ofr we sampled the noise from

ǫt ∼ sgn(Z) · |Z|r ,

whereZ ∼ N(0, 1). We then normalized it in order to obtain the same variancefor all
r. Only r = 1 corresponds to a normal distribution. For all samples the parameters were
chosen to beφ1 = 0.9, φ2 = −0.3, θ1 = −0.29 andθ2 = 0.5.

• AR Processes (simulated)
For this experiment we simulated AR(p) processes of length 500 and of different orders
(p = 1, . . . , 5). Again, we used different kinds of noise (Gaussian, Laplace, Cauchy,
Student-t and uniform). For each of these 25 combinations wesimulated 100 time se-
ries, each of which had different parameters. These parameters were chosen randomly, but
were constrained to fulfill the conditions of a causal ARMA process, of course. The noise
was simulated with variance one, except for the Cauchy distribution.

• EEG Data (real)
We used a publicly available EEG data set [46] consisting of 118 channels of a single
subject. The sampling rate was 1000Hz and we considered the first 5 seconds of each
channel, cut into 10 pieces. In total this gave 1180 time series of length 500.

• Mixed Collection of Time Series (real)
We collected data consisting of 200 time series with varyinglength (from 100 up to 10,000
samples) from very different areas: finance, physics, transportation, crime, production of
goods, demography, economy, EEG data and agriculture. Roughly two thirds of them
belong to the groups economy and finance.

Once more we mention that in theory the ARMA method only worksif the data follow an ARMA
process with non-Gaussian noise. For stationary ARMA processes the SVM methods require
non-Gaussian noise, too. If the noise were Gaussian, the backward process would be again a
causal ARMA process and there would be no difference in the finite-dimensional distributions
of the forward and the backward direction. Thus we expect ourmethods to fail for normally
distributed noise. In many applications such a Gaussian distribution is assumed, but this is often
done because of its nice computational properties rather than a consistency with the data. Using
noise with heavier tails than the Gaussian would often be more appropriate (e.g. [47]).
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5.1 SVM method

In the experiments the naive SVM method for classifying the direction of time series did not
exceed chance level. As we mentioned before, we did not expect it to do so because it is more
unlikely to adapt the important features relating to the finite-dimensional distributions. In the
following subsection we only present the results from the SVM-RKHS method and the SVM-
RKHS-PCA method. For these two methods we used a polynomial kernel of degree 4 for the
Hilbert Space embedding.
Since we know the “true” time direction for all time series inthe data sets we used the following
procedure to test the SVM methods: We divided the data set randomly into training and test set,
trained the SVM method on the training set and checked its performance on the test set. This
was repeated many times in order to avoid misleading resultsdue to particular easy test sets, for
example.

ARMA Processes (simulated). For this experiment we consider an ARMA(2,2) process with
coefficientsφ1 = 0.9, φ2 = −0.3, θ1 = −0.29 andθ2 = 0.5. For each kind of noise (the noise is
parameterized byr, only r = 1 corresponds to a Gaussian) we simulated 100 instances of this
ARMA(2,2) process, divided these 100 time series into training set (85) and test set (15) and
obtained an error rate of the SVM method on the test set.
We have seen before that the distributions of (Xt,Xt+1,Xt+2) and (Xt+2,Xt+1,Xt) coincide if and
only if we consider a Gaussian distribution (this is a special case of Theorem 4.15). Thus we
expect the method only to work forr , 1.

Since for each distribution of the noise all of the time series were simulated using the same coeffi-
cients we expect the finite-dimensional distributions to besimilar over all of these 100 time series.

Notice, however, that the distributions used in this experiment –except for the Gaussian case–
are not Levy stable and thus the ARMA process is not strictly stationary. This means that the
finite-dimensional distributions of the time series vary over time. Assuming that the difference
in distributions obtained by time shifts are small comparedto the difference caused by a time
inversion we still applied the SVM methods.

Figures 5.1 and 5.2 show that both SVMs learned indeed the true direction of this ARMA process
provided the noise was sufficiently different from being a Gaussian. Although the SVM-RKHS-
PCA method allows us to separate distributions in the RKHS non-linearly, it did not perform
better than the linear SVM-RKHS method. This is mainly due tothe following reason: Since a
linear separation in the RKHS is seemingly possible, we do not gain very much from the non-
linearity. Besides we have to face difficulties in regularization: even if we consider only few
principal components (3 or 4), the SVM must be heavily regularized in order to avoid overfitting.
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Figure 5.1: SVM-RKHS method on the ARMA processes. For each value of r (i.e. for each kind of noise) we
simulated 100 instances of an ARMA(2,2) process with fixed coefficients and divided them into 85 time series for
training and 15 for testing; this was done 100 times for eachr. The graph shows the average classification error on the
test set and the corresponding standard deviation.
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Figure 5.2: SVM-RKHS-PCA method on the ARMA processes. Thistime we applied the SVM-RKHS-PCA method,
which allows a non-linear classification in the RKHS.
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AR Processes (simulated). Recall that this experiment is different from the previous one in
the following way: Again, we consider 100 time series for each order-noise combination. Each of
these 100 time series was sampled withdifferent(random) coefficients. In the ARMA experiment
we considered 100 time series for each noise, too, but all of these 100 time series were simulated
with the samefixedcoefficients. Hence, this AR experiment is closer to the task of finding the
difference between forward and backward going time, but is also much harder.
Both SVM methods did not perform better than chance on this data set. See Figures 5.3 and 5.4
for results.
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Figure 5.3: SVM-RKHS method on the AR processes. For each order-noise combination we trained the SVM on 90
time series and tested it on the remaining 10 time series; this procedure was repeated 100 times. The figure shows
the average error rate on the test set together with the standard deviation. The window length was chosen to be 3 or
5 (which was decided by cross-validation) andC = 10. The training error was around 30%. The performance is not
better than chance level.
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Figure 5.4: SVM-RKHS-PCA method on the AR processes. Here, we used the first 5 principal components in the
RKHS for classification.
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5.1 SVM method

EEG Data (real). The SVM methods performed very well on this data set. We separated the
data set into a training set (103 time series) and a test set (15 time series) 300 times. Because we
always used the forward and backward direction of the samples, the actual sizes of training and
test set were twice as large. Both methods were on average able to classify more than 95% of all
time series in the test set correctly: The SVM-RKHS method achieved an average error rate of
2.9%±3.9%, the SVM-RKHS-PCA method of 4.8%±4.5%. In both cases the training error was
even less (2.6%± 0.5% and 0.9%± 0.5%, respectively). A histogram of the achieved error rates
is shown in Figure 5.5.
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Figure 5.5: SVM-RKHS method and SVM-RKHS-PCA method on the EEG data. This figure shows the performance
of the SVM methods on the EEG data set for 300 divisions into training and test set. In most cases there was no false
classification on the test set at all. The SVM-RKHS method (left) and the SVM-RKHS-PCA method (right) perform
almost equally well.
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Figure 5.6: This figure explains why there is almost no difference in the performance of the SVM-RKHS and the
SVM-RKHS-PCA method on the EEG data set. The plot shows 40 training points and all 15 test points in the RKHS
with respect two the first two principal components corresponding to the two largest eigenvalues. It seems that a
separation based only on the first principal component is already possible. Thus a linear classification in the RKHS
suffices and there is not much to gain from a non-linear classifier.
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5 Experiments

As in the ARMA experiment (see above) we only used one specifickind of time series, namely
EEG data. Even more, some samples belonged to the same time series since we used 10 cuts of
each channel. The good performance of the SVM methods shows that the asymmetries between
past and future are sufficiently significant.
Figure 5.6 shows why the SVM-RKHS-PCA method does not perform better than the SVM-
RKHS method. Here, we computed the projections of the data points in the RKHS onto the first
two principal components (that means the two components with the highest sample variation).
From this plot it can be seen that the variation in the first principal component is already big
enough to separate the data. Ergo a linear classification in the RKHS (by a hyperplane, perpen-
dicular to the first principal component, for example) performs already very well and we do not
gain much from a non-linear classification as it is done by SVM-RKHS-PCA method.

Mixed Collection of Time Series (real). The time series in this collection are very different
from each other in nature and distribution. Thus, presumably, it is a more difficult problem to
solve than the EEG data set. Both SVM methods performed significantly better than chance (see
Figures 5.7 and 5.8, but not as good as for the EEG data.
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Figure 5.7: SVM-RKHS on the time series collection. 500 times we chose randomly a test set of size 20, trained
the method on the remaining 180 time and looked at the performance on the test set. For theC parameter we chose
C = 10, which resulted in a training error of 29.8%± 1.8% and a test error of 35.7 ± 10.5%. We reached the same
performance, however, for values ofC, which were several magnitudes lower or higher.
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Figure 5.8: SVM-RKHS-PCA on the time series collection. Forthe C parameter we again choseC = 10, which
resulted in a training error of 37.3%± 0.8% and a test error of 43.7%± 6.7%. Again the performance did not vary for
changingC in orders of magnitude 2 or 3.
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5.2 ARMA method

5.2 ARMA method

Recall that apart from the parametersδ (minimal difference in p-values) andα (significance level)
for the HSIC we have to choose a kernel and its parameters. In the experiments we chose the
Gaussian kernel and the bandwidth was chosen by the rule of thumb saying that the median of
(‖x− y‖2)/(2σ2) should be 1.

ARMA Processes (simulated). Recall that according to Theorem 4.15 the ARMA method
only works if the ARMA processes are simulated with non-Gaussian noise. This experiment
shows that the assumption of non-Gaussian noise is essential. We simulated ARMA(2,2) pro-
cesses with different noise distributions. These are parameterized by a value r, which ranges
between 0.1 and 2. Onlyr = 1 corresponds to a normal distribution.
We then fit an ARMA model to the data without making use of the fact that we already know
the order of the process; instead we used the Akaike Information Criterion which penalizes the
order of the model. When we detected a dependence between residuals and past values of the
time series, we rejected this direction, otherwise we accepted it. (We only wanted to show the
necessity of non-Gaussian noise and thus did not perform thewhole ARMA method). For the
true direction we obviously expect the independence to be rejected in very few cases (depending
on the significance level). Theorem 4.15 states that only forr = 1, the residuals of the reversed
direction will be independent. Since we are dealing with a finite amount of data, the noise cannot
be distinguished from a Gaussian distribution ifr is close to 1; in these cases we will still be able
to fit a backward model reasonably well. For the independencetest we used a significance level
of α = 0.01. See Figure 5.9 for details.
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Figure 5.9: ARMA method on the ARMA processes. For each valueof r (expressing the non-Gaussanity of the noise)
we simulated 100 instances of an ARMA(2,2) process with 500 time points and show the acceptance ratio for the
forward model (solid line) and for the backward model (dashed line). When the noise is significantly different from
Gaussian noise (r = 1), the correct direction can be identified.

As a comparison we also did the same experiment for an MA process with coefficientsθ1 =

−0.3, θ2 = −0.3 andθ3 = 1. For this special arrangement, Theorem 4.15 does not hold and as we
have seen (Remark 4.17) the process is time-reversible for all distributions ofǫt. Thus we expect
both forward and backward model to be accepted most of the times. See Figure 5.10 for details.
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Figure 5.10: Here we simulated for each value ofr 100 instances of an MA(3) process with 300 time points and show
the acceptance ratio for the forward model (solid line) and for the backward model (dashed line). Since the AR part
vanishes and the MA coefficients are carefully chosen according to Remark 4.17, the process is time-reversible for all
considered distributions.

AR Processes (simulated). For each order-noise combination we received two numbers: the
number of classified time series (out of 100), and the proportion of correctly classified time
series (out of those classified), which are shown in Figure 5.11. In order to make the results for
the different kinds of noise more distinguishable, we used very unconservative parameters: the
minimal difference inp-valuesδ was chosen to be 0.05 and the significance levelα to be 0.1. This
ensures that we have some false decisions and can observe a difference in the performance for
the different noise distributions. The method works for all distributions except for the Gaussian
(as expected). Further it works best for the Cauchy distribution, and it is slightly better in the
uniform case than in the Student-t case, for example. This seems reasonable since it is harder
to distinguish between a Student-t and a Gaussian distribution than between a uniform and a
Gaussian distribution.

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
0

10

20

30

40

50

60

70

80

Gaussian           Uniform              Laplace              Cauchy           Student−t

cl
as

si
fie

d 
(o

ut
 o

f 1
00

)

 

 

correctly classified

wrongly classified

Figure 5.11: ARMA method on the AR processes. The histogram shows the number of classified time series (out of
100) and the proportion of correctly classified time series.The parameters (minimal difference in p-valuesδ = 5%,
significance levelα = 10%) were chosen such that many time series were classified, albeit with some resulting loss of
accuracy. Still in most cases (except the Gaussian) the correct classification rate significantly exceeds 50%.
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5.2 ARMA method

EEG Data (real). The results of the ARMA method on the EEG data set are shown fordifferent
values ofα andδ in Figure 5.12. Asα shrinks andδ grows, the algorithm makes fewer mistakes,
but also classifies fewer time series. That said, classification accuracy consistently exceeds 68%.
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Figure 5.12: ARMA method on EEG data. The left panel shows thenumber of classified time series (out of 1180),
and the right panel the proportion of correctly classified time series, depending on the parametersα andδ. The results
are consistently better than chance, reaching a correct classification rate of up to 82%.

Mixed Collection of Time Series (real). In order to obtain a larger data set, we cut the long
time series into pieces of length 400. This way we could use 576 instead of 200 time series. Since
the performance depends strongly on the chosen parameters,we give the results for different
values. The classification consistently exceeds 50% and themore conservative the parameters are
chosen, the larger the proportion of correctly classified time series is. See Figure 5.13 for details.
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Figure 5.13: ARMA method on the time series collection. We cut the longer time series into smaller pieces of length
400 and obtained 576 time series. We show the results for different values of the parameters: The minimal difference
in p-valuesδ ranges between 0% and 20%, the significance levelα between 10% and 0.1%. The point with the highest
classification rate corresponds to the highest value ofδ and the lowest value ofα.
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6 Conclusion

We have proposed two methods to detect the time direction of time series. Our methods were
based on the theory of Reproducing Kernel Hilbert Spaces, Support Vector Machines, Princi-
pal Component Analysis, the Hilbert-Schmidt IndependenceCriterion and Time Series analysis.
Therefore we explained these concepts and gave the main results and proofs.

For theSVM methodwe combined the concept of Hilbert Space embeddings of distributions
and Support Vector Machines in a new way: It is possible to represent probability distributions
uniquely in an RKHS. We showed how to perform a linear SVM in the RKHS and we could even
extended this to a non-linear classifier by applying a PCA to the data in the RKHS and an SVM
on the coefficients in the direction of the principal components afterwards.

TheARMA methodis based on a theoretical result we proved as Theorem 4.15: Causal ARMA
processes with non-vanishing AR part can be reversed in timeif and only if they are normally dis-
tributed. Based on this result we fit an ARMA model to both timedirections and check whether
the residuals are independent of the former values of the time series. For non-Gaussian distribu-
tions this should be the case only for the true time direction. In order to detect the dependence
between noise and time series for the wrong time direction weneeded a powerful independence
test. In this work we used the kernel-based Hilbert-SchmidtIndependence Criterion.

Using different kinds of experiments we showed that the SVM methods areable to learn the dif-
ference in the finite-dimensional distributions between forward and backward going time series
if time series from test and training set are sufficiently similar. When we simulated all time series
as instances of an ARMA process with fixed coefficients, for example, we were able to detect the
true time direction for all noise distributions except the Gaussian. When we trained the SVM on
a set of mixed ARMA processes, which means each time series inthe training and test set had
different coefficients, we did not achieve a performance better than chance.Probably the size of
the training set would have to be much larger; with small training sets it is likely that the SVM
adapts to differences in the finite-dimensional distributions, which aredominant for this specific
kind of time series, but which cannot be generalized to othertime series. Therefore these features
should not be regarded as essential differences between forward and backward going time.
Since there were 10 samples of each channel of the EEG data, weagain have similar time series
in training and test set. Here, the SVM methods performed well. On the collection of time series,
however, we did not cut the time series into several pieces and received worse results for this
method.
It is interesting to further investigate the reasons why we did not achieve better results for the
SVM methods. For an AR(1) process, for example, the dependence between noise and time se-
ries implies conditions on the distribution of two adjacentrandom variables of the time series.
These constraints on the distributions can be expressed in terms of their moments. Using a poly-
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nomial kernel for the Hilbert Space embedding we should at least in principal be able to detect
this difference even if we train the SVM on a set of AR(1) processes withdifferent coefficients
and even different kinds of noise.

The experiments with simulated data sets show that the ARMA method is able to identify the true
direction in most cases unless the ARMA processes were Gaussian distributed (and thus time-
reversible). For real world time series (EEG and the time series collection) we found that in many
cases the data did not admit an ARMA model in either direction, or the distributions were close
to Gaussian. For a considerable fraction, however, the residuals were significantly less dependent
for one direction than for the other. For these cases, we mostly recovered the true direction.

Classification accuracies were not on par with the classification problems commonly considered
in Machine Learning, but we believe that this is owed to the difficulty of the task; it is remarkable
that we could at all identify the true time direction in time series (even in real data) and thus we
consider our results rather to be encouraging.

It is possible to think of an extension of the ARMA method to non-linear time series models. As
we found out [48], the result that a linear model with independent additive noise can be reversed
if and only if the noise is normally distributed can be extended under some technical conditions
to non-linear models: if we can writeY = f (X) + ǫ, whereǫ and X are independent, then a
representationX = g(Y) + ǫ̃, where ˜ǫ andY independent is possible if and only iff is linear and
all involved variables are Gaussian. It may be possible to prove a similar result in non-linear time
series analysis.
We can also think of different, more subtle asymmetries between past and future in time series
that are similar to this approach, i.e. if there is a simple generative model in the forward but not
the backward direction in a more general sense. Since every cause precedes its effect, finding the
true time direction of time series would shed further light on the statistical asymmetries between
cause and effect.
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