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Abstract— This paper presents a semi-supervised graph-based
method for the classification of hyperspectral images. The method
is designed to exploit the spatial/contextual information in the im-
ages through composite kernels. The proposed method produces
smoother classifications with respect to the intrinsic structure
collectively revealed by known labeled and unlabeled points.
Good accuracy in high dimensional spaces and low number of
labeled samples (ill-posed situations) are produced as compared
to standard inductive support vector machines.

I. INTRODUCTION

In the remote sensing literature, many supervised and unsu-
pervised classifiers have been developed to tackle the multi-
and hyperspectral data classification problem [1]. The main
difficulty with supervised methods is that the learning process
heavily depends on the quality of the training dataset, which
is only useful for simultaneous images, or for images with
the same classes taken under the same conditions; and, even
worse, the training set is frequently not available, or in a very
reduced number, given the high cost of true sample labeling.
On the other hand, unsupervised methods are not sensitive to
the number of labeled samples since they work on the whole
image, but the relationship between clusters and classes is
not ensured. The use of semi-supervised classifiers can yield
improved performance in these situations.

In semi-supervised learning (SSL), the algorithm is provided
with some supervised information in addition to the unlabeled
data. Three different classes of SSL algorithms are encoun-
tered in the literature: (1) generative models, which involve
estimating the conditional density p(x|y) (e.g. expectation-
maximization (EM) algorithms with finite mixture models
[2]); (2) low density separation algorithms, which maximize
the margin for labeled and unlabeled samples simultaneously
(e.g. Transductive SVM [3]); and (3) graph-based methods
[4], in which each sample spreads its label information to its
neighbors until a global stable state is achieved on the whole
data set.

Graph-based methods have been lately paid attention be-
cause of their solid mathematical background, their rela-
tionship with kernel methods, sparseness properties, model

visualization, and good results in many areas. In this paper,
we introduce a semi-supervised graph-based method, previ-
ously presented in [5], in the context of hyperspectral image
classification. In order to improve its performance, we include
in the formulation the contextual information through the use
of composite kernels, which have been recently revealed very
useful to improve inductive support vector machines (SVMs)
[6], [7]. Finally, noting that the method relies on building
large kernel matrices, we reformulate the algorithm using the
Nyström method to speed up the solution [8]. The method is
evaluated in the real-like scenario of ill-posed classification,
i.e. low number of high dimensional labeled samples.

The paper is outlined as follows. Section II reviews the
main ideas underlying graph methods. Section III presents
the proposed semi-supervised graph-based composite kernel
classification method. Section IV discusses the classification
results compared to standard SVMs in ill-posed classification.
Finally, section V includes some concluding remarks and
indications on further work.

II. LEARNING WITH GRAPHS

Graph-based methods rely upon the construction of a graph
representation, where the vertices are the (labeled and un-
labeled) samples, and edges represent the similarity among
samples in the dataset (see Fig. 1).

Typically, graph methods utilize the graph Laplacian, which
is defined as follows. Let G = (V,E) be a graph with a set
of vertices, V , connected by a set of edges, E. The edge
connecting nodes (or samples) i and j have an associated
weight, {Wij}. Then, the weight (or affinity) matrix W is
constructed among all labeled and unlabeled samples. The
(normalized) graph Laplacian is defined as

L = I − D−1/2WD−1/2, (1)

where D is a diagonal matrix defined by Dii =
∑

ij Wij . See
[9] (Ch. 11) for more details on different families of graph-
based methods.

At this point, it is worth noting that prediction consists in
labeling the unlabeled nodes, and thus, these are intrinsically
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Fig. 1. Graph classification on a toy graph. (a) The two shaded circles are
the initially labeled vertices (±1), while the white nodes represent unlabeled
samples. The thickness of the edges represent the similarity among samples.
(b) Graph methods classify the unlabeled samples according to the weighted
distance, not just to the shortest path lengths, the latter leading to incorrectly
classified samples. The two clusters (shaded in green and red) are intuitively
correct, even being connected by (thin weak) edges.

transductive classifiers, i.e. the graph only returns the predicted
class label for the unlabeled samples, not a decision function
defined on the whole domain. These graph-based classifiers
can be viewed as estimating a function F over the graph,
which should be in accordance with the smoothness assump-
tion, that is, a good classification function should not change
too much between nearby points.

III. GRAPH-BASED COMPOSITE KERNEL CLASSIFICATION

A. Semisupervised graph-based method

1) Formulation: Given a dataset X =
{x1, . . . ,xl,xl+1, . . . ,xn} ⊂ R

N and a label set L =
{1, . . . , c}, the first l points xi (i ≤ l) are labeled as yi ∈ L
and the remaining points xu (l + 1 ≤ u ≤ n) are unlabeled.
The goal in semi-supervised learning is to predict the labels
of the unlabeled points.

Let F denote the set of n × c matrices with nonnegative
entries. A matrix F = [F�

1 , . . . , F�
n ]� ∈ F corresponds to

a classification on the dataset X by labeling each point xi

as a label yi = arg maxj≤c Fij . We can understand F as a
vectorial function F : X → R

c which assigns a vector Fi to
each point xi. Define an n × c matrix Y ∈ F with Yij = 1
if xi is labeled as yi = j and Yij = 0 otherwise. Note that Y
is consistent with the initial labels according to the decision
rule. The algorithm can be summarized as follows:

1) Calculate the affinity matrix W defined by Wij ≡
W (xi,xj) = exp(−‖xi − xj‖2/2σ2) if i �= j and
Wii = 0.

2) Construct the matrix S = D−1/2WD−1/2 in which D
is a diagonal matrix with its (i, i)-element equal to the
sum of the i-th row of W.

3) Iterate F (t+1) = αSF (t)+(1−α)Y until convergence,
where α is a parameter in (0, 1).

4) Let F ∗ denote the limit of the sequence {F (t)}. Label
each point xi as a label yi = arg maxj≤c F ∗

ij .

One can demonstrate [5] that in the limit, F ∗ =
limt→∞ F (t) = (1 − α)(I − αS)−1Y , which is equivalent

to the final estimating function:

F ∗ = (1 − α)(I − αS)−1Y, (2)

and thus F ∗ can be computed directly without iterations.
2) Graph interpretation: The proposed method can be

interpreted as a graph G = (V,E) defined on X , where the
vertex set V is just X and the edges E are weighted by W .
In the second step, the weight matrix W of G is normalized
symmetrically, which is necessary for the convergence of the
following iteration. During the third step, each sample receives
the information from its neighbors (first term), and also retains
its initial information (second term). The parameter α specifies
the relative amount of the information from its neighbors
and its initial label information. It is worth noting that self-
reinforcement is avoided since the diagonal elements of the
affinity matrix are set to zero in the first step. Moreover, the
information is spread symmetrically since S is a symmetric
matrix. Finally, the label of each unlabeled point is set to be
the class of which it has received most information during the
iteration process.

B. Spatio-Spectral composite kernels

Note that, in its standard use, the graph-based method
proposed before only would take advantage of the spectral
information. Here we propose a toolbox of composite kernels
accounting for the spatial and spectral information in the
affinity matrix W . For this purpose, a pixel entity xi ∈ R

N

(N represents the number of spectral bands) is redefined
simultaneously both in the spectral domain using its spectral
content, xω

i ∈ R
Nω , and in the spatial domain by applying

some feature extraction to its surrounding area, xs
i ∈ R

Ns ,
which yields Ns spatial (contextual) features. These separated
entities lead to two different similarity matrices, which can
be easily computed and combined. At this point, one can
sum spectral and textural dedicated affinity matrices (Wω

and Ws, respectively), and introduce the cross-information
between textural and spectral features (Wωs and Wsω) in the
formulation. This simple methodology yields a full family of
composite methods for hyperspectral image classification [7],
which can be summarized as follows:

• The stacked features approach. Let us define the map-
ping Φ as a transformation of the concatenation xi ≡
{xs

i , xω
i }, then the corresponding ‘stacked’ affinity ma-

trix is:

W{s,ω} ≡ W (xi,xj) = 〈Φ(xi),Φ(xj)〉, (3)

which does not include explicit cross relations between
xs

i and xω
j .

• The direct summation kernel. Let us assume two nonlin-
ear transformations ϕ1(·) and ϕ2(·) into Hilbert spaces
H1 and H2, respectively. Then, the following transfor-
mation can be constructed:

Φ(xi) = {ϕ1(xs
i ), ϕ2(xω

i )} (4)



and the corresponding dot product can be easily computed
as follows:

W (xi,xj) = 〈Φ(xi),Φ(xj)〉 (5)

= 〈{ϕ1(xs
i ), ϕ2(xω

i )}, {ϕ1(xs
j), ϕ2(xω

j )}〉
= Ws(xs

i ,x
s
j) + Wω(xω

i ,xω
j )

Note that the solution is expressed as the sum of positive
definite matrices accounting for the textural and spec-
tral counterparts, independently. Note that dim(xω

i ) =
Nω , dim(xs

i ) = Ns, and dim(W ) = dim(Ws) =
dim(Wω) = n × n.

• The cross-information kernel. The preceding kernel-based
classifiers can be conveniently modified to account for
the cross relationship between the spatial and spectral
information. Assume a nonlinear mapping ϕ(·) to a
Hilbert space H and three linear transformations Ak from
H to Hk, for k = 1, 2, 3. Let us construct the following
composite vector:

Φ(xi) = {A1ϕ(xs
i ),A2ϕ(xω

i ),A3(ϕ(xs
i ) + ϕ(xω

i ))} (6)

and compute the dot product

W (xi,xj) = 〈Φ(xi),Φ(xj)〉 (7)

= Φ(xs
i )

�R1Φ(xs
j) + Φ(xω

i )�R2Φ(xω
j )

+ Φ(xs
i )

�R3Φ(xω
j ) + Φ(xω

i )�R3Φ(xs
j)

where R1 = A�
1 A1 + A�

3 A3, R2 = A�
2 A2 + A�

3 A3,
and R3 = A�

3 A3 are three independent positive definite
matrices.
Similarly to the direct summation kernel, it can be
demonstrated that (7) can be expressed as the sum of
positive definite matrices, accounting for the textural,
spectral, and cross-terms between textural and spectral
counterparts:

W (xi,xj) = Ws(xs
i ,x

s
j) + Wω(xω

i ,xω
j )

+ Wsω(xs
i ,x

ω
j ) + Wωs(xω

i ,xs
j) (8)

The only restriction for this formulation to be valid is that
xs

i and xω
j need to have the same dimension (Nω = Ns).

C. Nyström method formulation

The proposed formulation involves three steps: firstly build-
ing the W matrix according to a composite specification,
secondly, normalizing W to obtain S, and finally, solving
an inversion problem given by (2). Note that direct inversion
induces a computational cost of O(n3), where n is the number
of labeled and unlabeled samples, which in the case of remote
sensing images can be very high.

The Nyström method is commonly used to produce an
approximate kernel matrix W̃ by randomly choosing m
rows/columns of the original matrix W and then making
W̃n,n = Wn,mW−1

m,mWm,n, m ≤ n, where Wn,m represents
the n×m block of the W . As a result, the method simplifies
the solution of the problem to the an approximated eigen-
decomposition of the low-rank kernel matrix W̃ = Ṽ Λ̃Ṽ �,
involving O(mn2) computational cost [8].

Similarly, if we approximate the normalized matrix S by a
small p× p matrix, S̃ = Ṽ Λ̃Ṽ �, and substitute it into (2), we
obtain:

F ∗ = (1 − α)(I − αṼ Λ̃Ṽ �)−1Y. (9)

Now, by exploiting the Woodbury formula1, it is straightfor-
ward to demonstrate that:

F ∗ = (1 − α)(Y +Ṽ (Λ̃Ṽ �Ṽ − α−1I)−1Λ̃Ṽ �Y ), (10)

which involves inverting a matrix of size p×p (with p ≤ m ≤
n) and thus the computational cost is O(p2n), i.e. linear with
the number of samples.

IV. EXPERIMENTAL RESULTS

A. Data Collection

Experiments were carried out using the familiar AVIRIS im-
age taken over NW Indiana’s Indian Pine test site in June 1992
[10]. Following [11], we used a part of the 145×145 scene,
called the subset scene, consisting of pixels [27-94]×[31-
116] for a size of 68×86, which contains four labeled classes
(the background pixels were not considered for classification
purposes). We removed 20 noisy bands covering the region of
water absorption, and finally worked with 200 spectral bands.

B. Model Development

The spectral samples xω
i are, by definition, the spectral

signature of pixels xi. The contextual samples, xs
i , were

computed as the mean of a 3 × 3 window surrounding xi

for each band. In all cases, we used the RBF kernel to
construct the similarity matrices W , and depending on the
composite kernel used, a different σ parameter was to be tuned
for each counterpart. All RBF kernel widths were tuned in
the range σ = {10−3, . . . , 103}, the regularization parameter
for SVM was varied in C = {100, . . . , 103}, and the α
parameter for the graph-based method was tuned in the range
α = {0.01, . . . , 0.99}. A one-against-one multiclassification
scheme was adopted in the case of SVMs.

C. Method Comparisons

In all cases, we selected the best free parameters with a
reduced training set of labeled samples ({3, 5, 10} samples per
class) through 3-fold cross validation, and tested the results in
the whole image. Table I shows the test results (averaged over
10 random realizations) for the composite kernels included in
both the SVM and the graph-based semi-supervised classifiers.

Several conclusions can be obtained from Table I. First, the
proposed graph-based method produces better classification
results than the inductive SVM in all situations, and the
average gain (∼ 2%) remains almost constant as we increase
the number of labeled samples for building the model, which
confirms good robustness capabilities. It is also worth noting
that the contextual classifier Ws alone produces good results,
mainly due to the presence of large homogeneous classes and

1The Woodbury formula states the identity: (C + AB)−1 = C−1 −
C−1A(I + BC−1A)−1BC−1, where C is an invertible n × n matrix,
A ∈ R

n×m and B ∈ R
m×n.
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Fig. 2. Left panel: Original hyperspectral image: (top) three-channel false color composition ([RGB: {50,27,17}]) and (bottom) the true classification map.
Right panel: Best thematic maps produced with the SVM-based (top) and the graph-based composite methods (bottom) with 5 training pixels by class.

TABLE I

OVERALL ACCURACY (OA[%]) AS A FUNCTION OF THE NUMBER OF

LABELED SAMPLES PER CLASS† . AVERAGE RESULTS OVER 10

REALIZATIONS ARE SHOWN AS [SVM / GRAPH].

No. training samples per class
Composite kernel 3 5 10

Spectral 58.43/60.28 58.70/60.54 67.66/69.17
Spatial 51.77/52.42 55.96/57.69 65.49/66.60
Stacked 52.01/53.48 55.68/57.18 67.02/68.16

Summation 61.26/62.39 64.89/66.86 69.43/71.32
Cross-information 64.57/66.09 65.02/67.13 66.36/67.87

† Best results (bold) and second best (italics) are highlighted for each
problem.

the high spatial resolution of the sensor. Note that the extracted
textural features xs

i contain spectral information to some extent
as we computed them per spectral channel, thus they can be
regarded as contextual or local spectral features. However, the
accuracy is lower than the rest of methods, which demonstrates
the relevance of the spectral information for hyperspectral
image classification. With regard to the standard stacked
approach, it is worth to note that poor results are obtained,
probably due to the curse of dimensionality induced when
working with such limited amount of labeled samples and
high dimension (twice the rest of the methods). Furthermore,
it is worth mentioning that all composite classifiers improved
the results obtained by the usual spectral kernel, especially
significant (∼6%) when low number of labeled samples is
used. These results confirm the validity of the presented
framework.

Figure 2 shows the classified images with SVM and the
graph-based method using different composite kernels for
integrating the spatial and spectral information. Methods were
trained with only 5 randomly selected training samples per
class. The numerical results shown in Table I are confirmed by
inspecting these classification maps, where better integration
of the spatial information is achieved by the graph-based
semi-supervised method, and smoother classification maps are
obtained, more noticeable for the minority classes and class
borders.

V. CONCLUSIONS

This paper proposed a graph-based method for hyperspectral
image classification. The method takes advantage of both the
high number of unlabeled samples present in the image, and
the integration of contextual information. The obtained results
suggest good robustness and accuracy to limited sized labeled
datasets, as compared to the state-of-the-art inductive SVM.
Next steps will consider the inclusion of more sophisticated
spatial features and composite kernels.
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