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Calvin: Ah! | got the letter | wrote to myself!

Hobbes: What did you write?

Calvin: “Dear Calvin, Hi! I'm writing this on Monday. What day is it ne?
How are things going? Your pal, Calvin”

Calvin: My past self is corresponding with my future self.

Hobbes: Too bad you can't write back.

Bill Watterson, 19 April 1995
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1 Introduction

1.1 Problem and Motivation

Consider the following problem: We are givemordered valuey, ..., Xy, from a time series,
but we do not know if the sample has been reversed. Our taskfiisdt out whetheiXy, ..., Xm
or Xm, ..., X1 represents the true time direction.

This problem regards the generaffdience in backward and forward going time and thus we
cannot expect it to be easily solvable. There is a lot ofditere about the asymmetries regarding
the direction of time, whereas we will only mention shortigwhthe problem can be related
to physics, causality and everyday life. The following isleshould rather be taken as thought
impulses than as complete overviews of the fields.

Physics The question of the direction of time can be related in paldicto the second law

of thermodynamics. One possible formulation of the lattates that the entropy of a closed
physical system can only increase but never decrea$his may suggest to use the entropy
criteria in the following way: for every time compute the entropy of the system, and propose the
direction for which the entropy increases as the correct iyeu consider real-world time series
from stock values, EEG data or geophysical data, for exartiiemethod is not applicable. This

is mainly due to two dferent reasons: firstly, for these time series the entropftés @ery hard

to recognize in the data and secondly, most of the obsermezigéeries can hardly be considered
as closed systems.

Causality It is a basic principle thagvery cause precedes it§eet or equivalently that the
future cannot influence the past. There is a lot of philostgdhivork about the meaning of
causality and its relation to time. Here we rather addressititlerstanding of time and causality
in everyday life; it is common sense that you cannot altet @asnts and that a car engine never
startsbeforethe key is turned.

Using the idea of the temporal ordering of cause afidcé we can solve the time direction
problem in the following way: if we identify one cause andefkect in the dataXy, ..., Xn, we
can order the whole series. Say, we found Kais causingXy,, then the true time ordering must
be Xm, ..., X1. See Figure 1.1 for an exampleln the following subsection we will introduce
causality in a more formal way and make use of this approatheiRMA method (see below).

1From a microphysical perspective the entropy is actualhstant in time but only increases after appropreatarse-
graining the physical state space [1].
2Many thanks to my sister Mira for providing this sketch.
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Figure 1.1: Since we can identify the blow with the club asdhese and the small bump as tlgzet, we can deduce
that the pictures are in the correct ordering.

Everyday Life  One of the time asymmetries in everyday life is that we seerate more about
the future than the past. We often regard something thatajlpen to us as more important than
something similar that has already happened to us: We padfstrof unsatisfactory work to be
done and the vacations to be ahead to the other way arounda#\f&] mentions at first glance
it is astonishing that we dread death, whereas we do not cammtich about the non-existence
before our birth.

Further, if we make decisions about our actions, we usuakg into account (possible) events in
the future rather than those in the past. It does not seemratibeal if someone acts in a special
way in order to ensure the occurrence of a past event. Thisétysrelated to the causal point of
view stating that we can only chanfigure events or cause them to occur.

Opposing to decision making our knowledge is focused on&ségnd the memory even contains
only past events. We know much more about the past than aboutttire:fut is easier to tell
who won the last European Championship in soccer than tagbretio will win the next one.
Admittedly, there are a lot of periods and events from thd pasdo not know anything about
and we are quite good in predicting the next total eclipsehefdun, for example. In general,
however, our knowledge is biased towards the past.

1.2 Causality

We now formalize the concept of causality and relate it toldmguage of statistics. (Some of
the following ideas can also be found in [3].) In many caseasetations or even dependencies
beyond the second order do not giveimient information about the relationship between two
random variables. We are often interested in a deeper uaddisg of this relationship, namely
we want to identify cause andfect. We can use standard statistical tools in order to detect
dependence between smoking habits and lung cancer, bunitns dificult to infer the causal
structure. We suspect that smoking causes lung cancerpbutdn we disprove that people with
a higher chance of getting lung cancer (driven by a specifiotype, for example) feel a higher
urge for smoking, too? For a long time, there was no formalisolassical statistics to deal with
this sort of causal problems until Pearl [4] establishednfmotations and computation rules for
the field of causality.

One possible definition of causality is the following: we $lagt a random variables is causing

a second variabl¥ if and only if Y can be written as a linear deterministic functib{x) plus
some noise, which is independentXf This can be seen as a constraint on the joint distribution
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PXY) of X andY: Let e be the residuum after computing a linear regressiol oh X. If X
and e are statistically independent (note that they aneorrelatedby construction), the joint
distribution P(X, Y) admits a linear model fronX to Y. If X andY are not independent it turns
out (see Theorem 2.10) that the only case admitting a lineateinin both directions is when
P(X,Y) is a bivariate Gaussian distribution.

Thus in this case causal inference (i.e. identifying canskefiect) can be done in the following
way: Assume the linear model to be true and the noise to beGarssian. Then consider the
direction as causal that can better be fit by a linear modes iStthe rationale behind LINGAM
[5] and also applies to causal inference withariablesXa, ..., X, that linearly influence each
other.

The problem of identifying cause anéfect in a time series, is filerent from usual causal infer-
ence problems because of the following reasons (and thertife conventional methods [4, 6]
are not easily applicable): (1) The standard frameworkirequid data of the joint distribution
over all involved random variables, but not only single timstances. (2) For interesting classes
of time series like MA and ARMA models (introduced in Sectib2.1), the observed variables
(X;) are not causally gficient since the (hidden) noise variables influence more t¢imenof the
observed variables. (3) Finite windows of observed vagislare typically confounded by ob-
servable ancestors, which further complicates the problgihas opposed to many real-world
problems in causal inference we have at lgastial knowledge of the ground truth [7]. This is
an advantage because it makes it easier to evaluate ourasetho

In [5] the authors applied their causal discovery algorithiNGAM to this problem. Their
approach was able to propose a hypothetical time directod4 out of 22 time series (for the
other cases their algorithm did not give a consistent rgshtiwever, only 5 out of these 14
directions turned out to be correct. The reasons for thitddoe the problems described below.
We have already seen how causality can help us to solve tiepnof identifying the true time
direction. And because of thesdfdrences from usual causal inference problems we conversely
hope that studying the asymmetries of time series can atsadar new insights for causal infer-
ence, too.

1.3 Proposed Methods

In this work we propose the following two methods for ideyitify the true time direction:

The SVM Method  Consider a strictly stationary time series (that meanswdémensional dis-
tribution of (X¢ih, Xtr14h - - - » Xtawsh) does not depend dmfor any choice ofw € N). We assume
the diference between the twoffiirent time directions to be aftirence in the finite-dimensional
distributions &, Xti1 ..., Xerw) @and Keows Xezw-1 - - - » X). We try to learn the nature of this dif-
ference without further specifying it. For many time senes represent both distributions in a
Hilbert Space (more specifically in an RKHS, see Sectior23dnd investigate if there are sim-
ilarities between the flierence of the forward and backward distributions. If thithis case, we
learn these similarities using Support Vector MachinesNiS)within this Hilbert Space.

The ARMA Method This method is based on the causality approach mentionedtalte
assume the data to be an autoregressive moving averagsp(@EadVA) with noise independent
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of the last values of the time series; together with this okl condition these time series are
calledcausalARMA processes.

As a main result of this paper we will show that the identifioresult from linear causal models
extends to ARMA processes: if we assume that the time sevigsrierated by a causal ARMA
model with a non-vanishing AR part and with non-Gaussiasedie process is not invertible;
that means if the true direction follows a causal ARMA modihwon-Gaussian noise, the other
direction is not.

This result can be used in the following way: We fit the obseérdata to an ARMA model and
test whether the regression residuals are statisticallggandent of the past values. Whenever
the dependence in one direction is significantly weaker thahe other we infer the former to
be the true one. To this end, we need a good dependence méasuligeapplicable to continu-
ous data and finds dependencies beyond second order. IndHisne use the Hilbert-Schmidt
Independence Criterion (HSIC) [8] (see Section 3.3).

1.4 Qutline

In Section 2 we formally introduce the concept of causalitgdihere and show how linear causal
models can be identified.

We define Reproducing Kernel Hilbert Spaces and Supporto¥adachines in Section 3. As
already mentioned before, we use the Hilbert-Schmidt laddpnce Criterion for independence
testing, which we describe in this section, too.

In Section 4 we prove one of the main theorems — that non-GausekMA processes admit an
ARMA model at most in one time direction— and we further explhe two diferent methods
we employ for identifying the true time direction of time s data in more detail.

Section 5 contains results of our methods on both simulaiddeal data.



2 Causal Inference on Linear Models

2.1 Causal Models

As mentioned before the concept of statistical dependegiveden two random variables is often
not suficient. In many cases we assume a causal relationship betive@emo variables and need
to know, which one is the cause and which one tfieat. We know that the position of the earth
relatively to the sun (which can be expressed in terms of giteamand the temperature on the
earth are strongly dependent. Without having defined the tausality yet, the position should
cause the temperature and not vice versa. The goal of canfisegnce is to identify these sorts
of causal relationship between random variables. For atiomg, however, there was no formal
mathematical framework for these questions. The follovdafinition of causal models and their
corresponding graphs is from Judea Pearl [4].

2.1.1 Definitions

Definition 2.1 [of a causal model] LeX = {Xy,...,X,} be a set of random variables and let
PA, c X be a subset oX (the parentsof X;). Assume that we only observe some of the
variablesX;. The error variableg represent errors due to omitted factors; they are always
unobserved and independent of the variables RAset of equations

Xi = fi(PA,g) Yi=1...n, f; belonging to some function clags (2.2)

is called acausal modeif they describe the process of generating the data. It i®itapt

to point out that this is not only a statement about probghilistributions and conditional
independencies, but also about the way, the process isajedén reality. We assume that
the value ofX; is produced in the specific way of the equation above.

The correspondingausal graphs constructed by drawing a node for every random vari-
able X; and directed arrows from all its parents into this node. No@lem unobserved
variables are often drawn with a dashed line. The followm@mn example for a causal
graph with PA = 0, PA; = 0, PAz = {Xq, Xo}, PA4 = {X5, X3}:

VAR
lxll
N /
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Definition 2.2 A causal model is calledMarkovian if its corresponding graph is a Directed
Acyclic Graph (DAG) (i.e. it contains no cycles) and if allise variables are jointly
independent.

It can be shown ([4], Theorem 1.4.1) that a Markovian causadehsatisfies thélarkov condi-
tion meaning that every variablg§ is independent of all its non-descendants given its paiants
the graph.

The Markov condition also exists in Bayesian Networks; ¢hdis not treat causality and therefore
the Markov condition in causal models is sometimes calleddusal Markov condition

sure, a Markovian causal model satisfies the factoriza{{f®}, Theorem 3.27):

n

p(X1,..., %) = n p(xi1pg) -

=1

As said before a causal model satisfies more than just cortstan the probability distribution:
If we do a hypothetical intervention on a parent Xn the probability distribution ofX; will
change. We say that a pareffifeets its children. This is a condition, which cannot be &nitin
terms of (conditional) probabilities, but deals with thengeating process in reality.

2.1.2 What are causal models good for?

We want to give an idea, what causal graphs can be used foraanthBy can help to understand
the data. We will demonstrate this by introducing JudealBedw-notation. Out of reasons for
simplicity we will only consider discrete random variabléSausal graphs provide a context in
which a lot of causal problems can be formulated and solved: @ the most famous examples
is the old debate about the causal relationship betweenismahkd lung cancer. The tobacco in-
dustry tried to explain the observed correlation betweeakéng and lung cancer by a genotype,
which increases both the risk for getting cancer and thermbraving for nicotine.

A powerful method to deal with these questions isdioenotation. When welo(X; = X;) we set
the variableX; to X; while leaving all the other variables unchanged. Then westigate how
much this changes the distribution of another varialeMore formally:

Definition 2.3 Define thecausal gfectof X; on Xy, ..., X, to be the following distribution over
X1, ..., X

n

PO, - X | do(X) = %)) := [ | POSIPAY) - 6.5,
i#]
whereéxj;(j = 1if Xj = andéxj,;j = 0 otherwise.
As we see in the following example, thididirs from the usual conditional distribution

Ip(Xa, ..., Xn) denotes the density with respect to the product measuréaned above. This can be, for example, the
probability density function or the probability mass fupat(or a combination of both) evaluated a.(. . ., Xn)-
We adapt to this notation because it is widely used in the doofecausal inference.



2.1 Causal Models

Example 2.4 Assume we have the following process:

®—@

p(y | do(X = %)) = 3" p(xy|do(X = %) = py| %),

X

but  p(x|do(Y =§)) = > p(xyldo(Y =) = p(x) # p(x| ).
y

It is important to realize, that thego-procedure is just a hypothetical intervention:

Example 2.5 Itis widely believed that both malnutrition and overweiginé risk factors for car-
diac infarction. And certainly, malnutrition can also beasase for overbalance. Therefore
we can assume the following causal graph

X : overweight >—— Y : cardiac inf. >

We havep(y | do(X = X)) = >, p(Y| X, 2p(2). This shows that thdo procedure should be
interpreted as setting the variabfeto X hypothetically. We can hardly change the weight
of a person by adding a few pounds in a surgery, for examplstedd we use the new
distribution in order to determine the strength of theet that overbalance has on the
probability of getting a heart attack.

There are many other examples, where a change of variabies aly ethically irrespon-
sible, but also physically impossible.

Notice that the equation fg(y|do(X = X)) in the last example shows thdd(X = X) is equivalent

to removing the arc betweghandX and settingX to the constanX. Instead of using Definition
2.3 we can generalise this idea and define tleX(= X)-notation by removing every arc between
the nodeX and its parents in the corresponding causal gfaph.

Pearl provides a comprehensive theory fordbecalculus. He gives several rules for calculations
within thedo-framework, for example. Also, he develops a criterion idesrto decide if a set of
observed variables is ficient in order to compute the causéiest of X onY.

2This can be formalized by adding an additional parent nod¢itothe causal graph, which controls the functibn
in equation (2.1) and sets it to a constdintg X in the case oflo(X = X). See Section 3.2.2 in [4] for more details.



2 Causal Inference on Linear Models

2.2 Inferring causal graphs

Usually causal graphs are a good possibility for includimgrmpknowledge into data analysis.
Note that this is conceptually fiiérent from putting prior distributions on parameters, \Whig
done in Bayesian Statistics. Sometimes, however, we doawat this prior knowledge and then
we want to infer the causal graph itself based on iid samglgseqoint distributionp(Xa, . . ., Xn)-
This is surely a hard problem and depending on the real gémgrarocess not even always
possible. To make life easier we require the functions iraiqo (2.1) to be additive in the noise
argument and linear in the parents of the node:

Xi=fi(PA,6)=g(PA)+¢g Vi=1...n, gi linear.

The question arises, under which conditions we can disishgoetween

O—Q

and

O—0

Before we answer this question theoretically, we give twanegles: in the first one both direc-

tions are possible, whereas in the secondXne Y is the true direction and the process cannot
be reversed.

Example 2.6 (i) Assume

Y=¢X+e €lX, (2.2)

whereX ande are normally distributede 1L X means that and X are independent.
Let o2 be the variance of the noise. Now we want to construct a negeroisuch
that

X=¢Y+E& ELY. (2.3)

DefineL 2 from the usual spac&?(Q, G, P) of square integrable random variables by
identifying all random variableb), V, for whichU — EU = V — EV holdsP-almost
surely. Then it is easy to see that

U, V) = cov,V)

defines a dot product dn?. Therefore we can interpret (2.2) and (2.3) geometrically:

10



2.2 Inferring causal graphs

N

F-—— Y -———- Y

Now starting fromX, Y ande we construck by projectingX on the one dimensional
subspace spanned by

X, Y
eox- XYy

Y1l
Then, by construction

X =9Y + €,
whereg = % Because we used the projection, it is clear thahdY are uncorre-
lated: Yy
COVEE, Y) = (X.Y) = <”{(”2><Y, Y)=0.

Since all distributions are Gaussianis " Gaussian, too and thesL” Y. Furthermore
we can determing:

- gvarX) ¢ L1
© pvar(X) + o2 g2+ o2jvar(X) ¢
(i) Let X ande be two iid random variables with distribution
P(X =-0.5) = P(X =0.5) = 0.5,
P(e = -0.5) = P(e = 0.5) = 0.5.

Thus the variable
Y=X+e¢€

has the distributiofP(Y = -1) = P(Y = 1) = 0.25,P(Y = 0) = 0.5. Assume that
X=bY+e,

for someb € R ande L V. Itis clear thatY = 1 impliesX = 0.5 ande’= 0.5-b. On

the other hand it follows fronY = —1 thatX = —0.5 ande = —(0.5 — b). ThereforeY

andé are not independent. More formally we have
P(Y=1)=P(Y=1)-P(€=05-b) and
P(Y=-1)=P(Y=-1)-P(€ = -(0.5-h)).

11
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ThusP(é = —(0.5- b)) = P(¢ = 0.5 - b) = 1, which impliesb = 0.5 ande’= 0. Then
X = 0.5Y, which is obviously a contradiction.

The intermediate result = 0.5 in the second example is not surprising: the argumentation
from the first example holds for the second example, too €gtmins are unique) and we
get

¢ - var(X) 1-1/4 1

b=¢= ¢-varX) +vare) 1-1/4+1/4 2

which leads to uncorrelated noise. Because we do not haveuss@a distribution we
cannot deduce independence.

The normality assumption in the first example is not a coewad, either. We will see that
the Gaussian distribution is the only distribution, for ehhia linear causal relation (2.2)
betweenX andY can be reversed.

In the rest of the section we want to further investigate fipiecial role of the Gaussian distri-
bution. Therefore we need some auxiliary results. We firstg@the following lemma, which is
intuitively clear. The proof, however, has to be done cdigfu

Lemma 2.7 Let X ande be two independent variables and assume be non-deterministic.
Then

e £ (X+¢€).

Proof Of course the proof becomes trivial if the variables havediaariance. Then coX( X +
€) = var(X) > 0. For the general case, however, the argumentation is adoé oomplex.
Assumee L (X + €). Then for everyu,v € R:

@ x+e)(U, V) = E [expfue + ive + ivX)]
= E [exp(ue + ive) - exp(vX)]
= E [exp(ue + ive)] - E [exp(vX)]
= @e(U+V) - ox(v).

We also have

P(e.x+e)(U, V) = E [exp(ue + ive + ivX)]
= E [exp(ue) - explve + ivX)]
= E [exp(ue)] - E [exp(ve + ivX)]
= QOE(U) : 90(5+X)(V)
= @e(U) - e(V) - ox(V) -

We know thatpx(0) = 1 and that characteristic functions are continuous. Theretbxists
a non-empty open intervéd = (-r,r) C R, such thatex(v)| > 0 Vv € V. Thus we have for
alueRandveV:

e(U+V) = @(U) - pe(V) .

12



2.2 Inferring causal graphs

Note that this is still true for an arbitrany € R: Choosen € N, such thafjv/n|| < r. It
follows

gof(u+v)=gof(u+(n—1)\—r1+\—r:)
v

cafore-a8) )
= () c(3) = eel) 0e)
Then we know

@e(u) = 2 for someze C\{ce C:Imc=0,Rec<0}.

We can writez = exp@ + ib) and sincd|e|l < 1 we deduce that = 0. It follows

pe(u) = exp(b - u).

Because of the uniqueness of characteristic functionsirtipiies P(e = b) = 1 ande is
degenerate. O

Furthermore we will use the following result, which was prdwby Skitovich and Darmois inde-
pendently [10] [11] [12]:

Theorem 2.8 [Darmois-Skitovich] Let X, . .., X, be independent, non-degenerate random vari-
ables. If the two linear combinations

[{ = a1 Xy + ...+ anXn, a+0
o = b1 Xy +...+bpXn, b #0

are independent, each ¥ normally distributed.

There exist dferent proofs of this theorem, all using characteristic fiams. We will sketch
one proof (see e.g. Chapter 8 in [13]), which has the advarttzat it can be generalized to the
case of an infinite sum of random variables. This proof, h@reequires the following powerful
theorem from Linnik [14] and Zinger [15]:

Theorem 2.9 Let f;,..., f, be characteristic functions, which satisfy

[0 =fw.
i=1

for somea; > 0 and for all t in a neighbourhood of zero. Here, f is the chaemidtic
function of a normal distribution. Then every ifself is a characteristic function of a
normal distribution.

This theorem is a generalization of Cramér’s theorem [tt@& only covers the case = 1.

13
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Proof [of the Darmois-Skitovich theorem] We give the main stepshdd proof, leaving some
details to the reader.
By a linear transformation it can be shown that without losgeanerality (wlog) we can
seta, = 1 for alli. We have

l_[ ei(u+byv) = n @i(u) n ¢i(biv), (2.4)
i=1 i=1 i=1

wherey; denotes the characteristic functionXf We prove by contradiction that none of
the ¢; vanishes on the real line: If any of them did, there would beat ug of ¢; with
smallest absolute value;(is continuous angh(0) = 1). Then for allv € R

n
[ Jitwo+biv) =0.
i=1

Choosingy, such thatbv| < |up/2| for all i yields

n Uo n Uo

[14(Z)[]a(Z +ov)=0

i=1 i=1
and either® or ¢ + bjv is a root, which leads to a contradiction. Thus we can take
logarithms in (2.4) and obtain

Do wiu+bv) = > i) + D gilay) =1 AQU) + B(Y),
i=1 i=1 i=1

wherey; = Ing;. Skitovich now considers finite flerences and concludes that is a
polynomial of second degree. We take fietient approach by integrating ouer

" [ du= [ A du+ BYX
D5 [, vt - udu= [ A= v B

b v 2

n X+bjv
= ; fo wit)(x — t + biv)dt — Git)(x - t + bvdt = C(x) + B(V)XE

n X+bjv 2
- Z;‘ fo WO t+ bv)dt = C(9 + Bi(v) 3 + Ba(v)x + Bo(V)

Here, B1(v), B2(V), B3(v) andC(X) are chosen such that the equations are satisfiefierbi
entiating both sides twice with respectiand settings = 0 afterwards yields

n
D B9 = R(¥)
i=1
and thus .
[ a0 = expR(), (2.5)
i=1
whereR is a polynomial of second degree with complex fiieients. UsingR(0) = 0 and

R(-x) = R(X), we see that the right hand side of (2.5) is the charadtefishction of a
normal distribution and thus we can apply Theorem 2.9. m|
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2.2 Inferring causal graphs

Now we are able to prove the following key statement of thitiea.

Theorem 2.10 Let X and Y be two random variables, for which
Y=¢X+¢, €L X ¢#0

holds.
Then we can reverse the process, i.e. there e}igtR and a noiseg, such that

X=yY+€é €LY,
if and only if XY, €, € are Gaussian distributed.

Later we generalize this theorem, but to make the proof bettderstandable we prove the simple
case first.

Proof If X ande are Gaussian distributed, the statement follows from Exa2y6. Conversely,
we assume that

Y = dX + €
and €= (1-oy)X - e

are independent. Distinguish between the following cases:

1. A-¢y)#0andy #0
Here, Theorem 2.8 implies thXt € and thus als¢, € are normally distributed.

2.4 =0
We have (1= ¢y)X L ¢X + €. = 0 implies
XL X + ¢,

which is a contradiction to Lemma 2.7.
3. (1-¢y)=0
It follows —ye L ¢X + €. Thus
€L pX +€
and we can apply Lemma 2.7 again.

O

This result is already known. The LINGAM algorithm [5] we ntiemed before actually makes
use of this fact, which can be seen as a special case of IndepeGomponent Analysis (see
Theorem 11 in [17]). Although our proof and the one given ii][&re not the same, both are
based on the Darmois-Skitovich Theorem 2.8. Our proof, kewean be generalized infférent
ways (see Theorem 2.11 and Section 4.2).

Theorem 2.11 Let X, ..., X, and Y be random variables, for which

n
Y=Y gX+e €L (Xy.... %) ¢ #0
i=1

15



2 Causal Inference on Linear Models

holds. Then we can reverse the process, i.e. there exist® and a noise, such that
n
Xy = Zwixi +YY+E L (Y, X ..., Xn)
i=2

if and only if X, ..., X, Y, ¢, € are Gaussian distributed.

Proof The proof is analogue to the one from Theorem 2.10: If allakdds are Gaussian, we
can defineX; as the projection oK; on spany, X», ..., X,). Then we can define the new
noisee:= X1 — X; and by construction

n
X1=Z¢’ixi+l//Y+§,
i

wherec€’is independent of and of allX;, i = 2,...,n.
Conversely, we assume
n
Y = Z O X + €
i=1

and €= (L-ygn)Xe— ) (Wi +yg)Xi — e

i=2

are independent. Again, it is straightforward (mainly byjngs,emma 2.7) to argue why
the codficients cannot vanish. We can apply Theorem 2.8 and it follinas all involved
variables are Gaussian distributed. m|
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3 Theory of Statistical Methods

In this section we introduce Reproducing Kernel Hilbert &% Support Vector Machines and
the Hilbert-Schmidt Independence Criterion. We presessdhconcepts in a strict mathematical
context.

3.1 Kernels

3.1.1 Definition of Kernels

In the following subsection leX be a separable metric space with Barehlgebral”. We think of

X as being an input space, in which we receive the data; thatsrsagle data points are treated
as (X,I') -valued random variables. Note that we implicitly assuh@edxistence of a probability
space Q, A, u).

Definition 3.1 Considerk : X x X — R andxy, ..., Xy € X. Then the matriX with
Kij = k(Xi, Xj)
is called theGram matrixof a kernelk.
Definition 3.2 A symmetricm x m matrix K satisfying

(KC,C)ZZCiCjKij >0 V¢ e R
ihj

is calledpositive definite. Obviously this is equivalent to all eigenvalueskobeing non-
negative.

Remark 3.3 If a matrix K comes from a dot product of a dot product spé¢e(., .)), i.e.
Kij = (Vi,Vj),  Vi,...,Vm€V,

we have that

n n n n
Z CiciKij = Z cicj(vi,vj) = (ZCiVi,Z CjVj) >0 Vg e K,
=1 o1 io1 =

and therefor is positive definite.

1Strictly speaking such a matrix should be calpexsitive semi-definiteNevertheless we adapt to the commonly used
notation and omit the prefigemi- Conversely we say a matrix &rictly positive definitéf it additionally satisfies
Zi,j CiCjKij =0 = 0Vi.

17



3 Theory of Statistical Methods

Definition 3.4 We callk : XxX — R apositive definite kerngbr justkerne) if its corresponding
Gram matrix is positive definite for every choicexf . .., xm € X.

Example 3.5 The following functions are well-known examples of kerniels X = R":
e Gaussian kernel with bandwidth > 0

G
20.2

k(x,y) = exp(—

polynomial kernel of degree € N

k(x.y) = (x.y)°

inhomogeneous polynomial kernel witt> 0 and degree € N

k(X% Y) = ((X.y) + ©)"°

sigmoid kernel withx > 0 andd < 0

K(x,y) = tanhg(x, y) + 6)

B, splines of odd ordem:;

K(X,y) = Bn(lIx=¥ll) whereBy, = P

n-times

using the convolutionf(x g) (t) = [ f(2g(t - 2 dz
All these examples are kernels &4, which is the most important space for practical
purposes, but there exist kernels on many other domainggetgo graphs, sets of strings
[18], etc.).
3.1.2 Reproducing Kernel Hilbert Spaces

Now we consider Hilbert spaces whose dot products are detatsuch kernels. These spaces
turn out to be very useful. They consist of real-valued fiomst f : X — R, for which -as usual-
summation and multiplication by a scalar is defined poindwis

(1- ¥
(f +9)(x)

The follwing definitions can be found in [19], for example.

A-f(X) Y1eR,VfeHandVxe X
f(X) + g(x) VfeH,Vge HandVxe X

Definition 3.6 Let H be a Hilbert space of functions: X — R. H is called aReproducing
Kernel Hilbert Space (RKHS})there is a kernek such that

o k(x,)eH V¥xeX
o (f.k(x,.)y="Ff(x) VfeH

18



3.1 Kernels

For f = k(X,.) the second condition yield&(xX’, .),k(x,.)) = k(X’,X). This explains the term
Reproducing<ernel Hilbert Space. Notice that the two conditions togeiimply that

H = spanfk(x,.) | x € X}.

This can be seen as follows: Consider an elengentH with g L k(x,.) Yx € H. The reproduc-
ing property impliegy(x) = (g, k(x,.)) = 0¥x e H. Thusg = 0.

There is a natural way to represent the data in an RKHS usefptltowing definition:
Definition 3.7 Thefeature maps defined as

X - H
o X B k(x.) ©

An RKHS should be thought of a high-dimensional (or even itdidimensional) feature space.
Mapping the data into the RKHS corresponds to extractingvegit features. This sometimes
makes it easier to work with the data (see Example 3.11). llysmaa high-dimensional feature
space computations, especially evaluations of the dotstodre quite expensive. For an RKHS,
however, we have

(@(x), D(x))) = k(Xi, X)),
which can be computed veryfiently.

Remark 3.8 AssumeH is an RKHS with kernek andk is another kernel of{ satisfying the
conditions of Definition 3.6. Then

k(x, X) = k(x, x) = (k(X,.), k(% .)) = (k(x,.), k(X)) = k(x, X)
and we can see that the kern of an RKHS is unique.
There is also a more abstract characterization of an RKHE [19

Proposition 3.9 LetH be a Hilbert space of functions :f X — R. Then# is an RKHS if and
only if for every xe X the point evaluation operator

H —» R

L B

is a bounded linear functional.

Proof This proposition is a consequence of Riesz’ represent#tieorem (e.g. [20]).
e =: SinceH is an RKHS there is a kern&(., .), such that
Ox(f) = f(x) = (f,k(x,.)y VfeH,VxelX.

Let x € X be fixed. The linearity oby is clear and its operator norm is bounded
because of the Cauchy-Schwartz inequality:

k(x,.) B )
T Koo D] = ko i = Vix

(In fact, this is true in general: In every Hilbert spakethe functionalf — (f, g) for
a fixedg € H is linear and bounded.)

6 = sup (f,kox )| =
If]=1

19



3 Theory of Statistical Methods

e <: It follows from Riesz that'x € X Agx € H such that = (., gx). Thus

Ox (X) = 6x(9x) = (I, Ox) = (Ox. Ox) = Ox (Ox) = Ox(X).

We can define the symmetric functi@(x, X') = gx(X'). Remark 3.3 guarantees that
is positive definite and thus a kernel.

We now proof the existence of such an RKHS by an explicit contbn.

Proposition 3.10 For any given kernel k there exists an RKHS with correspanéarnel k.

Proof Define the space

m
HO = {f X >R ()= Zaik(.,xi) for somemand somey; € R}
i=1

Define further forf = 3, aik(., x;) andg = Z'j‘ilﬂjk(.,yj)

n
Z aiBik(X., Yj)

j=1

(.9

Bif(yj)

0 2 K

a’lg(xi)

1l
i

The last two identities show that the expression does nariepn the expansion dfor
g. Therefore this form is well-defined. It is easy to check tiéd form is bilinear and
symmetric. It is positive semi-definite, since

(f, f)y = Z aiajK(x, X;) > 0.

ij=1
It can be proved [21] that the Cauchy-Schwarz inequality
v, W)l <[] - [|wl]

holds not only for dot products, but also for symmetric pgesitsemi-definite bilinear
forms. It follows that

f(x)? = (f, k(x, )>2 <f fy-k(x,X) VYxeX

and therefore

_..,
1l
o

(f,f)=0 =

20



3.1 Kernels

Thus we have shown that .) is a dot product.

As the final step of the construction we defiHeto be the completion of°. This standard
procedure creates a new space, in which the initial spacbecambedded and in which all
Cauchy sequences converge:is a Hilbert space withH° as a dense subspace.
Convergence if{ implies pointwise convergence Rt For eachx € X we have

1fi(X) = F01 = [Kk(x, ), fi = £ < VKOGX) - 116 = fillge -
Thus the reproducing property holds in the completiéntoo:
(f,k(x,.)) = <iILrgo fi, k(x,.))
= lim (i, k(x )
= lim (9
= f(x)
Since all conditions are met{ is an RKHS with kernek. m]

We have seen that every functidre H can be written as the limit of a sequence
(XL anik(Xnji, .))n in the RKHS norm. It is clear that this class of functions sty depends on

the kernek. We will see later (in Section 3.3.3), how to chodsia order to make the class very
rich, but still handable.

With the following example we try to give an intuition, whyetctoncept of an RKHS can be
useful.

Example 3.11 Let X = R? be the input space and consider a polynomial kernel of deyree
k(@ b), (x.¥)) = (& b), (x y))*

= (ax+ by)?
= a’x? + 2abxy+ b?y?

Define
HO = sparfk((a.b). )| (. b) € R?}.
Using the map

' 7.(0 - RS
v (% Y) ~ 2 + dxy+ey) (c,\/%,e)

we can see easily that© is isometric isomorphic t®3: y is surely linear and injective.
Furthermore we have

(1,0,0) = y(k((1,0)..))

1 1
(0.1,0) = y(k((1, @x ) = k((O, 5

(0.0.1) = y(k((0. 1)..))

)..) - k((1,0)..))
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3 Theory of Statistical Methods

Additionally this map turns out to be isometric in the seris# tt preserves dot products:

(> ki@, b)), > Bik((E;By), ), 0 = D «iBik((a, b, (8, b))
i=1 j=1 i
= Z ai,Bj(aizéJ? + 28 biéij + beJZ)

1]
= <( Z aiaiz, Z i \/Eaibi, Z a/ibiz),
(Zj:ﬂjéjz, Zj:ﬂj V24ib;, Zj:ﬂjBf)>R3

= (w( D eik((a,bi), ) u( D Bik((E;. By), ).,
i=1 =1

SinceR3 is complete it follows that#{° is, too. ErgoH® = H.
For this polynomial kernel we showed that working in the RKid8quivalent to mapping
the data intd&R® via the mapping
- R > R3

(xy) P Gy, V2xy)
and working there using the usual Euclidean dot productelhaw receive data belonging
to two different classes (0 and, it may happen that it is flicult to separate the data in
the input space (e.g. we have to use a circle), whereas ireéteré space the data can be
separated easily (e.g. using a hyperplane), compare Fglrd his example relates to the
concept of Kernel Support Vector Machines (Section 3.2m) shows, why it can be an
advantage to work in a feature space.

*;**** * kK

% R

Figure 3.1: The left picture shows the data in input spaceritiht picture its representation in the RKHS

Remark 3.12 In this work we make the following assumptions on the ker(ébtice that all of
them are satisfied by the Gaussian kernel.)

e kis bounded, i.edce R: k(x, X) < c VX, X € X. It follows that all functions in the
RKHS are bounded

IO < 1Tl - KOS Ml < [ Flle - VKOG X) < N Fllge - Ve
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3.1 Kernels

e kis continuous

These conditions together with the fact tiais separable guarantee that the corresponding
RKHS is separable, too; this is not hard to see and is showexample in [22]. The
separability of the RKHS is needed for the definition of thébklit-Schmidt norm.

3.1.3 A Hilbert Space Embedding of Distributions

We already saw, how we can represent single data points irk&BRIn this section we learn a
way to represent probability distributiofson X in an RKHS.
Therefore consider the mappfg

This is well-defined becauskis continuous and bounded. Furthermore this is obviousiyeat
function in f and it is continuous since

[E[F(X)]] = [ECF. k(X))
< E[(f. k(X))
< Ellfllge IICX, llge

= Ifll EVK(X, X),
S

sup [Ef(X)| < .
l1llz=1

By Riesz’ representation theorem there is an elemf?it € # such that
E[f(X)] = (f,u[P]) VfeH.
Therefore we can represent any probability measure in anRsihg
P +— ulP].
We will refer tou[P] as being thanean element

Proposition 3.13 It holds

Proof For everyxwe have

HIPI(X) = k(.. X), u[P]) = E[K(X, X)].

2Instead ofEy_p f (X) we use the shortharfg f (X) or evenE f(X).
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3 Theory of Statistical Methods

3.2 Support Vector Machines

A Support Vector Machine (SVM) is an algorithm that addregbe task of classification, which
itself is a common problem in data analysis: in a data spaeee are given a poinZ, that we
want to assign to one af different classes. Obviously there is a huge variety of apjiitst It
was estimated that between January and March 2008 92.3 peofeemail trdfic is spam [23]
and therefore good spam filters are needed, which can glassming mail reliably as being
spam or not. Looking at an MRI scan a computer can do a "prgrdisis” and predict if a patient
has got a special disease. The post companies use computassifjning hand written numbers
on an envelope to one of the digits 0., 9 in order to sort the mail according to their destinations.
You can also think of a company, which checks a calling custsmrefix, age, income and the
number of children, decides that he probably rather haveptaints than the intention to open a
bank account and therefore place him on hold.
In a lot of applications we have to deal with a huge amount td dad thereforeficient algo-
rithms are indispensable.
Formally, in binary classification problems the data is gireX x{-1, 1}, i.e. we receive the data
in an input spac& together with an attached label (-1 or 1). We expect thereta tunction (or
classification rule)

f: X - {-11},

such that the data lie on the subspé&¥ef (X)). For received data the goal is to learn this function
f. Obviously we have to restrict the class of function canisléy introducing some smoothness
condition, for example. Otherwise there is no way of leagnfn We consider classification
rules that are constructed using hyperplanes. Most of tfieititens and statements given in this
subsection can also be found in [19].

3.2.1 Hyperplanes

Let H be a complete vector space with a dot product (i.e. a Hilljgats). For now you can
think of H beingR", but it is important to notice that the following works forezy complete dot

product space. In Section 3.2.4 we use the algorithm on Rapiog Kernel Hilbert Spaces and
obtain the so-called kernel SVM.

Definition 3.14 A subsetH c # is called ahyperplaneif there existw € #H \ {0} andb € R,
such that
H={xeH|(w,x)+b=0}.

We call (v, b) a representation df.3

These hyperplanes separate the space into two half spasegl@point lies either on one side
of it or on the other and we can define the classifier:

Definition 3.15 For givenw € H andb € R define the classification rule

H — R

fwb sgrn({w, x) + b) °

3In this subsection we use the following convention: smaltibetters denote vectors in vector spaces, small normal
letters numbers ii.
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3.2 Support Vector Machines

Thus we say a given pointbelongs to class 1 if it lies on one side of the hyperplane and t
class-1if it lies on the other side. Note th#t , and f_,, _p define two diferent classifiers.

By elementary geometry it can be shown that a representatiarhyperplane is not unique:

Remark 3.16
(X e H|[{w,X)+by =0} = {xeH|{(wp,X)+ by, =0}

if and only if there exists & € R such that
Wa = kwq and by, =kb;.
In particular this means that andb are not uniquely determined ty.

In a real situation we use the given training data in orderefing a unique representation of a
hyperplane:

Definition 3.17 (i) Let Xq,...,Xm € H. We call v, b) acanonical representationf the hy-
perplaneH if

min [{w,xj)+ bl = 1.
i=1,...m

.....

Remark 3.18 LetXs,...,Xm € H. Then for (v,b) € H xR and its generated hyperplakithe
following is equivalent:

(i) (w,b) is the canonical form of.

(i) The margin ofH is m.

(See Figure 3.2.)

Proof Letze H. Notice that the projection from—z onto”—"w"|| is exactly the distance fromto
the hyperplane. Thus we have

[{w, X) + bl = Kw, X) + b — ({w, ) + b)|
= Kw, X = 2)|

w
= Wl (===, X = Z)|
<IIWII )

= ||w]| dist(x, H)

Ergo [K(w,Xx) + bl and distk, H) are minimized by the samg, say, and the statement
follows. O
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3 Theory of Statistical Methods

X2

X |H:{ze?{:(w,z)+b:0}|

1

Figure 3.2: A hyperplane in its canonical formu,{); its margin is”m.

Remark 3.16 and Remark 3.18 together show that there ardyetvao canonical representations
of a hyperplanéd: If (w, b) is one canonical representatioaw(, —b) is the other. As we want to
construct classifiers from these hyperplanes the distinés necessary. Although they describe
the same hyperplane and therefore the same set of poikfstime corresponding classifierdtir
(see Definition 3.15).

Now we introduce thé&upport Vector Machinavhich is a method that constructs such a hyper-
plane from the labelled data.

3.2.2 Hard Margin SVM

Given some training data we want to learn the classificatibe, i.e. the form of the hyperplane
(cf Definition 3.15).
Among all possible hyperplanes a hard margin SVM choosebytperplane, such that

1. all training data are classified correctly and
2. the margin is maximized.

The hyperplane drawn in Figure 3.2 is an example for a hargimagperplane (the two classes
are represented by white and black points).

Remark 3.19 (i) Note that the training data does not have to be separabke tiyperplane,
furthermore even if possible a separation may not be adeisabit may lead to over-
fitting (cf soft margin SVMs and kernel SVMs).

“Observe thatx, .) is continuous and therefoiid is a closed subspace #f. Thus the distance dist(H) is well-
defined.
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3.2 Support Vector Machines

(i) Maximizing the margin is intuitively a good idea: we abse the hyperplane, such

that the distance to the point closest to it is as large asigessAssume in a survey
people are asked if they like the TV show Musikantenstadl.y8iling people (aging
21-57) said no, the others (aging 63-103) said yes. Then sestithe border to be
at around 60 because it seems to be the best generalization.
This choice can even be justified theoretically: there anentde on the probability
of making a test error. Of course these bounds themselvgshoid with a certain
probability, but it can be seen that they get the tighter #rgdr the margin is (for
details see Section 7.2. of [19]).

For canonical hyperplanes the margin is alwaygw|| and thus maximizing the margin corre-
sponds to minimizingiw|| or equivalently 12 ||w||?>. We take the latter because then the problem
turns out to be a quadratic programming problem. Furtheergsome datax(, y1), . .., (Xm, Ym)
in H x {-1, 1} we assume that both classes and 1 occur within thg; at least once.
Now we can summarize the hard margin SVM procedure to be tleving optimization prob-
lem:
Mingp Il
subjectto fup(Xi) =y Vi=1,....m
and (v, b) is a canonical representation

This can be rewritten as

H 1
Minyp  3lwi?

1 subjectto yi((x,Wy+b)=1 Vi=1....m

Assume the problem is feasible, which means that the datheanparated linearly in the space
H. If (W, 6) is the solution of this problem, we can check easily thattdeast one of the vectors
X; the constraint is precisely met:

Yi({xi,w) +b) = 1.

This means thati, b) is automatically a canonical representation of a hypemnla
Proposition 3.20 O; is equivalent to

MaXerm N @i — 5 2oy @@jyiyi(%, X))
2 subjectto @; >0 Vi=1,....m and YT ayyi=0

Notice that this is a quadratic programming problem (withifree definite matrix in the objective
function) and can be solved verffieiently by the ellipsoid method [24].

Proof Because of the inequality constraint we introduce someksladgablesn;, such thatO;
becomes
Minwp, 3w
subjectto yi((xj,Ww)+b)-n-1=0 Vi=1...,m

Because of the convexity of the objective function, the esity of the constraints and
the satisfied interior point condition (or Slater constrajnalification), we know that the
problem is strong Lagrangian (“min of the primahax of the dual”); for details see e.g.
Chapter 5.3 in [25]KK) or Chapter 10 in [26] (general Hilbert spaces). Thus sgltte

27
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primal is equivalent to solving the dual.
To compute the dual we note that the Lagrangian equals

m

1
Lw.b.p.a) = SIWIP = ) aifyi(w.xi) +b) = i — 1).

i=1

The dual problem is defined to be

MaX,erm  O(@) = infyp, L(W, b, 7, @)
subjectto @ €Y = {@ € RM| g(a) > —co}

The constraint for is equivalent t& o > 0, which implies that we can sgt= 0. The
current optimization problem is

m

e , 1
maxinf L(w, b, @) := max inf i - > ai(yiw, i) + b) - 1). (3.1)

m
a€RT w,b

i=1

For the optimal solutior Tet (W, b) be minimizingl. Then we know by the Lagrangian
Suficiency Theorem (or Kuhn-Tucker Saddle Point Condition) (fiab) is also a solution
to the primalO;. It follows

& O -
%L(W, b,a), ;=0 = ; aiyi =0

P L
G_WL(W’ b, @)y-y =0 > W= ; aiViXi
Plugging this into (3.1) yield®;. ]

Notice that the solutioiw can be written as a linear combination of the training datan&of the
Lagrangian multipliersy; may be zero and thus the solutiéns not supported by these vectors.

Definition 3.21 Assume {, b) is the solution of the optimization proble®, described above.
The vectorss; which satisfy

aj >0
are calledsupport vectors

In Figure 3.2 the pointg, andxs are support vectors.
It can further be shown (see Chapter 7.3. in [19]) that tha @gaintsx; corresponding to La-
grangian multipliersy; > 0 satisfy the constraints @, exactly.

5This is shorthand fow; > 0Vi=1,..., m.

28



3.2 Support Vector Machines

Figure 3.3: The VC dimension df? is 3: in the left picture, a separation of the points is pdssfbr any
labelling, whereas the right figure is an example, where dietp are not linearly separable.

Furthermore this helps to determine the threshld «j > 0 (i.e. X; is a support vector), then
yi((xj, W) +b) = 1

m
= (X, Z&i)’ixi> +b=y;
i—1

m
= Z&Ni(Xj,XiHE):yJ'
io1
’ m
= b=Yj—Z&iYi<Xj,Xi>
io1

Ergo the threshold can be computed by choosing only one support vexfaind using this
equation. In practice, however, we find smalffeiiences in the values farif we use diferent
support vectors. This is due to numerical problems and ik déth by averaging over all values
of b we obtain for diferent support vectors.

Remark 3.22 The hard margin SVM has two major drawbacks:

1. We need the training data to be linearly separable, oikerwe cannot construct the
separating hyperplane. The concept of soft margin classi{fgection 3.2.3) relax the
constraint that all training data must be classified colyect

2. We can only separate the data linearly. The Vapnik-Chmamkis (VC) dimension
[19] of the class of half-spaces &' can be shown to be + 1. In the case of = 2,
this means that we can arrange 3 point&#rin such a way that for any labelling of
these 3 points, we can separate the two classes by a stiaghThis is not possible
for any arrangement of 4 points R?. We can always attach class labels to 4 points,
such that the classes cannot be separated anymore (see B.igur

Now we can either conclude that the class of hyperplaneifikrssis too small or
we find a way of mapping our data in a high-dimensional spabereithe class gets
more powerful. The latter is exactly realised by kernel SYMhbich we explain in
Section 3.2.4.
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3.2.3 Soft margin SVM

In the last section we constructed the hyperplane, whichraggd all training data according to
their classes. In order to relax this constraint, we couylddrseparate as many data as possible.
Unfortunately, this turns out to be a¥iP-hard problem (see for example [27]).

Instead, Cortes and Vapnik [28] changed the constraintseobtiginal optimization probler®;.
They added some slack variablgs> 0 and obtained

Vi(xi, Wy +b)>1-¢ Vi=1,...,m.

Some classification errors on the training set are now atiowat if & gets too large, the con-
straints can always be satisfied. Therefore we penalizeahiges of¢; and add the term

C m
E;fi,

to the objective function. Hel@ > 0 is a constant, which adjusts the strength of the regulisiza
term®. This leads to the following quadratic programming problem

< . Mingpe SIWP+E3M &
1 subjectto yi((x,w)+b)>1-& Vi=1...,m

A computation analogue to the one before shows that thislivalgnt to

< MaGerm X @i — 3 Doy @i YiYiO6, X;)
subjectto £ >ai>0 Vi=1,...,m and XM aiyi=0
As before, we can write the solution as a linear combinaticth@training data:
m
W = Z aiYiXi ,
i=1
and again the support vectors are thasewhich support the solution, i.exj > 0. As before
Lagrangian multipliers greater than zero correspond toigpedy met constraints
Yi((xi, Wy +b) =1-§,

and we can conclude that for support vectorsatisfying additionally¢; = 0 (both together is
equivalent to O< ¢; < C) the following holds:

b=yj —Z&Ni(Xj,Xi}- (3-2)
i1

And again we average over all those vectorso deal with the numerical problems.

In practice, there are filerent procedures to chooSeas a rule of thumb you can get= 10-mfor
first results; you can also choo€eby cross-validation or rais€ from a very low starting value
until the training error (misclassifications on the tragiet) is lower than a certain fraction.

5There exist other formulations as well, where the integiien of the adjusting constant gets somehow easier. See
for example Scholkopf’'s classifier in [29].
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3.2.4 Kernel SVM

As mentioned before, SVMs can get much more powerful if we thaplata in a high-dimensional
space, the so-called feature space. Performing an SVMfitasien in the high-dimensional fea-
ture space often corresponds to a non-linear classificatitime input space; such a procedure,
however, is usually computationally very expensive beeadishe evaluations of the dot products
in the high-dimensional space.
We can avoid this problem if we choose the feature space tmBRK#S. Recall the definition
of the feature map:
X - H
T e kLX)

Then we perform the usual SVM in the RKHS. This so-cakecdhelizingof the SVM is possible
because the whole original SVM algorithm only depends ordtitgoroduct of the datéx;, x;).
This means, in the feature space we only have to considerdotigts(d(x;), (x;)), which can
be calculated very quickly by writing it in terms of the kekne

(D(xi), D(x;)) = k(Xi, X;).

Herein lies a lot of the power of the kernel trick: the expeesvaluation of the dot product in
a suited high-dimensional feature space can be replaceddgtavely cheap evaluation of the
kernel function.

As a summary the procedure of the kernel SVM is as follows:

1. Choose a kernel,

2. map the data into the (possibly infinite-dimensional) iedpcing Kernel Hilbert Space
and

3. apply an SVM in this RKHS.

It seems obvious that choosing the kernel and its parameseefully can increase the perfor-
mance of an SVM a lot.

Note that the soft margin SVM now has an additional advantagentroduced it as a possibility
of creating a hyperplane, even if the training data was ngarsdle. Using a kernel SVM it is
often the case that separating all training data is posditeay not be advisable though because
this would lead to overfitting: If there is an outlier in thet@awhich is wrongly labelled, a clas-
sifier which tries to be correct on the whole training dataaihes a lot on the outlier and will not
perform very well on the test data. How a bad choic&Catan lead to over- or underfitting is
shown in Figures 3.4-3.6.
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Figure 3.4: The dark line is the hyperplane in the RKHS regmid in the input space and therefore our decision
boundary. Choosin@ = 1- mleads to underfitting: 5 classification errors.

Figure 3.5: Choosin@ = 10- mresults in only 1 classification error.
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Figure 3.6:C = 1000- mleads to overfitting: all points are classified correctly.

3.3 Hilbert-Schmidt Independence Criterion

There are dferent methods to measure the dependence or associatiopenetiwo random vari-
ables. Optimally, this measure should be zero if and onlgdfiariables are independent. Some
approaches, however, only take second order dependencacttunt, which means they cannot
detect dependencies beyond correlation. Other methdastlie widely used? test) only work
for discrete data, which is a drawback because there is rantzat way of discretizing continu-
ous data. If we use too few bins for discretization, we loo$ermation and if we use too many,
we do not have enough data in each bin. In our work we choseitherHSchmidt Independence
Criterion (HSIC); it does not ster from those problems. Note that our method works for other
independence tests as well. In the experiments we triedaléndependence tests and the HSIC
performed best, probably because of the reasons mentidiove.a

The HSIC is a kernel based method to detect dependence lretwegandom variables: both
the joint probability distribution and the product of the ngiaal distributions are mapped in an
infinite-dimensional feature space in such a way that th@egbints coincide if and only if the
two random variables are independent.

In the first subsection we give some well-known results framcfional analysis, that we need
later. Afterwards we introduce HSIC in twoftlirent ways; first we define it as the Hilbert-
Schmidt norm of the cross-covariance operator [8] and tlsem special case of the Maximum
Mean Discrepancy (MMD) [30]. We show both possibilities idler to develop a deeper under-
standing for the HSIC.

Remark 3.23 For the formal setup of this whole section ktandY be two random variables,
that take values onX(,T") and (¥, A), respectively; hereX andY are two separable metric
spaces]” andA are Borelo-algebras. Then x Y,T' ® A) is again a measurable space
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andX andY are independent if and only H#*Y) = PX @ PY.

We define kernelk(.,.) andl(.,.) on the spaceX andY and denote the corresponding
RKHSs withHx andHy, respectively.

3.3.1 Some Functional Analysis.

We want to introduce HSIC as the Hilbert-Schmidt norm of thess-covariance operator. In
order to do so we give some definitions and results from faneti analysis, which include the
concepts of singular value decomposition and Hilbert-Sdhoperators.

Let H, H; and H> be two separable Hilbert spaces oler Denote the set of all continuous
operators (i.e. bounded and linear functiofisy H; — Ho by L(H1, H>) and setL(H) :=
L(H, H). We further define

Definition 3.24 A subsetS c H is called anorthonormal systenf (g, ej) = d;; for all g, €
9H. An orthonormal syster8 c H is called arorthonormal basiof # if H = spanS.

Definition 3.25
e ForT e L(H, H>) the adjoint ofT is the unique operatdr* € L(H>, H;) satisfying

Ty =(XTY) VxeHyyeHs.
e T € L(H) is calledself-adjointif
T =T.
o T € L(H1, H>) is calledunitaryif T is invertible and
T =T".
e T € L(H) is calledpositiveif
(Txx)=>0 VYxeH.

(This implies that all eigenvalues are non-negative.)

e A linear mapT : Hy — H, is calledcompact(or a compact operator) if it maps
bounded subsets @ff; onto relatively compact subsets ®f. We write K(H1, H>)
for the set of all compact operators afd(H) := K(H,H). Itis not hard to see
that a compact operator is bounded and therefore continudbes K (H1, H>) C
L(H1, H).

The following results from functional analysis are wellekyn. (For complete proofs see [20],
for example.)
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Remark 3.26

e Spectral Decomposition:
The spectral theorem allows us to decompose a compactdjelfivaoperatorT <
K(H) into:
TX:Z/Mx,a()a( VYxeH,
k1
wheré (11, 15, ...) are the non-zero eigenvalues (each eigenvalue is repasitadny
times as the dimension of its eigenspaces) with correspgragenvectors(e;, e, .. .)
and Ak — 0. Furthermore we have

ITI = suplAl .
k=1
We can expande(, e, . ..) to an orthonormal basis ¢ by adding an orthonormal
basis of kefT:
H=kerT @& lin(e,ey,...).

Notice, however, that opposed i = ker (1 — T) with A # 0, the spacd&g = ker T
can be infinite-dimensional and even non-separable.
For a general compact operafbre K (H1, H>) the spectral theorem does not hold,
of course, but we can apply it to the self-adjoint operdtdt. To do so we first need
the following two auxiliary results.

¢ Roots of operators:
Using the spectral decomposition you can construct roots ftompact operators:
For every positive, self-adjoint operatdr e K'(#H) there is a unique positive, self-
adjoint operatos € K(H), such that

S?=T.
We wgiteS = TZ. In case of the positive, self-adjoint operafor* we write|T| =
(TTYz=.
e Polar Decomposition:
For everyT € K(Ha1, H>) there is a unique operatblr € £(H1, H>), such that

T =UJT], U|(k ) isunitary and kel =kerT.
e 1

(This reminds of the polar decompaostion in the complex plane|Z exp(¢).)

e Singular Value Decomposition:
For everyT e K(Hi, H>) there exist orthonormal systems (e, ...) of H; and
(fy, f,...) of H> (both possibly finite) and a non-decreasing sequesg&gdnverging
to zero, such that

Tx:Z&(x,a()fk VXeHy.
k=1

This can be shown as follows: Writle = U|T| and according to the spectral decom-
position we haveT X = 3 s«X, &)e. Now definefy = U (&).

"These collections may be finite.
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It follows that the§ are the eigenvalues &fT* (repeated according to the dimension
of their eigenspaces). Thg = s(T) are calledsingular values

Definition 3.27 T € K(H1, H>) is called aHilbert-Schmidt operatoif (s(T)) € 12, i.e.
Sy S < co. For these operators define

o \1/2
ITls = [[(s(T)| = [Z i} :
k=1

The linear space of all Hilbert-Schmidt operatdrs H — H is denoted by HSK).

Proposition 3.28 Assume Te K (Hi, H>) is a Hilbert-Schmidt operator. Then the following
holds for all orthonormal base@m) of H1 and (h,) of Ho;

(o9

TR = ), (Tmh)? = > IT gl

mn=1 m=1

Proof LetTx= X ; (X &) fx be the singular value decompositionTaf Following VI.6.2 in
[20] we have

DT h)? = > 3 (Ton M), Tam) = D T gl
mn=1 m=1n=1 m=1
= > 1> s(am &0 fk = > > siam el
m=111k=1 m=1 k=1
= > > (O 5@ = ) llsead?
k=1 m=1 k=1
- Z <
k=1
Here we used Parseval’s equality [20] twice. m|

Proposition 3.29 ||.||Hs is @ norm on HH).

Proof This follows from Proposition 3.28 and the fact thgf. itself is a norm. Note, for
example

Miks=0 = > ITgnl? =
m=1
= Tgn=0 Ym=>0
= Tx:Z(x,gm>Tgn:0 vxeH

m=1

= T=0
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Most of the following proposition is easy to prove [20] (ortye completeness requires some
work), but it is still useful:

Proposition 3.30 For T, S € HYH) define

(T,Shs = > (Ton M)X(San M) = > (Sa Tao,
k=1

mn=1

for any orthonormal basiggi:, go,...). Then(.,.)ys is a dot product and inducds||ys.
(HS(H), (., .)us) is a Hilbert space.

The tensor product between two functions is the last dafimith this subsection.
Definition 3.31 For f € H; andg € H- define

. H, - H
f®(g,.): h o (@hf
As a shorthand notation we wrife® g := f ® (g, .).
It holds
Ifedl= sup Kg Ml IIfllg =gl - [1fllg,
lIhllg,=1
and also

If@dlis=(f®g fegns
= > {(F ® )(hm). (f © Q) (hm)yy,

= > (9 Ninde, £, (@, e, Ty
m
= (£, D > (G Dbty (s O, = NIF1IZ,, - llglIZ,
m

where {1, hy, .. .) is a (possibly finite) orthonormal basis ®f,.

3.3.2 HSIC using the cross-covariance operator

Let X andY be two random variables taking values o ) and (¥, A), respectively and let
Hy and Hy be the corresponding Reproducing Kernel Hilbert Spaces. d#fime the cross-
covariance operator, which — for carefully chosen kernebhptures all sorts of dependencies
betweenX andY. This definition is similar to the one given by Baker [31],haltgh he uses
measures defined directly on the function spaces.

Definition 3.32 Thecross-covariance operator &y : Hy — Hy is defined as being the unique
linear operator satisfying

(f,Cx vy = Exyf(X)g(Y) - Exf(X)Eyg(Y) VfeHx,0e Hy.

The expectations exist sindeandg are continuous and bounded functions (see Remark
3.12).
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The existence of such an operator is again ensured by Ripszsentation theorem: obviously
the right-hand side is linear ih and additionally it is bounded with a similar argumentatam
above:

[Exy F(X)9(Y) — Exf(X)Eva(Y)| < [Exy f(X)9(Y)| + |[Ex f(X)Evg(Y)|
< ExylTOX)] - 19(Y)l + ExI T (X)] - Evlg(Y)I
< Exvll Fllze IKCX, gy - 19CY)
+ Exll fllae IKOX, llge - Evlg(Y))
= |Ifll#, Ex.y VKX, X) - 1g(Y)I
+ 11 Fllz Ex VKX, X) - Evlg(Y)|

SO

fsup [Exy fF(X)a(Y) - Exf(X)Evg(Y)| < co.
Ifllg=1

Thus the expression can be written as a dot prod@€x v(g)). The right-hand side is also
linear ing, which implies linearity oCx y.

Our next goal is to derive the Hilbert-Schmidt norm of thiggdor. If the norm is finiteCy y is

a Hilbert-Schmidt operator and we define

HSICP™Y) := ICx vlls-

Lemma 3.33
Cxy = Exy[k(X,.) ® I(Y,.)] - u[P*] ® u[P"]

Proof We have for everg € Hy and everyx e X

Cx.y9(¥) = (k(., %), Cxy9)
= Exrk(X, )0(Y) - ExK(X, YEyg(Y)
= Exr(K(X)gI0) = Exk(X, JEvg(Y) (¥)
= Exv(k(X,) @ 1(Y, ))g (%) — u[PX]®u[P"]g (¥
= (Exyk(X,.) & 1(Y,.) = ulP*] @ u[P"])g (¥)

Ergo
Cxy = Exvy[k(X,.) ®1(Y,.)] = u[P*] ® u[P"]

The lemma helps us to express the HSIC in terms of kernels:
HSICP™™) = ExvEg k(X X)I(Y.¥) = 2ExyEEgk(X. X)I(Y, V) + EXEXEYEK(X, X)I(Y, Y),

which is computed in [8].
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3.3.3 HSIC using the Maximum Mean Discrepancy

The Maximum Mean Discrepancy (MMD) provides a kernel basethod for the so-called Two-
Sample-Problem. For this setting tbe a separable metric space with Barehlgebral” and
probability measureB andQ. We are given two sets of iid samplesy, . .., X} and{Y1,..., Ya},
which are drawn fronP andQ respectively. The Two-Sample-Problem asks if the two sampl
come from two diferent measures or # andQ are actually the same. The MMD measures the
difference between two probability measures and can be useghti® er statistical test for testing

Ho: P=Q against
Hi: P#Q

Therefore the MMD is one solution to the Two-Sample-Problem

Considering the distributionB = P*Y) andQ = PX ® P¥ leads to an independence criterion,
which turns out to be HSIC. This section consists of the foithg paragraphs:

e MMD as the Maximum Diference in Means
e MMD as the Distance of Mean Elements
e Conditions for the MMD to be a metric

e HSIC as a special Case of MMD

MMD as the Maximum Difference in Means We now investigate the flerence between
two probability measureB andQ. The MMD measures this fierence depending on a function
class¥.

Definition 3.34 Let X be a measurable space with measitesdQ and let¥ be any class of
measurable function$ : X — R. Then define théaximum Mean Discrepancy (MMD)
as

MMD(F, P, Q) = sup |[Ex-pf(X) — Ey~qf(Y)|.
feF

Notice that for some classes we obtain well-known concepgs;

e ¥ ={1a| A € B} leads to the total variation between the measiraadQ.

e ¥ = {f|f continuous and bounded leads to the metrization of the weakecgence.

o F ={f|f = exp((t,.),t € RY} leads to the biggestfierence in the characteristic functions
of PandQ.

Surely the MMD is zero iP equalsQ. And the larger the clasg, the more probability measures
we are able distinguish. The following lemma (e.g. [21])wba@ sificient condition for two
measures being equal.
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MMD o
" Q]

WP

Figure 3.7:P andQ are mapped from the space of all probability measures (lft)an RKHS (right). The MMD
can be shown to be their distance in the RKHS.

Lemma 3.35 LetX be a metric space arfd, Q two Borel measures diX, T'). If f fdP = f fdQ
for all f € Cyp(X), thenP = Q.

Ergo, for¥ being the class of bounded continuous functions the MMD ie paly if P = Q.
This means, the MMD defines a metric on the space of all pribhabieasures. For such a
huge class, the quantity is very hard to compute, of courbe.qliestion arises, how to choose a
function classF, which satisfies the following three criteria:

1. Itis big enough to guarantee that the MMD is a metric.
2. Itis small enough, such that it can be computitiently.

3. Itis chosen in a way, such that sample estimate of the MMiNe&@es reasonably fast to
the true value.

Gretton et al. [32] proposed to choggeas being the unit ball in an RKHS:
F={feH]||flly<1}.

Now the question for a good function class reduces to thelgmolof choosing a good kernel.
Before we come back to this question, we first introducdtadint way of interpreting the MMD:

MMD as the Distance of Mean Elements The MMD has a very nice geometric interpre-
tation, too. Recall that we can represent probability messas single points in an RKHS via
P — u[P] = Exk(X,.). If you take two measureB andQ and map them into the RKHS, the
distance between these two mean elements turns out to betiz défined above.

Proposition 3.36 Let K.,.) € £. Then

MMD(P, Q) = [Iu[P] — u[Qlllx

(see Figure 3.7).
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Proof

MMD(P,Q) = sup |[Epf(X) - Eqf(Y)|

I Fllg<1

= sup [(ulP], )z = ulQl, Fa|
(st

= fiupl |<u[P] - u[Ql, f>7{|

[l
csy oo o AP QL
= {ulP] ~ uIQ) Iu[P] —M[Q]H)’H

= [Iu[P] — u[Qlll#

This way of looking at the MMD is nice because of threffatient reasons:

1. It connects two quite ffierent mathematical approaches of defining a distance fdrapro
bility measures.

2. Using this formulation we can write the MMD in an easy clbserm expression:

MMD(P, Q) = [[u[P] — u[Q]llx
= (uIPL Py — 2(u[P], u[Q]) + u[Ql, u[QD
= ExEgk(X, X) — 2EXEvK(X, Y) + EvEk(Y, Y)

3. The problem of choosing a kernel that assures the MMD totetac is now equivalent
to finding a kernel that makes the embedding

P +— u[P]
injective.
Conditions for the MMD to be a metric Now we answer the question, for which kernels

the MMD is a metric or equivalently the embeddipgs injective by stating results from the
literature. There are two fierent sifficient conditions on the kernel: It has to be either

e a universal kernel or

e a convolution kernel o9, for which the Radon-Nikodym derivative of its inverse Heur
transform is supported almost everywhere.

Definition 3.37 Let (X, d) be a compact metric space. A kernel &ris calleduniversalif the
corresponding RKHS is dense in the sp&&) of all continuous functions. Such an
RKHS is also callediniversal

The following theorem shows that this assumption is indagficgent (the proof is given by
Gretton et al. [33]):

41



3 Theory of Statistical Methods

Theorem 3.38 LetF = {f € H |||f|l4s < 1} be the unit ball in a universal RKHS on a compact
metric spaceX. Then

MMD(P, Q) := MMD(F,P,Q)=0 < P=0Q

Definition 3.39 Let X = RY. A kernelk on X is called aconvolution kerneif it can be written as
k(x.y) =¢(x-y),
wherey is a bounded continuous positive definite function.

Bochner’s theorem (e.g. Theorem 6.6. in [34]) states thatyepositive definite function is the
Fourier transform of a Borel measure:

Theorem 3.40 Lety : RY — C be a continuous function. It is positive definite if and ofily i
v = [ | expeitxw)da@).
R

whereA is a finite non-negative Borel measure kfi

From now on we assume thatis absolutely continuous with respect to the Lebesgue neasu

and we write dA
=¥

a =.
The following shows that the support ¥fbeing strictly greater than zero almost everywhere, is
also a sfficient condition for the injectivity of the embedding, i.betproperty thaM MD(P, Q)
is zero only ifP = Q:

Theorem 3.41 Let k be a convolution kernel dd® whose corresponding Borel measuxehas
the Radon-Nikodym derivativé and let

SUPH(Y) := {x € RY | ¥(x) > O} = RY.

For the unit ballF = {f € H |||flly < 1} in the corresponding RKHS we then have once
more
MMD(P,Q) = MMD(F,P,Q)=0 < P=0Q

This result is due to [35].

Remark 3.42 The universal property has the drawback that we requireribiet ispaceX to be
compact (that exclude®?), whereas the second condition needso beRY. Our data,
however, lie inRY and thus we make use of the second approach. We further ratelith
conditions of this section on the kernel are satisfied by thassian kernel

by

k(x,y) = exp(— 2

It is bounded, continuous and additionally it is univer&d][and the inverse Fourier trans-
form of a Gaussian is supported everywhere.
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HSIC as a special Case of MMD  We show that the HSIC can be regarded as a special case of
the MMD. Consider a random vectaX,(Y) taking values in the product spac¥, (¥) and define
a product kernel on the spack, (V) via

Xx Y — R
(xy).(%9) = kx%)-1(.9) °
wherek(.,.) andl(.,.) are kernels orX, Y, respectively. Then the MMD for the distributions
P = PXY) andQ = PX @ PY can be expressed as
MMD(PXY), PX @ PY)2 = HSICPXY),
which can be seen as follows:

MMD(PY), PX @ P*)2 = (u[P*"] — u[P* & P], u[P*Y)] — u[P* & P"])
= ([P, u[PCN]) — 2P, u[P* @ PY])
+ [P & P u[P* & P"])
= ExvEx yK(X, X)I(Y, ¥) = 2ExyE4Egk(X, X)I(Y, Y)
+ ExESEvEck(X, X)I(Y,Y)

which is exactly the expression for HSRS{")) defined earlier (cf Section 3.3.2).

3.3.4 Sample Estimate of HSIC and its distribution

In any real-world situation we have to deal with a finite antoohdata and thus we need a
sample estimate of HSIC, which is converging reasonabliytfathe true value of HSIC. If we
want to create a statistical test, we further need at leasjpgroximation of the distribution of
this estimate under the null hypothesis of independencedierdo bound the type one error.
Writing the HSIC in terms of kernels provides an easy way tosgeh a sample estimate. If we
are given Ky, Y1), ..., (Xm, Ym), we can estimate HSI@(*") by a V-statistic [37] that is denoted
by HSIC. An unbiased estimator for HSIBEY) is

K(X1, X2)I(Y1, Y2) = 2k(X1, X2)I(Y1, Y3) + K(X1, X2)I(V3, Ya) ,

and the corresponding V-statistic has the form

m

HSIC—msz(X,,X)I(Y,,YJ) 2— Zk(x.,X)I(Y,,Yf)+ Zk(xi,x,-)l(vf,vg).
ij j,f.9

We can think of the V-statistic as being a plug-in estimaifoE denotes the distribution function,
you estimate the magnitude of interé§E) by 6(F,), where

1 m
Fm(X) = E Z 1Xi5x
i=1

denotes the empirical (or sample) distribution function.
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Writing® (K)ij = kij = k(Xi, X;) and L)ij := lij := I(Y;,Yj) andH = | - %1- 1' we can express
this estimate for HSIG*Y)) as a simple product of matrices:

%traee((HLH) = % fZJ(KH)fI(LH)If
ZEZ[__ZIGS (1——)kfl}{__zlls (1—%)|If]
= %Z ! ZZkfshr _In- 1Zkf|||s n;lzkfsllf
i -y

s#l ref
_ay2
N (mmzl)

kflllf]

1 2
== ; [kflllf] 3 ; [kflllf + ; kiilis + ; kfsllf]
+ % Z Z Z Keslr + kailie + 22 kf5||f]
i

s#l r#f

%Zkijlij Zku if +— Z kijlg
i

ij |jfg
= HSIC

Moreover, this shows that the estim&t8I1C can be computed i(m?) time. [8] investigated the
convergence of this estimator and computed correspondivigitibn bounds.

As already mentioned, for a hypothesis test for indeperslarecfurther need to know the distri-
bution of the test statistie!SIC under the assumption of independence.

One approach is usingkmotstrap estimator. you brake the connection betwe¥pandy;, cre-
ate new pairsX;, Y;) by shufling and compute a new value fBISIC. This is done many times
and sinceX; andY; can be regarded as being independent, you obtain an enhgistiébution of
HSIC under the null hypothesis of independence. This takesad running time, though.

A different approach is using@amma approximation for the distribution of HSIC, which is
based on the following result (see [32] and Section 5.5.2371):

Theorem 3.43 Under the assumption of independence (i.e. HBIE") = 0), we have

m.Hélcia-Z,uwz
=1

where v id x4 and 4, solves the eigenvalue problem

A1 9 (Zj) = fhijqr 0(z) dp@i-Za.Z) ,

8Here,| is them x midentity matrix andl them x 1 vector containing only ones.
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where Z = (X;,Y}) and higr = 3 Zituvw=ii.jar Kl + Kulw — 2kle; here, the sum
represents all ordered quadruplds u, v, w) drawn without replacement frori, j, g,r).
(There ared! summands.)

Although we know the asymptotic distribution BISIC, it is hard to get exact quantiles, for ex-
ample. This is due to theficult eigenvalue problem and to the infinite sum of randomalses.
Therefore we use an approximation for this distributioniolilwas suggested by Kankainen [38]:

mHSIC £ I, B),

where the parametersandp are chosen, such that the first two moments of this gamma-distr
bution are matched to the first two momentswfHSIC under the independence hypothesis:

_ (EHSICY

- varHéIQ
varHSIC

" EHSIC

The moments oHSIC can be estimatedfiiently (computable i©(m?)) with a negligible bias
[32]:

.1 1 1 1
=t mmo1y ;Ki ;'” _mz(m—l);k” _mz(m—l);hj
2(m-4)(m->5)

VA= - Dm-2m-3)

1' (B - diag®)) 1

whereB = ((HKH). - (HLH)).2. Here,A. - B andA.2 denote entrywise operations between matri-
ces.

We now summarize

Theorem 3.44 [Independence Test based on HSIC] I(&§, Y1),. .., (Xm, Ym) be independent
and identically distributed according #©%Y). We can test the hypothesis

Ho: XLY against
Hjp: XxaAyY

with a significance level of by using two kernels k and | satisfying the conditions of
Theorem 3.41 (e.g. Gaussian kernels). Compute the statisti

N 1
HSIC = —tracg KHLH),
—trace(KHLH)

where Kj = k(Xi, Xj), Lij = I(X, Xj) and H= 1 - 11. 1* and define the decision function

Ho, HSIC<c

d(Xg, ..., Xn, Y1,... Ym) :{ Hi, HSIC>c
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3 Theory of Statistical Methods

Use the fact that mHSIC is approximately(a, 8) distributed with

=

X = —¢

var
p=m var
E

and choose c such that the type 1 error is bounded by the signde levelr.
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4 Causal Inference on Time Series

We now consider the problem already mentioned in the intdn: We are given some obser-
vations Xy, ..., Xt of a (real-valued) time series, but we do not know if this skntas been
reversed. That means we do not knowXif, ..., Xt or if Xy,...,X; represents the true time
direction. This can occur in the following situation: We ea® the time series sample on a sheet
of paper written by an Israeli. Fortunately, he used Arabimarals, but unfortunately we do not
know if he started writing on the right or on the left.

Thus we are looking for an algorithm, which can distinguigittween the true and the reversed
time direction based on a finite sample (see Figure 4.1).

DAX forwards DAX backwards

1800¢

1700¢

16001

1500¢

2312.91 ‘ ‘ 231292 231292 ‘ ‘ T 231291

Figure 4.1: DAX values between 23.12.1991 and 23.12.19% |@ft panel shows the true time direction, the right
panel the reversed one. This is one of the examples, for whuclARMA method was able to identify the correct
direction.

Notice that this a hard problem and we surely have to make gestigctions on the class of
considered time series in order to be able to identify the time direction.

In this section we propose two methods, one using SVMs andusimg an ARMA model for
time series.

4.1 Learning the Time Direction using SVMs

For this method we apply Support Vector Machines iffedent ways in order to distinguish
between the two directions of time. Therefore assume weiaga g strictly stationary time series
(Xt)ez. Strictly stationary means that the distribution &, (n, . .., Xi,+h) does not depend om

(see Definition 4.3 below). We further assume that there isfardnce in the finite-dimensional
distributions ¢, Xit1, ..., Xeew) and Kews - - -, Xer1, X¢). If all of these distributions were the

47



4 Causal Inference on Time Series

same, we could not detect df@irence.

In the SVM approach we do not further investigate thi$edlence and try to learn the nature of
it by training an SVM on many data from time series, for whicé know the true direction. As
a naive methodve just use an SVM on fixed sized windows of the time series.tf®isecond
approach (th&VM-RKHS methgdve construct an SVM on the finite-dimensional distribugion
of the time series. Therefore we embed these distributimiosan RKHS (see Section 4.1.1) and
try to separate the points in the RKHS by a standard SVM, ireatly. This is extended to a
non-linear separation in tHRVM-RKHS-PCA methoth which we choose the same embedding
for the distributions, but we first apply a principal compobhanalysis (Section 4.1.2) to the data
points and perform an SVM on the new coordinates.

These methods are described in more detail in Section 4.1.3.

4.1.1 Hilbert Space Embeddings of Sample Distributions

Recall that for some kernels (like the Gaussian kernel) we laa injective embedding of prob-
ability measures into an RKHS via the mapping

ulPX] = Ek(X,.).

Notice that even if we use a kernel, which does not satisfgdimglitions necessary for the embed-
ding to be injective, this embedding can still be useful. & use a polynomial kernel of degree
d onR, for example, the embedding will be injective only on a seratllass of distributions. If
two distributions coincide in the firgt moments, for example, they will be indistinguishable in
the RKHS.

Now assume we are given an iid samp},( .., Xm) of the distributionPX. We know that we
can estimate the distribution functidhof X by its sample estimtate

1 m
Fm(t) = m Z Ix<t-
i

If (Xq1,..., Xny) takes the valuex, . . ., Xmn), this corresponds to a measu?ré that has mas# on
each observed valug. ReplacingP* by PX leads to the following sample estimate of the mean
element in the RKHS:

m

AP = AP = D k(X ). @)

i=1

It turns out that these representations are unique in thafiolg sensé:

Proposition 4.1 Let k be a strictly positive definite kernel. Then
1< 1, . 5 _
ai;koq,.) = ﬁj;k(x,-,.) o m=nand xX=%q Yi=1...,m,

for a permutatiorno- € S,

1B. Scholkopf, MPI Tuebingen, told me this remark in a pesatiscussion.
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4.1 Learning the Time Direction using SVMs

Proof We prove the even more general case
m n
Daiks,) = Y Bik(x,) = m=nandx=%q; Yi=1...,m
i=1 =1
Wilog it is enough to show that there isjac {1,...,m}, such thatx; = X;. Assume

X1 # Xj V]. Then we can rewrite the left hand side as

max(mn,n)

Z yik(yi,.) = 0,

i=1

wherey; are distinct values (eitheg or X)) andy; = X1, y1 = @;. Taking the norm yields

max(m,n)
> vk y) =0,
i,j=1
which is contrary to the strictly positive definite kernel. O

This proposition shows that a single point in the RKHS corgaill information about the whole
sample. This statement, however, is not surprising, sine@weady know that the embedding
of distributions is injective under some conditions on theasures and on the kernel. Here we
showed that we do not even need these additional condititine kernel is strictly positive defi-
nite.

Notice that for the two SVM-RKHS approaches we want to appl\5&M (or a Principal Com-
ponent Analysis (PCA), respectively) to these points inRKgHS. We have already seen that we
only need the dot product matr{®;, ¢;) of the considered poini in order to perform an SVM.
As we will see below (Section 4.1.2) the same is true for PGAusTwe still have to compute the
pairwise dot products of the pointg = %Zi":‘l k(x;,.) in the RKHS. This is done as follows

<%le K(X;,.), % ,Z; K(%;,.)) = %}ZZ(k(x;,.),k(ij,.)) = %}sz,fq). 4.2)

= i=1 j=1 i=1 j=1

4.1.2 PCA

Let X be a vector of random variables ii* with mean zero and covariance matéix For

m samplesxy, ... Xy with sample mean zero, the sample covariance matrix is dbfss =
%2{21 xixiT. In standard PCA we consider the eigenvalue decomposifitinecsample covari-
ance matrix (which is symmetric and therefore has only reggrevalues). The eigenvectors are
called principal components and are usually ordered aswptd the eigenvalues. The first prin-
cipal component corresponds to the largest eigenvaluen Fro

. 13
Sv=— ;(Xi, V)X,
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4 Causal Inference on Time Series

it is obvious thaf is positive (semi-)definite and all eigenvalues are noratieg. Further we
notice that all eigenvectorswith A > 0 lie in spanXa, ..., Xm). It follows that all vectors in this
span are eigenvectors bfto the eigenvalud if and only if

AX, V) =X, 3v) Yi=1,...,m

This can be seen as follows: Construct an orthonormal Basis. , X of the span using Gram-
Schmidt, for example. We then have

AZ, Wy =&, 2wy Vi=1..., M
and it followsAv = 2v.

Principal component analysis can also be done in an RKHJ18¢e Therefore we considen
pointsés, . .., ¢m in the Hilbert space and again we assume that they are cenfgfg, ¢i = 0.
Define the covariance operator as
m
Z((bi, i
i=1

Since the Hilbert space may be infinite-dimensional, we oanacessarily write this in terms of
matrices. Again this operator is positiv&y, v) > 0) and thus all eigenvaluelsare non-negative.
Notice further that all non-zero eigenvalues can again bttemras a linear combination of the

bj:

T =

Slr

m
V= Zamj- (4.3)
=1
Furthermore (with the same argumentation as above), tleenefue equation reduces to
ABi, V) = ($i,2V) Vi=1,...,m.

Using (4.3) yields
m 1 m m .
/lzaj<¢i9¢j>:EZ“](‘ﬁi’Zd’k(d’k,(ﬁj» Vi=1,...,m,
=1 j=1 k=1

which reduces to
miKa = K2a (4.4)

if we write K for the Gram matrixy = (¢x, #) ande for (aq, .. ., am)t. This eigenvalue problem
is equivalent to
Mla = Ka (4.5)

since we can show (see e.g. the appendiKexhel Principal Component Analysis [39]) that
all solutionsa which satisfy (4.4) but not (4.5) are of the foldw = 0. And for such a solution,
however, we would have

<¢i,Zc¥j¢j>=(Ka)i =0 Vi,
=1
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4.1 Learning the Time Direction using SVMs

which shows that we are not interested in it: It correspondsvector = 31, @j4j, which does
not lie in spangs, ..., ¢#m). Conversely, it is obvious that all solutions of (4.5) sBti(4.4).
Thus we have seen that performing a PCA in an RKHS basicatlyces to diagonalizing the
Gram matrix (4.5). Let) denote the eigenvector corresponding to the eigenvalje Note
that we still have to normalize the solutions to ensure thatarincipal components have length
one: . o
1= < ag')¢>j, Z a/?)¢j> = (@, Koy = mij(a®, o).
j=1 j=1

The projection of data poinfk onto thei-th principal componenE’j“:1 a?)qu is easily computed:
m
(S Z a?)dn') = (KaO),.
=1
Similarly, we can compute the expansion in the principal ponents for a new point in the

RKHS: 0 o
W, Y oV =" o,
i=1 i=1

4.1.3 The SVM Method

Naive Method As a first idea we use a kernel SVM on a finite subset of the timesedata
with fixed length. For testing its performance consider d6tetseries, for example. We first
take 100 consecutive values out of each time series and Huase our training set (say 180 out
of the 200 samples). Then we have 360 training points, eagthah is labelled as-1 or -1
depending if they represent the true direction or if theyrak@rsed samples. We then train the
SVM and evaluate the predictions it makes on the test sefstongof the last 40 time series.
This method cannot be expected to work well: We expect thexdifierence between forward
and backward going time can be found in the finite-dimengidisdributions of the time series.
The corresponding information does lie in the first 100 daiatg, but in a subtle way. Therefore
the naive SVM is more unlikely to pick up this information ththe following SVM methods,
which are adjusted to the finite-dimensional distributioimsMachine Learning the way the data
is presented to the machine matters.

We annihilated the linear trend of the time series becausgidveot want the SVM adapt to this
feature. It is improbable, however, that the naive SVM finadg r@elevant features needed for the
distinction between forwards and backwards going time.

SVM-RKHS Method We learned in Section 3.3.3 that we can map a distributionrahdom
variable in an RKHS, such that all statistical propertiesrapresented. If we have a finite sample
of this variable, this mean element can be estimated by hgoit the sample mean of the feature
maps (cf (4.1)). In Section 4.1.1 we have seen that the mgppione-to-one in the following
sense: if two function values in the RKHS are the same thesahwles are of the same size and
consist of exactly the same points. Therefore we can sayhbaé Hilbert space representations
inherit all relevant statistical information of the finitaraple in input space. Now we want to
apply this idea to the finite-dimensional distributions dinae series. Since we can compute the
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4 Causal Inference on Time Series

pairwise dot products of these points we are able to perfofimear SVM in the RKHS. This
approach can be summarized as follows:

1. Choose a fixed window lengtlv and take for each time series many finite-dimensional
samples

th = (ths Xt1+la ) Xt1+W)
th = (Xt29 Xt2+l’ ceey Xt2+W)

Xt = (Xtm’ Xtm+1, cees Xtm+w) .

Thet; can be chosen in a way, such that — (t + w) = const, for example. The larger
this gap between two samples of the time series is, the Ig@ndent these samples will
be (ideally, we would like to have iid data, which is, of carsnpossible for time series).
Represent the distribution oK, ..., Xi.w) in the RKHS using the point

l m
a;k(xti,.).

2. Perform a (linear) soft margin SVM on these points (onesfrh time series) using (4.2).

This procedure should not be confused with the usual kefv®,Svhich is fundamentally dif-
ferent.

SVM-PCA-RKHS Method  The SVM-RKHS method just mentioned is doing an SVM on sam-
ple representations of the finite-dimensional distribugion the RKHS. Although the RKHS may
be infinite-dimensional, the Support Vector Machine s#@ifprms a linear classification. It may
be the case, however, that the vectors in the RKHS cannotdagated linearly. The goal of this
last SVM method is to do a non-linear classification withia RKHS. This can be done using
principal component analysis (PCA). Therefore we deteentiire principal components (in the
RKHS), project all data points on the most important dikatsi and do a usual kernel SVM clas-
sification on these cdigcients. In Section 4.1.2 we have given a short review of stah@CA
and showed, how it can be implemented in an RKHS. To summérigenethod:

1. As above, represent each time series in the RKHS usingoihe p

n%; K(Xy,.)-

2. Perform a PCA on these points (one for each time seriesy (4i2) and expand the points

with respect to the principal components: for each timeeseybu get a vector of cfe
cients.

3. Discard all principal components with eigenvalue smahan a threshold, such that you
remain with shorter cdicient vectors (of length 10, say).
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4.2 Learning the Time Direction using ARMA Models

4. Perform a kernel SVM on these dbeient vectors.

Remark 4.2 Note that the SVM-RKHS and the SVM-RKHS-PCA method are baissibilities
of performing an SVM on probability distributions and thieme are interesting concepts
in itself. They combine the idea of embedding distributiorte an RKHS and performing
an SVM. We have not heard that this idea has been used before.

4.2 Learning the Time Direction using ARMA Models

We first introduce the concept of ARMA processes. Later weavshow they can be used to
distinguish between the two time directions.

4.2.1 Time Series Analysis

Time series are stochastic processes indexedZwehich means they are a (countable) collec-
tion of random variables. Throughout the whole section wesitter only non-degenerate ran-
dom variables, that means random variables, for which fisarea € R, such that its distribution
function can be written as
F(X) = Lea(X) .
We now give some basic definitions and important results.
Definition 4.3 e A time seriess a family of random variables{().cz over a probability space
(Q,7,P).
e Atime series X;)iz is calledstrictly stationaryif

d
(th, ey th) = (Xt1+h, ceey th+h) Vk, 1, ..., %, heZ.
o Atime series )z is calledweakly (or second-order) stationarnjf X; € £2 and
EXi=pu and covi, Xi+h) = yn Yt,heZ,

i.e., both mean and covariance do not depend on thetfilng the latter only depends
on the time gap. h — y4 is called theauto-covariance functian
o Atime series &)z is called awhite noiseprocess ife € L2, E¢ = 0 and

covig, e:h) =0 VYheZ

e Atime series )iz is called ariid white noiseprocess if is iid.

Definition 4.4 e A time series X;)iz is called amoving averagerocess of ordeg and we
write MA(Q) if it is weakly stationary and if
q
X = Oi&-j + & YieZ,
=1

for iid white noiseg € £2.

2In the literature sometimes the prefiseaklyor strictly is omitted; we do not adapt to this notation in order to avoid
confusion.

53



4 Causal Inference on Time Series

e A time series Ki)iz is called anauto-regressiveprocess of ordep and we write
AR(p) if it is weakly stationary and if

p
Xi = Z¢ixt—i +ta VteZ,
i=1

for iid white noisee € £2
e A time series Xi)iez is called anauto-regressive moving averageocess of order
(p, g) and we write ARMAQ, q) if it is weakly stationary and if

p q
Xt:Z¢iXt—i+Zej€t—j+€t YieZ,
iz1 =

for iid white noisee € £2

e Atime series Xz is called an auto-regressivwategratedmoving average process
of order (p, g, d) and we write ARIMA(p,q,d) ifA%X; is an ARMA(p,q), where\X; =
Xi — Xi_1.

Define the backward shift operatBrvia B/X; = X;_j in order to simplify the notation in
the definitions above. The equation for an ARMA process, angple, simplifies to

p(B)Xi =0(B)e  VteZ,
whereg(z) = 1 - ¢1z— ... — ¢ppz’ and6(2) = 1 + 612+ ... + 642"

Note that in the literature ARMA processes are sometimeseefivithout the iid assumption of
the noise, that means they only require white noise prosesse

The following remark helps us to determine the auto-comaeaunction of an AR process:

Remark 4.5 Assume thatX;) is an AR({p) process. That means for &lE Z
Xe =1 X1+ ...+ dpXep + &.
Considering covX;, Xi.k), k = 1 yields the so-called Yule-Walker equations:
Yk = P1yk-1+ ...+ PpYk-p-
For the special case of an AR(1) process we have ¢1yx_1. With

Yo = COV(Xt, Xt) = ¢§70 +0?

it follows ‘
o’ and ¢
Yo = Yk = .
1-¢2 1-¢2

Remark 4.6 Now we consider ARMA processes with additional constraimghe coéicients.
The following arguments (mainly given by [40]) show why tee®strictions can be re-
garded as natural:
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4.2 Learning the Time Direction using ARMA Models

e ¢(2) andd(2) do not have common zeros
Assume there is at least one common zero. If none of the zeros the unit circleX;
is the unique weakly stationary solution of the ARMA equatim which all common
factors are cancelled. If one of the common zeros lie on tlieciale, the ARMA
equation may have more than one weakly stationary solution.

¢ ¢(2) does not have a zero on the unit circle
If it did and additionally there are no common zerog(f) andd(2), it can be shown
that the ARMA equation has no weakly stationary solutionllatfasimple example
for this is the equationX; = X;_1 + . Considering the variance of this process, it is
clear that there is no such thing as an AR(1) process gvithl.

Further, it is natural to consider processes for which theenis independent of the last values of
the time series; that means for every point in time there iadfitive random shock, which does
not depend on the last values of the time series:

Definition 4.7 An ARMA( p, g) process satisfying(B)X; = 6(B)e is calledcausalif

& 1 (Xt_]_, ceey Xt—h) vh>1. (46)

Proposition 4.8 For an ARMA(pQq) process satisfying(B)X; = 8(B)e, whereg(z) andd(z) have
no common zeros, the following is equivafent

() The process is causal.
(i) There exists a sequenég;), such thaty,°, |yi| < oo and

Xt = Zl//ie't—i : 4.7)
i=0
(iii) ¢(2) does not have any zeros in the unit cirde< 1.

If this is the case, the cgicientsy; of (4.7) are determined by

0(2
w2 = Zw. =50 A<t

and the sum4.7) converges absolutely with probability one (Propositiod.B.in [40]).
Furthermore(4.7)is the unique weakly stationary solutiong(B)X; = 6(B)e.

It is important that if) is not a property of the proces§ alone, but rather of the relationship
betweenX; ande.

Proof o () = (ii):
Wilog leth = 1. Define

n
Xt(n) = Z Vi€ .
k=1

3Note that in [40] causal processes are actually defined ag tatisfying condition (ii).
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Because cos and sin are bounded continuous functions, wetynthe definition of
weak convergence that the characteristic functions areecgimg pointwise:

@ X0 (8) — wpx(9) VseR.
P-a.s.

d . -a.s.
Further K, &,1) = (X &+1) holds, sincex(" P85 %, and thus X", 1) =
(X, &+1). Then

Pples1X) (U, V) = r!mo S0p(‘t+—1’>(1(n)) (U, V)
= lim gpe.a (u) - o v)
= P&+l (u) . r‘!mo SDPXt(n) (V)

= ppa. (U) - @px (V)
= ppaagpx (U, V)

and because of the uniqueness of characteristic functiertsame that., 1 andX; are

independent.
o (i) = (ii):
We know (e.g. Theorem 3.1.3 in [40], Laurent series expansi@tX; can be written
as
X = Z Vi€ . (4.8)
i€Z

We have to show that for causal processes all of/the< 0 are zero. iy, # O for
igp < 0, it follows that

Yio€ioio + Z Yigi =X L Yigei » (4.9)

iGZ—io

wherey,e_i, and Y icz_o¥i&-i are independent (same reasoning as above). Thus
(4.9) contradicts Lemma 2.7.

e (i) & (iii) :
This is shown as Theorem 3.1.1. in [40].

O

Above we have considered processes, which have finite war@md which are weakly stationary.
Of course processes with finite variance and strict statitynare just special cases. Itis possible,
however, to extend the last result to strictly stationargcpsses, which do not require a finite
variance. In order to ensure strict stationarity we consgtecalled Levy skew stable (ar-
stable) distributions (see Section 13.3. in [40]):

Definition 4.9 A random variable&Z has a_evy skew stabldistribution if the characteristic func-
tion of Z has the form

o exp(itu - 5~ (1- iBsgn@)tangra/2))) fora # 1
v2(t) = exp(itu — 15 (1 +igsgn@) Init))) fora=1"
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4.2 Learning the Time Direction using ARMA Models

where the exponent lies in [0, 2], the skewness parametgin [—-1, 1] and the scale pa-
rameterc in R. Fora = 2 we obtain a Gaussian distribution, for= 1 andg = 0 a Cauchy
distribution.

These distributions have the following stability propdd9]:
A random variable&Z is Levy stable if and only if there exist, > 0 andb,, € R, such that

23+ ...+ 2, d anZ + by

forall Za,...,Zn,Z " Levy stable.

Now we extend the definition of ARMA processes:

Definition 4.10 A process X;) is called astrictly stationary ARMA(fq) process if the noise
is Levy stable distributed and the process satisfies

$(B)X; = 0(B)et .

Again, under some conditions @nand, we can write the process as a general linear process
(see Proposition 13.3.2 in [40]):

Theorem 4.11 Let (X;) be a strictly stationary ARMA(jg), which satisfiegp(B)X; = 0(B)e;,
where¢(2) and 68(2) have ho common zeros. ¢{2) does not have any zeros in the unit

circle|7 < 1,
Xt = Zl//ie't—i
i=0

is the unique strictly stationary solution ¢{B)X; = 9(B)e&. The cogicientsy; are deter-
mined by

Q)
w(z)—Zw.z— s A<l

This extension to strictly stationary ARMA processes isassary because in real data you often
have noise with heavier tails than the Gaussian, which magven have a finite variance. In our
simulations we use Cauchy distributed noise as an exampke lfevy stable distribution (with
non-finite variance).

4.2.2 Reversibility of linear Time Series

In Section 2.2 we have already seen that linear causaloesdtips do not have to be reversible. In
fact, the normal distribution turned out to be a necessadysafficient condition for reversibility.
One of the main theoretical results of this work is a corresiiny statement for auto-regressive
moving average processes.

Definition 4.12 We call a causal ARMAY, q) process withp(B)X; = 8(B)e, time-reversiblaf it
can also be written as a causal ARMA) process in the dierent time direction, i.e. if
there existpg, 1, . . ¢p, 61, .. eq and a noiseg, such that

p g
Xt = Z i Xeyi + Z Ojé.j + & & L (Xir1, X2, ..., Xeeh)  Vh.

57



4 Causal Inference on Time Series

In the theoretical work [41] and [42] the authors call a $lyistationary process time-reversible
if (Xo,...,Xn) and o, ..., X_p) are equal in distribution for all. This notion is not appropriate
for our purpose because, a priori, it could be that both fodveand backward process both are
ARMA processes even though they do not coincide in distidbutNevertheless, their result that
(mainly) only Gaussian ARMA processes are time-reversgimilar to the one we will prove,
but as already said it is more restrictive, though.

For an AR(1) process
Xt = ¢1 X1+ &

Theorem 2.10 of Section 2.2 shows that this process is oubrsible for Gaussian noise. It is
not straightforward to apply Theorem 2.11 to an ARgrocess

q
Xi = Z P1Xe-i + &
i1

because the sum does not only consist of independent randdables. In order to cope with
this problem we first introduce a characterization of thenardistribution, which is a gener-
alization of the Darmois-Skitovich theorem and then cossitie MA(eo) representation of an
ARMA process. Recall that the Darmois-Skitovich theoreits tes that if two diferent linear
combinations of independent random variables are themsahdependent then all summands
are normally distributed. It turns out that this can be galiwad to an infinite sum. This was first
done by Mamai [43]:

Theorem 4.13 Let (X;); be a sequence of independent random variables and assuinieatiha
Yo, a X and Y72, by X converge almost surely. Further suppose that the sequq@ces

bi # 0} and (2 : & # 0} are bounded. If

Z X and Z bi Xi
i=1 i=1
are independent, then each, ¥or which ab; # 0, is normally distributed.

Before we can prove this theorem we need the following gdéizethversion of Theorem 2.9,
which was also given by Mamai [43] (see also Theorem 7.8 if)[13

Theorem 4.14 Let f, f, ... be a sequence of characteristic functions, which satisfy

[Tt0= 0.
i=1

for somen; > a > 0 and for all t in a neighbourhood of zero, where f is the chagaistic
function of a normal distribution. Then everyitself is the characteristic function of a
normal distribution.

Proof [of Theorem 4.13] The core of the proof is the same as the ariEhifeorem 2.8. We have
to extend all sums and products to infinity. If the series eoge almost surely, it is obvious
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4.2 Learning the Time Direction using ARMA Models

that the corresponding products of characteristic funstiare converging pointwise. We
even know that this convergence is uniformly in any finiteemaal. This can be seen, for
example, in [44]. Therefore we have

ﬁ¢i(aiu+ biv) = ﬁwi(aiu)ﬁwi(biv)-
i=1 =1 =)

Now we cannot conclude as easily as in the proof of Theorenth2a8y;(t) # O for all

t € R (if one side vanishes, it does not imply that one of the factles). Instead, we have
to restrict ourselves to an interval around 0 and considections i (t) = ¢j(t)ei(-t) =
lei(t)?], which are the characteristic functions of the random eglY; = X; — Xi, where

X; is an independent copy of. These functions are always positive and bounded away
from zero in an interval around the origin. Now we are abledwsider logarithms (which
are continuous!).

D wi@u+bv) = > wi(au) + > wilbiv) =: AU) + B(v)
i=1 i=1 i=1

wherey; = Ing;. If Y, turns out to be Gaussiak; is as well because of Cramér’s theorem
[16]. The rest is analogue to above if we take the uniform eagence into account, which
justifies a term-by-term integration, and if we use Theoreihd éhstead of Theorem 2.6

Now we are able to prove the following, central theorem:

Theorem 4.15 Assume thatX;) is a causal ARMA process with iid noise and non-vanishing AR
part. Then the process is time-reversible if and only if trexpss is Gaussian distributed.

Furthermore, if this is the case, the order of the processthrparameters stay the same:
P=pG=0 ¢ = ¢i,0; = 6; and even the variance of the Gaussian noise does not change.

Proof Although technically this is not necessary, we do the prafamly for the general case
of an ARMA(p,q) process but also for the special cases of AR(1) andphR(ocesses
with finite variance noise in order to achieve a better urtdading.

o —:

1. AR(2)
Let o denote the variance of the iid white noise Gaussian pracess
The reversibility is shown in Example 2.6. There we cons&d@ new noise,”

such that
0} -
Xi= ————Xii1 + & .
YT 92+ o2 var(k) Tt “
We have seen before that
2 2
o P10
Yo = var(X,) = 5 and y1= 7
1- ¢1 1- qbl
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4 Causal Inference on Time Series

which implies
Al S N
T e

We know thate” 1L X, 1, but technically we still have to checkéf and X, are
independent fok > 2:

(K1, X0
[1Xe+211?

=Yk — P¥k-1

=0

(& Xer) = (X Xi+1, Xtk

Now we can easily conclude

<aa gt+k> = <gt9 Xt+k - ¢Xt+k+1>

=0
for all k > 1. That meanse) is a sequence of independent random variables.
Furthermore
e s (Xer1, Xp)?
var@) = (&, &) = [Xeall? - 2+ 220 4 (X, X0
(Xl
ol - 2¢§0’2 + 0'2¢§ 2
= =0

1-¢2
so the new noise has the same variance as the old ene

2. AR(p)
Again the reversibility was already mentioned in the prdofleeorem 2.11. We
considered the projection & on spankt.1, . . ., Xt+p) and defined the new noise
as being the diierence betweek; and the projected vector. It remains to show,
that the cofficients do not change. Therefore we use that a projectionyalwa
minimises the distance between vector and projection space

W1, ..., ¥p) = argminyl(@, . . ., 8p)Xest, - - - Xewp)' — Xell?

i,j=1

p p
= argmin, " &2jCoV(Xii, Xi+j) = 2 ) &COVO, Xii)
i=1

p p
= argmir}a Z aiajCOV(XHp—i, Xt+p—j) - ZZ aiCOV(Xt+p, Xt+p—i)
ij=1 i1

= argminy/l(as, . -» ) Xesp-1 - - -» X)) = Xewpll®
= (¢1’---7¢p)

The last step holds, sin@ip=l Gi Xtsp-i — Xtap = —€+p ANA{€4p, Xesp-i) = 0, for
alli=1,...,p.
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4.2 Learning the Time Direction using ARMA Models

Again, we notice that for ak > p

p
(& Xk = (X X = ) 07 (Kesis Xeak)
i=1

p
=Yk~ Z PiVi-i
i=1
=0
according to the Yule-Walker equations. As above it follows
P
<gt9 g‘[+k> = <é, Xk — Z Xt+k+i>
i=1
=0
It remains to check that the variance of the noise is not dngng

2

<&@4M—i@mi
i=1

p P
=y — Zqum + Z GidjVii-j|
i=1 i.j=1

2

p
Xt+p - Z ¢iXt+p+i
i=1

= 0'2
Notice, that in the whole proof the stationarity of the tinegigs plays a crucial
role.
. ARMA(p, 0)
Now we consider a Gaussian ARMB\(@Q) process X;) and define

% - Q - RZ
Tw b {te X(w))

Recall that its finite-dimensional distributionXyf,..., Xi,) are normally dis-
tributed and therefore they are characterized only by themaad the covari-
ance matrix. So the distribution of the whole process onfyedels on the mean
function

S ux(s) = EXs

and its covariance function
(s 1) = covg(s 1) == cov(Xs, Xt) .
We define the backward process

Y- Q - RZ
Tw b {te X(w))
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4 Causal Inference on Time Series

which is again normally distributed and has the covarianocetion

COVy(S 1) = COV(X_s, Xt) = ¥|-s-(-t)) = VIs-t| = COVg(S 1).

Ergo
PED

meaning thaP(X; = Y; Yt) = 1 (X andY areindistinguishabl® For the forward
direction there exists a way to construct a proceéssQ — RZ as a function
of X, such that X;) together with the noises is a causal ARMA process with
specific coéficients; or, phrasing it dfierently, such that the joint distribution
of (X, €) satisfies certain conditions. The explicit constructidr ean be done
usinge = X2, mjXej [40], but is not relevant for the following. Important is

that we can construct a (possiblyfféirent) noiseé from Y in exactly the same
way. Because the distribution 0X(€) only depends on the distribution Hf(this
is due to the fact thak is just a function ofX), (X,€) and , e) have the same
properties.

1. AR(2)

This was already shown in Theorem 2.10.
2. AR(p)

See the general case below.
3. ARMA(p, Q)

By assumption, we have

wherey; = 0 for alli < 0. Additionally we have

X p+q+l—Zl//| €t—p+g+1-i = Z Up-g-1+i i -

i=0-p+1
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4.2 Learning the Time Direction using ARMA Models

Both sums are converging absolutely with probability orez(Broposition 4.8)
and by assumption, the left hand sides are independent lofotlaer. Clearly, we
want to apply Theorem 4.13, but therefore we need the boumassdcondition

to be satisfied. This we show in Lemma 4.16 below. Given thenbedness
Theorem 4.13 implies that the noiggis Gaussian distributed. (Note that we
actually have some occurring on both sides because of the non-vanishing AR
part.) ThenX; is Gaussian distributed, too: Define again

n
Xt(n) = Z Vi€ .
i=1

We know that X™), is converging in£2. Ergo

1%ell2 = IXPlo < 1% - X1, — 0,

and thus

o2 = varX" — varx, =: o2 .

Furthermore X(t(”))n converges in distribution and therefore the cumulative dis
tribution functionsF,, are converging pointwise:

Fn(X) = @g,,2(X) — Do 2(X) = F(X)

and thereforeX; is Gaussian distributed.

O

Recall the proof of Theorem 4.15. It remains to show that thenidedness condition on the
codficients is satisfied:

Lemma 4.16 For all possible causal backward models ARNMA{) both

‘ﬁﬁ—q-1+i

Bon

2j=o Citli+j-p
[
2j_o Ci¥i+j-p

4.10
U p—g-1+i ( )

and ‘

are bounded in i (se@t.7)for the cogficientsy;).
Here, g := —¢1,...,Cp = —¢p € Rand @ = 1.

Proof First we show for an example that this Lemma holds and theremenglize the arguments
for a rigorous proof: Consider an ARMA(2) process with the following cdicients:
¢1 =1,¢2 = —0.25,01 = 1. For this process we hayg = (1 + 3i)2~' for all i (see Chapter
3.3in [40]). Thus the first fraction reduces to

(1+3(P-G—1+i)). 20+1-P. -
Z:jﬁ:o Ci(1+3(j—p+i))- ob-j . o-i|
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4 Causal Inference on Time Series

The leading terms im determine the limit behaviour of this fraction; thus for flland
C1,...,Cp it converges against
3. 20+1-p
p L op-]
Zj:OB.CJ . 2P-]

asi — oo and is therefore bounded in

A similar reasoning can be applied to general ARMA procesbe® we have the following
expression fory; (see Chapter 3.3 in [40]):

S Ts-1 _
vi= ) ) as' &

s=1 t=1

whereas; are some cd#écients,&s are the distinct (possibly complex) rootsdilz) andTs
their multiplicity. Wlog assume thatst.—1 # 0 Vs. We can write the left fraction of (4.10)
as o

Yea I st (B-g-14i) T

5P B, Bl e i+ ] - pyres P

Ts-1 PO+l =~ Nt e
Y2 Ty astés” T (P-G-1+i)
Te-1 PP —J s et e
Yoq Ty astés Th o Ci s+ - P
To investigate the limit behaviour we again consider onidiag terms iri. More specif-
ically, all summands are going to zero singg!| < 1. The rootég, with the smallest
modulus converges towards zero with the slowest rate arslttieicorresponding sum-

mand determines the overall convergence. We divide botterator and denominator of
(4.11) byi™»™* £/ to see that the fraction converges towards

(4.11)

-p+o+1
U, Tgy-1 £

[T
U5 Tey-1 8§50 20 Ci €0

fori — oo. This surely implies boundedness.

Note that the co@cient

p

p gl

U, Tep-1 65 Z Cj &%
i=0

does not vanish because this imp@gz0 Cj ggoj = &(ggol) = 0. That meansggol is a root
of ¢(2), which is contrary to the restriction of a causal backwarddet (€] > 1, cf
Proposition 4.8). m|

Remark 4.17 Note that in Theorem 4.15 we excluded all pure MA processes

q
X = Z Oiei -
i—0
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4.2 Learning the Time Direction using ARMA Models

This is partly necessary because for some configurationseotodficients6;, the pro-
cess is time-reversible even for non-Gaussian distribatidn [41], for example, the au-
thor considers MAg) processes, whose daeients satisfyg; = 64-j, j = 0,...,d, where
6o = 1. He remarks that

d
Kigs o Xt,) = (Ktgs o os Xoty) s

which can be seen as follows (we need the symmetry of théicieats for the second and
the fourth equality)

Kegs - -5 Xt,)

q
Z Hlé-tl s «oe s Z eié-tn—i}
= i=0
g
Oie_(t-i)» - - - ,Zé’ié—(tn—i)]
€Et1—q+is - - Zelf—tn q+|}
tl is -« Zgle—tn ]

= (X_tl, e X—tn)

e

(- B e

o

With the same reasoning as in the="-part of the proof of Theorem 4.15, we can now
conclude that the time series is time-reversible for atritigtions ofe satisfying the above
symmetry constraints.

This shows, why at least some of the cases of pure MA procbsseso be excluded from
Theorem 4.15.

4.2.3 The ARMA Method

We use these theoretical results to propose a method whadfidgo detect the true direction of
time series. The main idea of this method is based on Theorgf ¥Ve assume that the time
series K;) is a causal stationary ARMA process with non-Gaussian d@iden Remember that
the causality assumption means that noise and past valties tiine series are independent. We
showed that the reversed time series cannot be expressexhasad stationary ARMA process.
Having this result we fit an ARMA process to both directiond st for independence between
noise and past values of the time series. This can be doneigificance test. If we can reject
the independence assumption only in one direction, we takether direction as the true one. If
we do not reject independence in any direction, the timesenay be a Gaussian process and if
we reject independence in both directions, our model assamjs probably wrong. In both of
the latter cases we do not decide.

We now summarize the main steps of the ARMA method:

1. ARMA Fit
Assume that the data come from a causal ARMA process withvaaishing AR part
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4 Causal Inference on Time Series

and with independent, non-Gaussian noise. Fit an ARMA @®de both directions
(X1,...,X7) and (7, ..., X1) and compute the fitted residuals.

The ARMA codficients are fitted using a Maximum Likelihood approach, thecekike-
lihood is computed by representing the ARMA process as & Space Model and using
a Kalman Filter. We do not give further details, but refer tua@ter 12 in [40]. In the ex-
periments we used the implementation fromaRrga with methog"ML" ) for fitting the
ARMA process. Moreover, we used the Akaike Information €idn in order to determine
the order of the ARMA process.

2. Normality Test
If the residuals seem to be Gaussian, i.e. the hypothesisafraal distribution cannot be
rejected, do not make a decision. In this work we used a tesstchan the skewness and
the kurtosis of the distribution: the so-called JarqueaBest uses the test statistic

B= g(s% (k_43)2) :

wherem is the number of samples, is the skewness arklithe kurtosis of the sample.
Under the hypothesis of a normal distribution the test stiatiB follows a Chi-Square
distribution with two degrees of freedom [45].

3. Independence Test
Using HSIC and a significance level @ftest if ¢ depends oiX;_1, X;_o, ... or if & depends
on X1, Xt42, . .. and call the p-values of both tegtg and p,, respectively. According to
Theorem 4.15 only one dependence should be found. If th@amtience is indeed rejected
for only one direction, i.e. exactly one p-value is smallfarta:

min(ps, P2) < @ and maxpsi, p2) > @

and additionally,
max(pz, P2) — min(py, p2) > 4,

then propose the direction of argmax(p,) to be the correct one. See Figure 4.2 for an
example.

4. If both directions seem to lead to dependent noise, cdediat the model fit is not good
enough and do not decide.

Note that there are two parameters to choose:
¢ the minimal diference in p-values and
¢ the significance levet.

We expect that the largérand the smallew is, the less decisions our algorithms makes, but the
more accurate these decisions will be.

We further point out that this is a heuristic method. Althbutheorem 4.15 is a theoretical
justification for our approach, we cannot bound the proligiof choosing the wrong direction,
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4.2 Learning the Time Direction using ARMA Models

for example. Furthermore we need iid data for the indeperelégst. The noise can be assumed
to be iid, but the time series values cannot. Even if we assatrisd stationarity we have that
the values are identically distributed, but they cannotdgarded as being independent. To come
over this problem, we do not consider all consecutive vabfdbe time series, but introduce a
gap instead; that means we take only every third value ofithe series for the independence
test, for example. This reduces the dependence betweemrh@es, but does not completely
annihilate it.

fitted residuals
fitted residuals

Figure 4.2: Simulated AR process with uniformly distritdit@ise: The fitted residuals of the forward model (left)
and of the backward model (right) are plotted against past Series values. The fit in the wrong direction leads to
a strong dependence between residuals and time seriesu@-efa0.0008), the residuals of the forward model are
regarded as independent (p-value of 0.8796).
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5 Experiments

We applied the SVM and the ARMA method both to simulated ARMAgesses and to real data.
Mainly there are four dferent data sets:

e ARMA Processes (simulated)
We simulated data from an ARMA(2) time series of length 500 with fixed parameters
and varying kinds of noise. Forftierent values of we sampled the noise from

& ~ sgn@) - |Z[",

whereZ ~ N(0,1). We then normalized it in order to obtain the same varidocall
r. Onlyr = 1 corresponds to a normal distribution. For all samples #rarpeters were
chosen to b@, = 0.9, ¢, = —0.3,6, = —0.29 andg, = 0.5.

e AR Processes (simulated)
For this experiment we simulated AR)(processes of length 500 and offdrent orders
(p = 1,...,5). Again, we used dierent kinds of noise (Gaussian, Laplace, Cauchy,
Student-t and uniform). For each of these 25 combinationsivellated 100 time se-
ries, each of which had filerent parameters. These parameters were chosen randaimly, b
were constrained to fulfill the conditions of a causal ARMAgess, of course. The noise
was simulated with variance one, except for the Cauchyildigion.

e EEG Data (real)
We used a publicly available EEG data set [46] consisting X8 &hannels of a single
subject. The sampling rate was 1000Hz and we consideredrgtesfseconds of each
channel, cut into 10 pieces. In total this gave 1180 timeesenf length 500.

e Mixed Collection of Time Series (real)
We collected data consisting of 200 time series with vary@mgith (from 100 up to 10,000
samples) from very dlierent areas: finance, physics, transportation, crime,ustamh of
goods, demography, economy, EEG data and agriculture. HRotgo thirds of them
belong to the groups economy and finance.

Once more we mention that in theory the ARMA method only wadfrkse data follow an ARMA
process with non-Gaussian noise. For stationary ARMA @meee the SVM methods require
non-Gaussian noise, too. If the noise were Gaussian, tHevaad process would be again a
causal ARMA process and there would be nfiadence in the finite-dimensional distributions
of the forward and the backward direction. Thus we expectmethods to fail for normally
distributed noise. In many applications such a Gaussidrildition is assumed, but this is often
done because of its nice computational properties ratlagr dhconsistency with the data. Using
noise with heavier tails than the Gaussian would often beerappropriate (e.g. [47]).
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5 Experiments

5.1 SVM method

In the experiments the naive SVM method for classifying tiredfion of time series did not
exceed chance level. As we mentioned before, we did not expecdo so because it is more
unlikely to adapt the important features relating to thetdéiaimensional distributions. In the
following subsection we only present the results from thdvSRKHS method and the SVM-
RKHS-PCA method. For these two methods we used a polynoraraiek of degree 4 for the
Hilbert Space embedding.

Since we know the “true” time direction for all time seriedlire data sets we used the following
procedure to test the SVM methods: We divided the data sdbraly into training and test set,
trained the SVM method on the training set and checked ittoreance on the test set. This
was repeated many times in order to avoid misleading redu#tgo particular easy test sets, for
example.

ARMA Processes (simulated). For this experiment we consider an ARMA(2,2) process with
codhcients¢; = 0.9,¢, = —0.3,61 = —0.29 andd, = 0.5. For each kind of noise (the noise is
parameterized by, only r = 1 corresponds to a Gaussian) we simulated 100 instancessof th
ARMA(2,2) process, divided these 100 time series into ingirset (85) and test set (15) and
obtained an error rate of the SVM method on the test set.

We have seen before that the distributions X X, 1, Xt12) and K2, Xi11, X¢) coincide if and
only if we consider a Gaussian distribution (this is a spet#se of Theorem 4.15). Thus we
expect the method only to work for= 1.

Since for each distribution of the noise all of the time seviere simulated using the same e
cients we expect the finite-dimensional distributions teib@lar over all of these 100 time series.

Notice, however, that the distributions used in this experit —except for the Gaussian case—
are not Levy stable and thus the ARMA process is not striddgianary. This means that the
finite-dimensional distributions of the time series vargitime. Assuming that the fiierence

in distributions obtained by time shifts are small compa@dthe diference caused by a time
inversion we still applied the SVM methods.

Figures 5.1 and 5.2 show that both SVMs learned indeed thealtraction of this ARMA process
provided the noise was ficiently different from being a Gaussian. Although the SVM-RKHS-
PCA method allows us to separate distributions in the RKH& Im@arly, it did not perform
better than the linear SYM-RKHS method. This is mainly duéhsfollowing reason: Since a
linear separation in the RKHS is seemingly possible, we dogam very much from the non-
linearity. Besides we have to facefiitiulties in regularization: even if we consider only few
principal components (3 or 4), the SVM must be heavily regzda in order to avoid overfitting.
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0.8
0.7f b
0.6 b
50%
0.5f J_ b

: JHH

error rate
on the test set

O:io ‘"ngm { o U

Figure 5.1: SVM-RKHS method on the ARMA processes. For eadbevofr (i.e. for each kind of noise) we
simulated 100 instances of an ARMA(2,2) process with fixegfftments and divided them into 85 time series for
training and 15 for testing; this was done 100 times for g@adfhe graph shows the average classification error on the
test set and the corresponding standard deviation.

50%

error rate
on the test set

0 0.4 0.8 12 1.6 2

Figure 5.2: SVM-RKHS-PCA method on the ARMA processes. Tinie we applied the SVM-RKHS-PCA method,
which allows a non-linear classification in the RKHS.
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AR Processes (simulated).  Recall that this experiment isfiérent from the previous one in
the following way: Again, we consider 100 time series forteaer-noise combination. Each of
these 100 time series was sampled wifferent(random) cofficients. In the ARMA experiment
we considered 100 time series for each noise, too, but dilasfe 100 time series were simulated
with the samdixed codficients. Hence, this AR experiment is closer to the task ofirigpdhe
difference between forward and backward going time, but is alsthrharder.

Both SVM methods did not perform better than chance on this slet. See Figures 5.3 and 5.4
for results.

e e Ll
L PP

0.2

12345 12345 12345 12345 12345

Gaussian Uniform Laplace Cauchy Student-t

Figure 5.3: SVM-RKHS method on the AR processes. For eactrardise combination we trained the SVM on 90
time series and tested it on the remaining 10 time series;pifiicedure was repeated 100 times. The figure shows
the average error rate on the test set together with thea@utviation. The window length was chosen to be 3 or
5 (which was decided by cross-validation) @& 10. The training error was around 30%. The performance is not
better than chance level.

0.7 1 1 1 1 T T 1 11 T T T T 1T T T T T T T T T 11T

L

by L L T T
T TR
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Figure 5.4: SVM-RKHS-PCA method on the AR processes. Heeeused the first 5 principal components in the
RKHS for classification.
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EEG Data (real). The SVM methods performed very well on this data set. We sepdrthe
data set into a training set (103 time series) and a test 5dinje series) 300 times. Because we
always used the forward and backward direction of the sasnfhe actual sizes of training and
test set were twice as large. Both methods were on averageaatiassify more than 95% of all
time series in the test set correctly: The SVM-RKHS methduex@d an average error rate of
2.9%=+ 3.9%, the SVM-RKHS-PCA method of 8%+ 4.5%. In both cases the training error was
even less (5% + 0.5% and 9% + 0.5%, respectively). A histogram of the achieved error rates
is shown in Figure 5.5.

200, : : : : : : : : 200
150r 1 150r
100r ] 100F
501 1 50F
0 . - . - 0 L L L
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
error rate on the test set (in %) error rate on the test set (in %)

Figure 5.5: SVM-RKHS method and SVM-RKHS-PCA method on tl&Fdata. This figure shows the performance
of the SVM methods on the EEG data set for 300 divisions irgimiing and test set. In most cases there was no false
classification on the test set at all. The SVM-RKHS methoff)(dnd the SVM-RKHS-PCA method (right) perform
almost equally well.
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Figure 5.6: This figure explains why there is almost nfiedence in the performance of the SVYM-RKHS and the
SVM-RKHS-PCA method on the EEG data set. The plot shows 4Qimgapoints and all 15 test points in the RKHS
with respect two the first two principal components corresiing to the two largest eigenvalues. It seems that a
separation based only on the first principal component &adly possible. Thus a linear classification in the RKHS
sufices and there is not much to gain from a non-linear classifier.
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As in the ARMA experiment (see above) we only used one spddiiit of time series, namely
EEG data. Even more, some samples belonged to the same tieesace we used 10 cuts of
each channel. The good performance of the SVM methods stawthe asymmetries between
past and future are fliciently significant.

Figure 5.6 shows why the SVM-RKHS-PCA method does not perfobetter than the SVM-
RKHS method. Here, we computed the projections of the data#gpm the RKHS onto the first
two principal components (that means the two components thié highest sample variation).
From this plot it can be seen that the variation in the firshg@pal component is already big
enough to separate the data. Ergo a linear classificatidreiRKHS (by a hyperplane, perpen-
dicular to the first principal component, for example) parie already very well and we do not
gain much from a non-linear classification as it is done by SRKHS-PCA method.

Mixed Collection of Time Series (real). The time series in this collection are veryfdrent
from each other in nature and distribution. Thus, presuynabis a more dificult problem to
solve than the EEG data set. Both SVM methods performedfigignily better than chance (see
Figures 5.7 and 5.8, but not as good as for the EEG data.

100
80
60
40
20

0 0.1 0.2 0.3 0.4 0.5 0.6
error rate on the test set

Figure 5.7: SVM-RKHS on the time series collection. 500 smee chose randomly a test set of size 20, trained
the method on the remaining 180 time and looked at the pegioca on the test set. For theparameter we chose
C = 10, which resulted in a training error of 3% + 1.8% and a test error of 36+ 10.5%. We reached the same
performance, however, for values©f which were several magnitudes lower or higher.
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Figure 5.8: SVM-RKHS-PCA on the time series collection. Huoe C parameter we again cho§: = 10, which
resulted in a training error of 3%+ 0.8% and a test error of 48% + 6.7%. Again the performance did not vary for
changingC in orders of magnitude 2 or 3.
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5.2 ARMA method

Recall that apart from the parametér@ninimal difference in p-values) anrd(significance level)
for the HSIC we have to choose a kernel and its parametershelexperiments we chose the
Gaussian kernel and the bandwidth was chosen by the rulaiofiitsaying that the median of
(IIx = yI1%)/(26%) should be 1.

ARMA Processes (simulated). Recall that according to Theorem 4.15 the ARMA method
only works if the ARMA processes are simulated with non-Géars noise. This experiment
shows that the assumption of non-Gaussian noise is edseWliiasimulated ARMA(2,2) pro-
cesses with diierent noise distributions. These are parameterized byue valwhich ranges
between (L and 2. Onlyr = 1 corresponds to a normal distribution.

We then fit an ARMA model to the data without making use of thet fhat we already know
the order of the process; instead we used the Akaike Infeoma&riterion which penalizes the
order of the model. When we detected a dependence betweddnalesand past values of the
time series, we rejected this direction, otherwise we aeckjp. (We only wanted to show the
necessity of non-Gaussian noise and thus did not perfornrvbioée ARMA method). For the
true direction we obviously expect the independence to jeetesl in very few cases (depending
on the significance level). Theorem 4.15 states that only ferl, the residuals of the reversed
direction will be independent. Since we are dealing with éfiamount of data, the noise cannot
be distinguished from a Gaussian distribution i§ close to 1; in these cases we will still be able
to fit a backward model reasonably well. For the independéestewe used a significance level
of @ = 0.01. See Figure 5.9 for details.
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Figure 5.9: ARMA method on the ARMA processes. For each vafugexpressing the non-Gaussanity of the noise)
we simulated 100 instances of an ARMA(2,2) process with 5®@ tpoints and show the acceptance ratio for the
forward model (solid line) and for the backward model (dask®e). When the noise is significantlyfiérent from
Gaussian noise (= 1), the correct direction can be identified.

As a comparison we also did the same experiment for an MA peowgth codficientsf; =
-0.3,0, = —0.3 andf3; = 1. For this special arrangement, Theorem 4.15 does not hdldsawe
have seen (Remark 4.17) the process is time-reversibldl fdisaibutions ofe. Thus we expect
both forward and backward model to be accepted most of thestilBee Figure 5.10 for details.
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Figure 5.10: Here we simulated for each value @D0 instances of an MA(3) process with 300 time points anevsho
the acceptance ratio for the forward model (solid line) amrdlie backward model (dashed line). Since the AR part
vanishes and the MA cdigcients are carefully chosen according to Remark 4.17, theags is time-reversible for all
considered distributions.

AR Processes (simulated). For each order-noise combination we received two numblees: t
number of classified time series (out of 100), and the praporof correctly classified time
series (out of those classified), which are shown in Figuté.5ln order to make the results for
the diferent kinds of noise more distinguishable, we used very ngmwative parameters: the
minimal difference inp-valuess was chosen to be@ and the significance levelto be 01. This
ensures that we have some false decisions and can obserfferartie in the performance for
the diferent noise distributions. The method works for all disttitns except for the Gaussian
(as expected). Further it works best for the Cauchy digiohy and it is slightly better in the
uniform case than in the Student-t case, for example. Thimsaeasonable since it is harder
to distinguish between a Student-t and a Gaussian disoibthan between a uniform and a
Gaussian distribution.
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Figure 5.11: ARMA method on the AR processes. The histogtamws the number of classified time series (out of
100) and the proportion of correctly classified time seriBise parameters (minimal fiérence in p-values = 5%,
significance levelr = 10%) were chosen such that many time series were classiffesit, &ith some resulting loss of
accuracy. Still in most cases (except the Gaussian) theatartassification rate significantly exceeds 50%.
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5.2 ARMA method

EEG Data (real). The results of the ARMA method on the EEG data set are showdiifferent
values ofw andé in Figure 5.12. Asy shrinks andy grows, the algorithm makes fewer mistakes,
but also classifies fewer time series. That said, classditaiccuracy consistently exceeds 68%.
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Figure 5.12: ARMA method on EEG data. The left panel showstiaber of classified time series (out of 1180),
and the right panel the proportion of correctly classifieakgtiseries, depending on the parameteasnds. The results
are consistently better than chance, reaching a corresgifitation rate of up to 82%.

Mixed Collection of Time Series (real). In order to obtain a larger data set, we cut the long
time series into pieces of length 400. This way we could usaistead of 200 time series. Since
the performance depends strongly on the chosen parametergive the results for éierent
values. The classification consistently exceeds 50% anahtine conservative the parameters are
chosen, the larger the proportion of correctly classifietetseries is. See Figure 5.13 for details.
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Figure 5.13: ARMA method on the time series collection. Wethe longer time series into smaller pieces of length
400 and obtained 576 time series. We show the results fiardnt values of the parameters: The minim#ledence

in p-valuess ranges between 0% and 20%, the significance lewstween 10% and.0%. The point with the highest
classification rate corresponds to the highest valugasfd the lowest value af.
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6 Conclusion

We have proposed two methods to detect the time directiommaf series. Our methods were
based on the theory of Reproducing Kernel Hilbert Spacepp&tl Vector Machines, Princi-

pal Component Analysis, the Hilbert-Schmidt Independeidterion and Time Series analysis.
Therefore we explained these concepts and gave the maitsrasd proofs.

For the SVM methodve combined the concept of Hilbert Space embeddings ofilalisions
and Support Vector Machines in a new way: It is possible toasgnt probability distributions
uniquely in an RKHS. We showed how to perform a linear SVM im RKHS and we could even
extended this to a non-linear classifier by applying a PCAéodata in the RKHS and an SVM
on the coficients in the direction of the principal components aftedsa

The ARMA methods based on a theoretical result we proved as Theorem 4. lisaCARMA
processes with non-vanishing AR part can be reversed initiamel only if they are normally dis-
tributed. Based on this result we fit an ARMA model to both tidirections and check whether
the residuals are independent of the former values of the sienies. For non-Gaussian distribu-
tions this should be the case only for the true time directionorder to detect the dependence
between noise and time series for the wrong time directiome&eazied a powerful independence
test. In this work we used the kernel-based Hilbert-Schinidépendence Criterion.

Using diferent kinds of experiments we showed that the SVM methodaldesto learn the dif-
ference in the finite-dimensional distributions betweemviird and backward going time series
if time series from test and training set aréfsuently similar. When we simulated all time series
as instances of an ARMA process with fixed fiments, for example, we were able to detect the
true time direction for all noise distributions except thauSsian. When we trained the SVM on
a set of mixed ARMA processes, which means each time serig®itraining and test set had
different coéficients, we did not achieve a performance better than ch&rabably the size of
the training set would have to be much larger; with smalhirgj sets it is likely that the SVM
adapts to dferences in the finite-dimensional distributions, whichdwsminant for this specific
kind of time series, but which cannot be generalized to ditrex series. Therefore these features
should not be regarded as essentiffledences between forward and backward going time.
Since there were 10 samples of each channel of the EEG datgaire have similar time series
in training and test set. Here, the SVM methods performed Wl the collection of time series,
however, we did not cut the time series into several piecesraceived worse results for this
method.

It is interesting to further investigate the reasons why wernbt achieve better results for the
SVM methods. For an AR(1) process, for example, the deperdeetween noise and time se-
ries implies conditions on the distribution of two adjacesmtdom variables of the time series.
These constraints on the distributions can be expressednstof their moments. Using a poly-
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nomial kernel for the Hilbert Space embedding we shouldagtle principal be able to detect
this difference even if we train the SVM on a set of AR(1) processes diftarent coéficients
and even dferent kinds of noise.

The experiments with simulated data sets show that the ARM#hod is able to identify the true
direction in most cases unless the ARMA processes were @audistributed (and thus time-
reversible). For real world time series (EEG and the timesellection) we found that in many
cases the data did not admit an ARMA model in either directoorthe distributions were close
to Gaussian. For a considerable fraction, however, thduaks were significantly less dependent
for one direction than for the other. For these cases, welymestovered the true direction.

Classification accuracies were not on par with the classificgproblems commonly considered
in Machine Learning, but we believe that this is owed to thedlilty of the task; it is remarkable
that we could at all identify the true time direction in timeries (even in real data) and thus we
consider our results rather to be encouraging.

It is possible to think of an extension of the ARMA method tomdimear time series models. As
we found out [48], the result that a linear model with indegemt additive noise can be reversed
if and only if the noise is normally distributed can be extemdinder some technical conditions
to non-linear models: if we can writé = f(X) + ¢, wheree and X are independent, then a
representatioiX = g(Y) + €, wheree'andY independent is possible if and onlyfifis linear and
all involved variables are Gaussian. It may be possible ¢@ga similar result in non-linear time
series analysis.

We can also think of dierent, more subtle asymmetries between past and futurmmengéeries
that are similar to this approach, i.e. if there is a simpleegative model in the forward but not
the backward direction in a more general sense. Since eaegeqrecedes itsfect, finding the
true time direction of time series would shed further lighttbe statistical asymmetries between
cause andféect.
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